共查询到20条相似文献,搜索用时 15 毫秒
1.
In higher eukaryotes, induced resistance associates with acquisition of a priming state of the cells for a more effective activation of innate immunity; however, the nature of the components for mounting this type of immunological memory is not well known. We identified an extracellular subtilase from Arabidopsis, SBT3.3, the overexpression of which enhances innate immune responses while the loss of function compromises them. SBT3.3 expression initiates a durable autoinduction mechanism that promotes chromatin remodeling and activates a salicylic acid(SA)-dependent mechanism of priming of defense genes for amplified response. Moreover, SBT3.3 expression-sensitized plants for enhanced expression of the OXI1 kinase gene and activation of MAP kinases following pathogen attack, providing additional clues for the regulation of immune priming by SBT3.3. Conversely, in sbt3.3 mutant plants pathogen-mediated induction of SA-related defense gene expression is drastically reduced and activation of MAP kinases inhibited. Moreover, chromatin remodeling of defense-related genes normally associated with activation of an immune priming response appear inhibited in sbt3.3 plants, further indicating the importance of the extracellular SBT3.3 subtilase in the establishment of immune priming. Our results also point to an epigenetic control in the regulation of plant immunity, since SBT3.3 is up-regulated and priming activated when epigenetic control is impeded. SBT3.3 represents a new regulator of primed immunity. 相似文献
2.
Castro-Matteotti B Vera-Cabrera L Ocampo-Candiani J Rendón A Salinas-Carmona MC Welsh O 《Mycopathologia》2008,165(3):127-134
The ability of culture-filtrate proteins to induce a cellular immune response in infected mice and humans was investigated.
A crude extract culture filtrate of Nocardia brasiliensis (CFA) and five semi-purified CFA fractions (P1, P2, P3, P4, P5) were used to stimulate BALB/c mice spleen-cell cultures.
The animals were divided into three groups: the first group was infected with 1 × 107 CFU of N. brasiliensis in the footpad, the second group was immunized with heat-killed bacteria, and the third was injected with sterile saline.
IFN-γ, IL-1α, and IL-4 concentrations were determined in culture supernatants. Protein fractions eliciting IFN-γ production
in mice, as well as the CFA, were used to stimulate IFN-γ production and in vitro cell proliferation assays with peripheral
blood mononuclear cells of patients with actinomycetoma by N. brasiliensis, individuals with pulmonary tuberculosis, and healthy controls. In mice, CFA and three of the protein fractions (P3, P4 and
P5) induced significant IFN-γ production in the infected group. In humans, only the CFA-induced IFN-γ production and cell
proliferation in the group of patients with actinomycetoma. There was no stimulation in tuberculosis patients nor healthy
controls. These results suggest that some culture-filtrate antigens are recognized by patients with active actinomycetoma
and do not cross-react with M. tuberculosis antigens, being therefore potential candidates to develop a diagnostic test. 相似文献
3.
Ky Young Park So Yeon Seo Beak-Rock Oh Jeong-Woo Seo Yu Jung Kim 《Journal of Plant Biology》2018,61(6):424-434
Plants harbor a wide diversity of microorganisms, which are involved in major plant functions such as nutrition and resistance to biotic and abiotic stresses. Recently, the importance of the rhizosphere microbiome for plant growth has been widely recognized. Therefore, we researched the effects of 2,3-butanediol (2,3-BD) in order to obtain insights into systemic acquired resistance (SAR) mediated through reactive oxygen species (ROS) homeostasis and pathogenesis-related (PR) gene expression. Syringe infiltration with Paenibacillus polymyxa DSM 365 surprisingly mitigated cell damage, which was induced by the compatible plant pathogen Phytophtora parasitica var. nicotianae (Ppn). Furthermore, syringe infiltration with 2,3-BD produced from P. polymyxa effectively enhanced SAR to compatible Ppn through down-regulation of ROS biosynthetic genes (NtRbohD and NtRbohF) and up-regulation of ROS detoxification and PR protein expression. In addition, synergy between 2,3-BD and nonexpressor pathogenesis-related protein 1 (NPR1) enhanced resistance to pathogen infection. Taken together, our study demonstrates the potential applicability of leaf and root-associated microbiomes as biopestcides to increase efficiency and yield in agricultural systems. 相似文献
4.
