首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intracellular interaction of the pyridoxal 5?-phosphate (PLP) form of aspartate aminotransferase (AspAT) with vitamin B-6 and antagonists of vitamin B-6 in rabbit erythrocytes was measured in situ. In the erythrocytes, about 75% of the total AspAT was saturated with PLP. On the basis of the concentration of PLP in the erythrocytes, the result showed that about 13% of the total PLP was bound to AspAT in the erythrocytes. The form of the residual approximately 25% of the total AspAT was not identified: the residual AspAT was not converted to the PLP form even when a high amount of PLP was accomulated in the erythrocytes. Neither the PLP-AspAT level nor concentrations of PLP and pyridoxamine 5?-phosphate (PMP) were changed by incubation of the erythrocytes with the rabbit plasma and crude extracts of liver and kidney which were dialyzed or treated with dinitrophenylhydrazine. The modified form of PLP-AspAT with D-cycloserine was converted to PLP-AspAT in the hemolysate but was not in the erythrocyte. In contrast, the modified form of PLP-AspAT with DL-penicillamine was converted to PLP-AspAT both in the hemolysate and the erythrocyte. The concentration of vitamin B-6 compounds in the erythrocytes and the effects of the antagonists on the concentration were also measured after the erythrocytes were incubated with free vitamin B-6 compounds.  相似文献   

2.
It is generally believed that the zinc metalloenzyme alkaline phosphatase is required to hydrolyze phosphorylated forms of vitamin B-6 prior to their use. To test this hypothesis, rats were fed a liquid diet containing either adequate or moderately low zinc during gestation and lactation. Zinc deficiency was produced in dams evidenced by significant reductions in zinc concentration of plasma (49%), liver (25%), and femur (24%), and plasma alkaline phosphatase activity (48%). Plasma pyridoxal-5′-phosphate (PLP), which significantly increased (61%) in these same rats, was negatively correlated (r=−0.74,P<0.02) with plasma alkaline phosphatase activity. Maternal liver PLP concentration was unaffected by zinc status. The zinc and vitamin B-6 relationship seen in dams was less observable in offspring. Stimulation of erythrocyte alanine aminotransferase activity by exogenously added PLP in vitro tended to be higher in both moderately zinc-deficient mothers and their offspring, but the difference was not significant. Our results support the hypothesis that alkaline phosphatase activity is required for the hydrolysis of plasma PLP. Our results also suggest that zinc status as alkaline phosphatase activity should be defined in an individual if plasma PLP is to be used as an indicator of vitamin B-6 status.  相似文献   

3.
Increased plasma lipidperoxidation in vitamin B-6 deficient rats   总被引:1,自引:0,他引:1  
Lipidperoxidation in plasma of rats fed with vitamin B-6 deficient diet for a period of 12 weeks was studied with pair-fed controls. Plasma pyridoxal 5'-phosphate, alanine amino transferase and aspartate amino transferase, the markers of vitamin B-6 status, were significantly low in vitamin B-6 deficient rats. Plasma malondialdehyde level, conjugated dienes and lipofuscin like pigments were increased in vitamin B-6 deficiency. Increased levels of plasma lipids, calcium, iron and copper were observed in vitamin B-6 deficiency. Plasma susceptibility to lipidperoxidation was maximal in vitamin B-6 deficiency, upon stimulation by the promotors, Fe2+, Fe3+, Cu2+, ascorbate, t-butyl hydroperoxide and hydrogen peroxide.  相似文献   

4.
1. Polyamine concentrations were decreased in rats fed on a diet deficient in vitamin B-6. 2. Ornithine decarboxylase activity was decreased by vitamin B-6 deficiency when assayed in tissue extracts without addition of pyridoxal phosphate, but was greater than in control extracts when pyridoxal phosphate was present in saturating amounts. 3. In contrast, the activity of S-adenosylmethionine decarboxylase was not enhanced by pyridoxal phosphate addition even when dialysed extracts were prepared from tissues of young rats suckled by mothers fed on the vitamin B-6-deficient diet. 4. S-Adenosylmethionine decarboxylase activities were increased by administration of methylglyoxal bis(guanylhydrazone) (1,1'-[(methylethanediylidine)dinitrilo]diguanidine) to similar extents in both control and vitamin B-6-deficient animals. 5. The spectrum of highly purified liver S-adenosylmethionine decarboxylase did not indicate the presence of pyridoxal phosphate. After inactivation of the enzyme by reaction with NaB3H4, radioactivity was incorporated into the enzyme, but was not present as a reduced derivative of pyridoxal phosphate. 6. It is concluded that the decreased concentrations of polyamines in rats fed on a diet containing vitamin B-6 may be due to decreased activity or ornithine decarboxylase or may be caused by an unknown mechanism responding to growth retardation produced by the vitamin deficiency. In either case, measurements of S-adenosylmethionine decarboxylase and ornithine decarboxylase activity under optimum conditions in vitro do not correlate with the polyamine concentrations in vivo.  相似文献   