Maria Ivshina Ilya M. Alexandrov Anastassiia Vertii Stephen Doxsey Joel D. Richter 《Molecular and cellular biology》2015,35(3):610-618
The cytoplasmic-element-binding (CPEB) protein is a sequence-specific RNA-binding protein that regulates cytoplasmic polyadenylation-induced translation. In mouse embryo fibroblasts (MEFs) lacking CPEB, many mRNAs encoding proteins involved in inflammation are misregulated. Correlated with this aberrant translation in MEFs, a macrophage cell line depleted of CPEB and treated with lipopolysaccharide (LPS) to stimulate the inflammatory immune response expresses high levels of interleukin-6 (IL-6), which is due to prolonged nuclear retention of NF-κB. Two proteins involved in NF-κB nuclear localization and IL-6 expression, IκBα and transforming growth factor beta-activated kinase 1 (TAK1), are present at excessively low and high steady-state levels, respectively, in LPS-treated CPEB-depleted macrophages. However, only TAK1 has an altered synthesis rate that is CPEB dependent and CPEB/TAK1 double depletion alleviates high IL-6 production. Peritoneal macrophages isolated from CPEB knockout (KO) mice treated with LPS in vitro also have prolonged NF-κB nuclear retention and produce high IL-6 levels. LPS-injected CPEB KO mice secrete prodigious amounts of IL-6 and other proinflammatory cytokines and exhibit hypersensitivity to endotoxic shock; these effects are mitigated when the animals are also injected with (5Z)-7-oxozeaenol, a potent and specific inhibitor of TAK1. These data show that CPEB control of TAK1 mRNA translation mediates the inflammatory immune response. 相似文献
5.
6.
Hisako Kayama Ritsuko Koga Koji Atarashi Megumi Okuyama Taishi Kimura Tak W. Mak Satoshi Uematsu Shizuo Akira Hiroshi Takayanagi Kenya Honda Masahiro Yamamoto Kiyoshi Takeda 《PLoS pathogens》2009,5(7)
Host defense against the intracellular protozoan parasite Trypanosoma cruzi depends on Toll-like receptor (TLR)-dependent innate immune responses. Recent studies also suggest the presence of TLR-independent responses to several microorganisms, such as viruses, bacteria, and fungi. However, the TLR-independent responses to protozoa remain unclear. Here, we demonstrate a novel TLR-independent innate response pathway to T. cruzi. Myd88
−/−
Trif
−/− mice lacking TLR signaling showed normal T. cruzi-induced Th1 responses and maturation of dendritic cells (DCs), despite high sensitivity to the infection. IFN-γ was normally induced in T. cruzi-infected Myd88
−/−
Trif
−/− innate immune cells, and further was responsible for the TLR-independent Th1 responses and DC maturation after T. cruzi infection. T. cruzi infection induced elevation of the intracellular Ca2+ level. Furthermore, T. cruzi-induced IFN-γ expression was blocked by inhibition of Ca2+ signaling. NFATc1, which plays a pivotal role in Ca2+ signaling in lymphocytes, was activated in T. cruzi-infected Myd88−/−Trif−/− innate immune cells. T. cruzi-infected Nfatc1
−/− fetal liver DCs were impaired in IFN-γ production and DC maturation. These results demonstrate that NFATc1 mediates TLR-independent innate immune responses in T. cruzi infection. 相似文献
7.
8.
9.
10.
Simone L. Sandiford Yuemei Dong Andrew Pike Benjamin J. Blumberg Ana C. Bahia George Dimopoulos 《PLoS pathogens》2015,11(2)
Actin is a highly versatile, abundant, and conserved protein, with functions in a variety of intracellular processes. Here, we describe a novel role for insect cytoplasmic actin as an extracellular pathogen recognition factor that mediates antibacterial defense. Insect actins are secreted from cells upon immune challenge through an exosome-independent pathway. Anopheles gambiae actin interacts with the extracellular MD2-like immune factor AgMDL1, and binds to the surfaces of bacteria, mediating their phagocytosis and direct killing. Globular and filamentous actins display distinct functions as extracellular immune factors, and mosquito actin is a Plasmodium infection antagonist. 相似文献
11.
12.
Giuliano Bonfá Luciana Benevides Maria do Carmo Souza Denise Morais Fonseca Tiago Wilson Patriarca Mineo Marcos Ant?nio Rossi Neide Maria Silva Jo?o Santana Silva Cristina Ribeiro de Barros Cardoso 《PloS one》2014,9(8)
CCR5, an important receptor related to cell recruitment and inflammation, is expressed during experimental Toxoplasma gondii infection. However, its role in the immunopathology of toxoplasmosis is not clearly defined yet. Thus, we inoculated WT and CCR5-/- mice with a sub lethal dose of the parasite by oral route. CCR5-/- mice were extremely susceptible to infection, presenting higher parasite load and lower tissue expression of IL-12p40, IFN-γ, TNF, IL-6, iNOS, Foxp3, T-bet, GATA-3 and PPARα. Although both groups presented inflammation in the liver with prominent neutrophil infiltration, CCR5-/- mice had extensive tissue damage with hepatocyte vacuolization, steatosis, elevated serum triglycerides and transaminases. PPARα agonist Gemfibrozil improved the vacuolization but did not rescue CCR5-/- infected mice from high serum triglycerides levels and enhanced mortality. We also found intense inflammation in the ileum of CCR5-/- infected mice, with epithelial ulceration, augmented CD4 and decreased frequency of NK cells in the gut lamina propria. Most interestingly, these findings were accompanied by an outstanding accumulation of neutrophils in the ileum, which seemed to be involved in the gut immunopathology, once the depletion of these cells was accompanied by reduced local damage. Altogether, these data demonstrated that CCR5 is essential to the control of T. gondii infection and to maintain the metabolic, hepatic and intestinal integrity. These findings add novel information on the disease pathogenesis and may be relevant for directing future approaches to the treatment of multi-deregulated diseases. 相似文献
13.
Mkunde Chachage Lilli Podola Petra Clowes Anthony Nsojo Asli Bauer Onesmo Mgaya Dickens Kowour Guenter Froeschl Leonard Maboko Michael Hoelscher Elmar Saathoff Christof Geldmacher 《PLoS neglected tropical diseases》2014,8(3)
Background
It has been hypothesized that helminth infections increase HIV susceptibility by enhancing systemic immune activation and hence contribute to elevated HIV-1 transmission in sub-Saharan Africa.Objective
To study systemic immune activation and HIV-1 co-receptor expression in relation to different helminth infections and in response to helminth treatment.Methods
HIV-negative adults with (n = 189) or without (n = 57) different helminth infections, as diagnosed by Kato-Katz, were enrolled in Mbeya, Tanzania. Blinded to helminth infection status, T cell differentiation (CD45RO, CD27), activation (HLA-DR, CD38) and CCR5 expression was determined at baseline and 3 months after Albendazole/Praziquantel treatment. Plasma cytokine levels were compared using a cytometric bead array.Results
Trichuris and Ascaris infections were linked to increased frequencies of “activated” CD4 and/or CD8 T cells (p<0.05), whereas Hookworm infection was associated with a trend towards decreased HLA-DR+ CD8 T cell frequencies (p = 0.222). In Trichuris infected subjects, there was a linear correlation between HLA-DR+ CD4 T cell frequencies and the cytokines IL-1β and IL-10 (p<0.05). Helminth treatment with Albendazole and Praziquantel significantly decreased eosinophilia for S. mansoni and Hookworm infections (p<0.005) but not for Trichuris infection and only moderately modulated T cell activation. CCR5 surface density on memory CD4 T cells was increased by 1.2-fold during Trichuris infection (p-value: 0.053) and reduced after treatment (p = 0.003).Conclusions
Increased expression of T cell activation markers was associated with Trichuris and Ascaris infections with relatively little effect of helminth treatment. 相似文献14.