5.
BACKGROUND: We report that inadequate vitamin B-6 status of Filipino mothers, assessed by erythrocyte aspartate aminotransferase activity coefficient (EAST-AC), is associated with an increased risk for isolated cleft lip with or without cleft palate (CL/P) in their children. Its association with the status assessed by plasma pyridoxal-5'-phosphate (PLP) concentrations is unknown. METHODS: In a case-control study in the Philippines including 46 cases (mothers of a child with CL/P) and 392 controls (mothers of an unaffected child), we evaluated the association between the risk for CL/P and maternal vitamin B-6 status assessed by PLP and EAST-AC. RESULTS: The ORs of CL/P were estimated by classifying mothers by PLP (>30, 20-30, and <20 nmol/L). Using the highest PLP group as the reference, ORs (95% CIs) were 1.03 (0.45-2.37) and 2.66 (1.30-5.50) for the middle and lowest groups, respectively (p trend = .01). In multivariate models controlling for various covariates including folate, the risk for CL/P was approximately 12 times higher in mothers with inadequate vitamin B-6 status, assessed by both PLP and EAST-AC values, compared to those with adequate status by both values. CONCLUSIONS: Inadequate vitamin B-6 status assessed by maternal PLP and EAST-AC values independently and both combined was associated with an increased risk for CL/P. The association was highest when both values were considered, suggesting that the measurement of both PLP and EAST-AC provides better assessment of vitamin B-6 status than either measurement alone.  相似文献   

6.
We examined the effects on alanine aminotransferase and aspartate aminotransferase of different aminothiols (l-cysteine, d-cysteine, cysteamine, l-cysteine ethyl ester, l-cysteine methyl ester) and several vitamin B-6 derivatives (pyridoxal, pyridoxamine, pyridoxol, pyridoxol 5′-phosphate), before and after treatment with KOCN, which transforms these molecules into the corresponding carbamoyl derivatives. Only GTP, and not GOT, was specifically inhibited by l-cysteine and, to a lesser extent, by d-cysteine. The association reaction: PLP + apo GPT ↔ holo GPT was inhibited by the vitamin B-6 derivatives, and this inhibition was prevented by pretreatment of the vitamin B-6 derivatives with KOCN. All the observed effects occurred at pH 7, 37°C, at mM and even lower concentrations of reagents. Hence, they all potentially play a physiological role, in the regulation of the PLP dependent enzymes and of the vitamin B-6 levels in the cell.  相似文献   

7.
Marginal deficiency of vitamin B6 has recently been related to cardiovascular diseases. Because of that there is an increasing interest in a suitable and reliable method for quantifying this vitamin in routine laboratory medicine. We have developed a HPLC-based method able to quantify the B6 vitamers pyridoxal 5'-phosphate (PLP), pyridoxal (PL), pyridoxamine 5'-phosphate (PMP), pyridoxine (PN), and pyridoxamine (PM) and the degradation product 4-pyridoxic acid (4-PA). The separation was accomplished using a C18 (ODS) analytical column and an ion-pair reversed-phase chromatography. B6 vitamers were eluted with a gradient of acetonitrile (0.5-15%) in a potassium phosphate buffer with 1-octanesulfonic acid and triethylamine, pH 2.16. The concentration of the vitamers was determined with fluorescence detector (328 nm excitation, 393 nm emission) after postcolumn derivatization with phosphate buffer containing 1 g/L sodium bisulfite. The performance of the assay was evaluated by analyzing six plasma samples with interrelated concentration and two control samples (unspiked and vitamer spiked) over a 3-months period. The HPLC method was able to identify PLP, 4-PA, PM, PL, PN, and PMP from all other compounds in plasma in an analytical run of 46 min. The imprecisions and mean values (presented in parenthesis in nmol/L) were (unspiked and spiked sample) 9-8% (41-65) for PLP, 12-7% (18-40) for 4-PA, 67-28% (4-19) for PL, 15% (21) for PN, 10% (27) for PM, and 27% (17) for PMP. All three B6 vitamers (PLP, 4-PA, and PL) present in unspiked plasma showed an excellent linearity within the range of (nM) 8-60 (4-PA), 1-19 (PL), and 11-99 (PLP). In conclusion, we report a HPLC-based method that separates and detects nanomolar quantities of six B6 vitamers and demonstrate that the method will be suitable for routine quantitation of PLP and 4-PA in human plasma.  相似文献   