Emilia Scharrig Agostina Carestia María F. Ferrer Maia Cédola Gabriela Pretre Ricardo Drut Mathieu Picardeau Mirta Schattner Ricardo M. Gómez 《PLoS neglected tropical diseases》2015,9(7)
NETosis is a process by which neutrophils extrude their DNA together with bactericidal proteins that trap and/or kill pathogens. In the present study, we evaluated the ability of Leptospira spp. to induce NETosis using human ex vivo and murine in vivo models. Microscopy and fluorometric studies showed that incubation of human neutrophils with Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 (LIC) resulted in the release of DNA extracellular traps (NETs). The bacteria number, pathogenicity and viability were relevant factors for induction of NETs, but bacteria motility was not. Entrapment of LIC in the NETs resulted in LIC death; however, pathogenic but not saprophytic Leptospira sp. exerted nuclease activity and degraded DNA. Mice infected with LIC showed circulating NETs after 2 days post-infection (dpi). Depletion of neutrophils with mAb1A8 significantly reduced the amount of intravascular NETs in LIC-infected mice, increasing bacteremia at 3 dpi. Although there was a low bacterial burden, scarce neutrophils and an absence of inflammation in the early stages of infection in the kidney and liver, at the beginning of the leptospiruric phase, the bacterial burden was significantly higher in kidneys of neutrophil-depleted-mice compared to non-depleted and infected mice. Surprisingly, interstitial nephritis was of similar intensity in both groups of infected mice. Taken together, these data suggest that LIC triggers NETs, and that the intravascular formation of these DNA traps appears to be critical not only to prevent early leptospiral dissemination but also to preclude further bacterial burden. 相似文献
15.
Laws Gemma L. Hale John D. F. Kemp Roslyn A. 《Probiotics and antimicrobial proteins》2021,13(6):1521-1529
Probiotics and Antimicrobial Proteins - Streptococcus salivarius K12 is an oral probiotic known to contribute to protection against oral pathogenic bacteria in humans. Studies of immune responses... 相似文献
16.
Paul Toomey Krithika Kodumudi Amy Weber Lisa Kuhn Ellen Moore Amod A. Sarnaik Shari Pilon-Thomas 《PloS one》2013,8(7)
Intralesional (IL) injection of PV-10 has shown to induce regression of both injected and non-injected lesions in patients with melanoma. To determine an underlying immune mechanism, the murine B16 melanoma model and the MT-901 breast cancer model were utilized. In BALB/c mice bearing MT-901 breast cancer, injection of PV-10 led to regression of injected and untreated contralateral subcutaneous lesions. In a murine model of melanoma, B16 cells were injected into C57BL/6 mice to establish one subcutaneous tumor and multiple lung lesions. Treatment of the subcutaneous lesion with a single injection of IL PV-10 led to regression of the injected lesion as well as the distant B16 melanoma lung metastases. Anti-tumor immune responses were measured in splenocytes collected from mice treated with IL PBS or PV-10. Splenocytes isolated from tumor bearing mice treated with IL PV-10 demonstrated enhanced tumor-specific IFN-gamma production compared to splenocytes from PBS-treated mice in both models. In addition, a significant increase in lysis of B16 cells by T cells isolated after PV-10 treatment was observed. Transfer of T cells isolated from tumor-bearing mice treated with IL PV-10 led to tumor regression in mice bearing B16 melanoma. These studies establish that IL PV-10 therapy induces tumor-specific T cell-mediated immunity in multiple histologic subtypes and support the concept of combining IL PV10 with immunotherapy for advanced malignancies. 相似文献
17.