8.
The vitamin B6 status of seemingly healthy adolescent girls was determined using several accepted and proposed parameters in an effort to establish guidelines for status evaluation. High-performance liquid chromatography-derived plasma B6 vitamers (pyridoxal phosphate, PLP; pyridoxine phosphate, PNP; pyridoxamine phosphate, PMP; pyridoxal, PL; pyridoxine, PN; and pyridoxamine, PM) and 4-pyridoxic acid (4-PA) concentrations and urinary 4-PA levels of 28 white adolescent females, 12–15 years, having radiomonitored plasma PLP concentrations and coenzyme stimulation of erythrocyte alanine aminotransferase activities indicative of adequate status were determined. Mean vitamin B6 and protein intakes were 1.48 mg and 78.3 g. Ranges for plasma B6 vitamer and 4-PA concentrations (nmol/1) were: PLP, 40.9–122.2; PNP, non-detectable (ND)—16.1; PMP, ND—8.1; PL, ND—15; PN, ND—21.9; PM, ND—17.8; and 4-PA, ND—55.7. PLP was the only vitamer found in plasma of all subjects. Urinary 4-PA concentrations ranged from 0.11 to 2.50 μmol/mmol of creatinine. B6 vitamer values of these girls should be of use in the establishment of normal ranges for vitamin B6 status parameters.  相似文献   

9.
Rigorous bed rest (RBR) induces significant electrolyte changes, but little it is not known about the effect of acute bed rest (ABR) (i.e., abrupt confinement to a RBR). The aim of this study was to measure urinary and plasma electrolyte changes during ABR and RBR conditions. The studies were done during 3 d of a pre-bed-rest (BR) period and during 7 d of an ABR and RBR period. Thirty male trained athletes aged, 24.4 ± 6.6 yr were chosen as subjects. They were divided equally into three groups: unrestricted ambulatory control subjects (UACS), acute-bed-rested subjects (ABRS), and rigorous-bed-rested subjects (RBRS). The UACS group experienced no changes in professional training and daily activities. The ABRS were submitted abruptly to a RBR regimen and without having any prior knowledge of the exact date and time when they would be subjected to an RBR regimen. The RBRS were subjected to an RBR regime on a predetermined date and time known to them from the beginning of the study. Sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), and phosphate (P) in plasma and urine, plasma renin activity (PRA) and plasma aldosterone (PA), physical characteristics, peak oxygen uptake, and food and water intakes were measured. Urinary Na, K, Ca, Mg, and P excretion and plasma Na, K, Mg, Ca, and P concentration, PRA, and PA concentration increased significantly (p ≤ 0.01), whereas body weight, peak oxygen uptake, and food and water intakes decreased significantly in the ABRS and RBRS groups when compared with the UACS group. However, urinary and plasma Na, K, Mg, P, and Ca, PRA, and PA values increased much faster and were much greater in the ABRS group than in the RBRS group. Plasma and urinary Na, K, Ca, Mg, and P, PRA and PA levels, food and water intakes, body weight, and peak oxygen uptake did not change significantly in the UACS group when compared with its baseline control values. It was shown that RBR and ABR conditions induce significant increases in urinary and plasma electrolytes; however, urinary and plasma electrolyte changes appeared much faster and were much greater in the ABRS group than the RBRS group. It was concluded that the more abruptly motor activity is ended, the faster and the greater the urinary and plasma electrolyte change.  相似文献   