Joseph Mazar Feng Qi Bongyong Lee John Marchica Subramaniam Govindarajan John Shelley Jian-Liang Li Animesh Ray Ranjan J. Perera 《Molecular and cellular biology》2016,36(7):1090-1108
MicroRNA 211 (miR-211) negatively regulates genes that drive invasion of metastatic melanoma. Compared to normal human melanocytes, miR-211 expression is significantly reduced or absent in nonpigmented melanoma cells and lost during human melanoma progression. To investigate the molecular mechanism of its tumor suppressor function, miR-211 was ectopically expressed in nonpigmented melanoma cells. Ectopic expression of miR-211 reduced hypoxia-inducible factor 1α (HIF-1α) protein levels and decreased cell growth during hypoxia. HIF-1α protein loss was correlated with the downregulation of a miR-211 target gene, pyruvate dehydrogenase kinase 4 (PDK4). We present evidence that resumption of miR-211-mediated downregulation of PDK4 in melanoma cells causes inhibition of invasion by nonpigmented melanomas via HIF-1α protein destabilization. Thus, the tumor suppressor miR-211 acts as a metabolic switch, and its loss is expected to promote cancer hallmarks in human melanomas. Melanoma, one of the deadliest forms of skin cancer, kills nearly 10,000 people in the United States per year. We had previously shown that a small noncoding RNA, termed miR-211, suppresses invasion and the growth of aggressive melanoma cells. The results presented here support the hypothesis that miR-211 loss in melanoma cells causes abnormal regulation of energy metabolism, which in turn allows cancer cells to survive under low oxygen concentrations—a condition that generally kills normal cells. These findings highlight a novel mechanism of melanoma formation: miR-211 is a molecular switch that is turned off in melanoma cells, raising the hope that in the future we might be able to turn the switch back on, thus providing a better treatment option for melanoma. 相似文献
18.
Martin R. Miller Lars R?berg Andrew F. Read Nicholas J. Savill 《PLoS computational biology》2010,6(9)
Malarial infection is associated with complex immune and erythropoietic responses in the host. A quantitative understanding of these processes is essential to help inform malaria therapy and for the design of effective vaccines. In this study, we use a statistical model-fitting approach to investigate the immune and erythropoietic responses in Plasmodium chabaudi infections of mice. Three mouse phenotypes (wildtype, T-cell-deficient nude mice, and nude mice reconstituted with T-cells taken from wildtype mice) were infected with one of two parasite clones (AS or AJ). Under a Bayesian framework, we use an adaptive population-based Markov chain Monte Carlo method and fit a set of dynamical models to observed data on parasite and red blood cell (RBC) densities. Model fits are compared using Bayes'' factors and parameter estimates obtained. We consider three independent immune mechanisms: clearance of parasitised RBCs (pRBC), clearance of unparasitised RBCs (uRBC), and clearance of parasites that burst from RBCs (merozoites). Our results suggest that the immune response of wildtype mice is associated with less destruction of uRBCs, compared to the immune response of nude mice. There is a greater degree of synchronisation between pRBC and uRBC clearance than between either mechanism and merozoite clearance. In all three mouse phenotypes, control of the peak of parasite density is associated with pRBC clearance. In wildtype mice and AS-infected nude mice, control of the peak is also associated with uRBC clearance. Our results suggest that uRBC clearance, rather than RBC infection, is the major determinant of RBC dynamics from approximately day 12 post-innoculation. During the first 2–3 weeks of blood-stage infection, immune-mediated clearance of pRBCs and uRBCs appears to have a much stronger effect than immune-mediated merozoite clearance. Upregulation of erythropoiesis is dependent on mouse phenotype and is greater in wildtype and reconstitited mice. Our study highlights the informative power of statistically rigorous model-fitting techniques in elucidating biological systems. 相似文献
19.
20.