10.
Marginal deficiency of vitamin B-6 is common among segments of the population worldwide. Because pyridoxal 5′-phosphate (PLP) serves as a coenzyme in the metabolism of amino acids, carbohydrates, organic acids, and neurotransmitters, as well as in aspects of one-carbon metabolism, vitamin B-6 deficiency could have many effects. Healthy men and women (age: 20-40 y; n = 23) were fed a 2-day controlled, nutritionally adequate diet followed by a 28-day low-vitamin B-6 diet (<0.5 mg/d) to induce marginal deficiency, as reflected by a decline of plasma PLP from 52.6±14.1 (mean ± SD) to 21.5±4.6 nmol/L (P<0.0001) and increased cystathionine from 131±65 to 199±56 nmol/L (P<0.001). Fasting plasma samples obtained before and after vitamin B6 restriction were analyzed by 1H-NMR with and without filtration and by targeted quantitative analysis by mass spectrometry (MS). Multilevel partial least squares-discriminant analysis and S-plots of NMR spectra showed that NMR is effective in classifying samples according to vitamin B-6 status and identified discriminating features. NMR spectral features of selected metabolites indicated that vitamin B-6 restriction significantly increased the ratios of glutamine/glutamate and 2-oxoglutarate/glutamate (P<0.001) and tended to increase concentrations of acetate, pyruvate, and trimethylamine-N-oxide (adjusted P<0.05). Tandem MS showed significantly greater plasma proline after vitamin B-6 restriction (adjusted P<0.05), but there were no effects on the profile of 14 other amino acids and 45 acylcarnitines. These findings demonstrate that marginal vitamin B-6 deficiency has widespread metabolic perturbations and illustrate the utility of metabolomics in evaluating complex effects of altered vitamin B-6 intake.  相似文献   

11.
Previous research has indicated that dietary fiber may affect the absorption and utilization of certain nutrients. To determine the effect of certain fiber materials on the absorption of B-6 vitamers, jejunal segments from young male adult rats were perfused in situ with a control solution containing 0.02 mM pyridoxine (PN), 0.02 mM pyridoxal (PL), and 0.02 mM pyridoxamine (PM), followed by a test solution containing the same vitamin B-6 mixture and one of five fiber-rich test materials (cellulose, pectin, lignin, homogenized fresh carrot, or carrot homogenized after 10 min boiling) added at a concentration of 1-3%. The mean absorption rates of PL, PN, and PM from the control solution were, respectively, 3.66 +/- 0.23, 2.06 +/- 0.23, and 1.74 +/- 0.37 nmole/min/20 cm jejunal segment. There were no significant differences between the absorption rates of B-6 vitamers from control and test solutions containing cellulose, pectin, and lignin. The absorption rates of PM and PL were significantly depressed (P less than 0.05 and P less than 0.01, respectively) by the presence of fresh or cooked carrot. The absorption rate of PN in presence of cooked carrot was also decreased relative to the control value but the difference was only marginally significant (P less than 0.10). When the concentration of fresh carrot in the test solution was increased to 10% by weight and the perfusion rate was decreased from 1.91 to 0.49 ml/min in a second perfusion experiment, there was a significant increase in variability and the differences between absorption rates of the B-6 vitamers in control and test solutions were not statistically significant. The limited evidence of adverse effect of carrot on absorption of vitamin B-6 suggested the need for further clarification of the influence of dietary fiber in an unrefined state on the bioavailability of vitamin B-6.  相似文献   

12.
The activity and the distribution of pyridoxal kinase in rat and mouse tissues are studied. The data obtained testify the presence of a relative excess of pyridoxal kinase in all the organs studied, which probably causes a high rate of pyridoxalphosphate (PLP) biosynthesis under comparatively low vitamin B6 concentration. A correlation between the level of pyridoxal kinase activity and the content of PLP in rat brain and liver during ontogenesis is observed. The activity of pyridoxal kinase and the content of PLP are shown to be sharply increased in liver of rats received a protein-rich diet. Bilateral adrenalectomy resulted in the decrease of absolute and specific enzyme activities in rat liver by 20--30%. The content of PLP in mouse brain and liver was sharply decreased under experimental B6-avitaminosis while the content of pyridoxal kinase practically did not change. The injection of vitamin B6 rapidly normalized the PLP content in mouse tissues. The data obtained show that under physiological conditions the functional activity of pyridoxal kinase may be regulated in tissues by enzyme and substate contents. Some aspects of vitamin B6 metabolism in mammals are considered. It is concluded that in body the pyridoxal catabolism connected with its phosphorylation by pyridoxal kinase and the formation of pyridoxalphosphate.  相似文献   