During water stress, stomatal closure occurs as water tension and levels of abscisic acid (ABA) increase in the leaf, but the interaction between these two drivers of stomatal aperture is poorly understood. We investigate the dynamics of water potential, ABA, and stomatal conductance during the imposition of water stress on two drought-tolerant conifer species with contrasting stomatal behavior. Rapid rehydration of excised shoots was used as a means of differentiating the direct influences of ABA and water potential on stomatal closure. Pinus radiata (Pinaceae) was found to exhibit ABA-driven stomatal closure during water stress, resulting in strongly isohydric regulation of water loss. By contrast, stomatal closure in Callitris rhomboidea (Cupressaceae) was initiated by elevated foliar ABA, but sustained water stress saw a marked decline in ABA levels and a shift to water potential-driven stomatal closure. The transition from ABA to water potential as the primary driver of stomatal aperture allowed C. rhomboidea to rapidly recover gas exchange after water-stressed plants were rewatered, and was associated with a strongly anisohydric regulation of water loss. These two contrasting mechanisms of stomatal regulation function in combination with xylem vulnerability to produce highly divergent strategies of water management. Species-specific ABA dynamics are proposed as a central component of drought survival and ecology.By guarding the interface between plant and atmosphere, the stomata of land plants occupy a uniquely important role that connects diverse aspects of plant biology with atmospheric processes. Capitalizing upon the potential for stomata to be used to modify plant growth and survival, or as a tool for interpreting environmental change, requires a mechanistic understanding of how these tiny valves operate. Yet, an integrated understanding of stomatal control remains elusive. Foremost in this uncertainty is an explanation for how complex signals from the environment are translated into guard cell movement. A particularly challenging feature of stomatal behavior is the fact that environmental perturbation induces both physical and chemical responses within the plant and that turgor-regulated stomata are responsive to both signals. Disentangling these distinct contributions to stomatal conductance (gs) has been made more complicated by the limited communication between molecular-scaled disciplines of mutant characterization and membrane transport biology and researchers at the larger scale of plant water relations and xylem transport. As a result, two contrasting views of stomatal control exist. Molecular biologists view stomata as osmotically regulated valves uniquely responsive to plant hormone levels and the resultant movement of ions across the guard cell membranes (Schroeder et al., 2001; Roelfsema and Hedrich, 2005). By contrast, most process-based models assume a direct influence of soil water content on stomatal aperture (Buckley, 2005; Damour et al., 2010).The phytohormone abscisic acid (ABA) is seen as a cornerstone of stomatal function because it has been shown to trigger responses in guard cell membrane channels and transporters that cause a reduction in guard cell turgor, thereby closing stomata. ABA-mediated stomatal closure in seed plants (but not in ferns and lycophytes; Brodribb and McAdam, 2011) is broadly accepted as the explanation for stomatal closure during water stress (Zhang and Davies, 1989; Bauer et al., 2013); yet, there are very few studies that show a good correlation between the level of ABA and gs during water stress in the field. The traditional explanation for this lack of a strong relationship suggests that ABA is a root-derived hormone that is delivered to the leaf in the transpiration stream (Zhang et al., 1987; Davies and Zhang, 1991) and hence that the xylem ABA flux, rather than the leaf level of ABA, should dictate the intensity of the stomatal response to soil drying (Tardieu et al., 1992; Tardieu and Davies, 1993). The flux-based model for ABA action in the leaf remains the most widely used interpretation of how stomata sense and respond to drying soil, despite the fact that there is mounting evidence for significant ABA synthesis in the leaf and guard cells, and short term responses to ABA that cannot be explained by xylem transport (Christmann et al., 2005; Lee et al., 2006; Georgopoulou and Milborrow, 2012). Furthermore, the ABA flux approach has never been successfully applied to explain variation in transpiration in trees (Sperry, 2000; Cochard et al., 2002), suggesting that there may be some benefit in reexamining some of the principles and assumptions used to link water stress, ABA, and transpiration.Here, we examine the dynamics of stomatal closure, leaf ABA levels, and xylem tension during the gradual imposition of water stress upon two conifer species, Pinus radiata and Callitris rhomboidea, known for having contrasting stomatal responses to desiccation. Our primary aim is to separate the interacting effects of ABA and water tension on guard cell turgor pressure and stomatal diffusive conductance and hence to reveal the relative importance of water tension and ABA levels during drought as effectors of stomatal closure. Conifers are particularly suitable for identifying different closing signals because they do not appear to produce hydropassive stomatal movements (McAdam and Brodribb, 2012). This makes them ideal for examining the direct effects of ABA and water tension without the mechanical interactions between subsidiary cells and guard cells (Franks and Farquhar, 2007) that greatly complicate the mechanics of angiosperm stomatal movements. Both conifer species examined grow naturally in low rainfall habitats, but P. radiata is strongly isohydric (meaning that stomata close in a very narrow range of leaf hydration), while C. rhomboidea is anisohydric (meaning that stomata have a relatively low sensitivity to leaf hydration). 相似文献