13.
Pyridoxal-5-phosphate, the biologically active form of vitamin B6, is a cofactor for over 140 biochemical reactions. Although severe vitamin B6 deficiency is rare, mild inadequacy [plasma pyridoxal 5’-phosphate (PLP) <20 nmol/L] is observed in 19–27% of the US population. Plasma PLP concentrations are inversely related to markers of inflammation such as C-reactive protein. Furthermore, plasma PLP is diminished in those with inflammatory conditions and, in the case of inflammatory bowel disease (IBD), more so in those with active versus quiescent disease. Restricting B6 intake attenuates IBD pathology in mice; however, the effects of supplementation are unclear. We therefore sought to determine the effects of mild inadequacy and moderate supplementation of B6 on the severity of colonic inflammation. Weanling IL-10?/? (positive for Helicobacter hepaticus) mice were fed diets containing 0.5 (deficient), 6.0 (replete) or 24 (supplemented) mg/kg pyridoxine HCl for 12 weeks and then assessed for histological and molecular markers of colonic inflammation. Both low and high plasma PLP were associated with a significant suppression of molecular (TNFα, IL-6, IFN-γ, COX-2 and iNOS expression) and histological markers of inflammation in the colon. PLP is required for the breakdown of sphingosine 1-phosphate (S1P), a chemotactic lipid, by S1P lyase. Colonic concentrations of S1P and PLP were significantly and inversely correlated. If confirmed, vitamin B6 supplementation may offer an additional tool for the management of IBD. Although B6 is required in dozens of reactions, its role in the breakdown of S1P may explain the biphasic relationship observed between PLP and inflammation.  相似文献   

14.
The objectives of the current study included the characterization of the temporal changes in indices of sulphur amino acid metabolism in piglets in response to vitamin B6 deficiency and repletion with graded levels of pyridoxine hydrochloride. In Experiment 1, 12 piglets (average initial weight = 5.3 kg; n = 6 per group) were fed a semi-purified diet containing either 0 (deficiency group) or 3 mg (control group) pyridoxine·HCl/kg diet, using a pair-feeding design, for 6 weeks. Piglets consuming vitamin B6-deficient diets exhibited decreased average daily gains on the 4th week and feed conversion efficiency from the 4th week until the end of the trial (P < 0.05). Plasma pyridoxal-5'-phosphate (PLP), in pigs consuming vitamin B6-deficient diets, was significantly lower than controls throughout the experiment (P < 0.01), reaching a nadir of 14% of the control animals' value by the end of the trial. Indices of sulphur amino acid metabolism, including activities of hepatic cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CGL) and serine hydroxymethyltransferase, as well as hepatic-free cysteine concentrations were markedly decreased after 6 weeks of B6 deficiency (P < 0.05). Total hepatic mRNA expressions for CBS and CGL were not affected. Concurrently, hepatic-free homocysteine concentrations increased by more than eight-fold (P < 0.01) at the end of the trial. An examination of plasma total homocysteine and cysteine concentrations revealed significant (P < 0.05) differences between treatments, with evidence of an abrupt shift in concentrations at 3 weeks post-initiation of dietary treatments (>25-fold increase in homocysteine; halving of cysteine values). At the end of Experiment 1, vitamin B6 deficiency significantly increased plasma methionine and serine levels, but decreased plasma glycine concentrations (P < 0.05). In Experiment 2, 20 pigs of 14 days old (initial BW = 5.0 kg) were subjected to a 4-week vitamin B6 depletion protocol, based on results obtained in Experiment 1. After the depletion period and assessment of baseline status (four pigs), remaining pigs were allocated to one of four dietary vitamin B6 repletion treatments: 0.75, 1.5, 2.25 and 3 mg/kg diet as pyridoxine·HCl (n = 4 per level) for 14 days. Significant dose-dependent increases in plasma PLP and cysteine, and decreases in homocysteine were observed, and these were sensitive to the duration of repletion. In conclusion, data from the current studies support the use of both plasma PLP and homocysteine as sensitive indices of vitamin B6 status in the pig. Additionally, the observed patterns of responses in vitamin B6-sensitive metabolites are supportive of an inclusion level of 2.25 mg/kg diet, as pyridoxine·HCl, in diets for young pigs.  相似文献   

15.
Plasma membrane vesicles isolated from rat liver exhibited an azide-insensitive Mg2+-ATP-dependent Ca2+ pump which accumulated Ca2+ at a rate of 5.1 +/- 0.5 nmol of calcium/mg of protein/min and reached a total accumulation of 33.2 +/- 2.6 nmol of calcium/mg of protein in 20 microM Ca2+ at 37 degrees C. Equiosmotic addition of 50 mM Na+ resulted in a loss of accumulated calcium. Measurement of Mg2+-ATP-dependent Ca2+ uptake in the presence of 50 mM Na+ revealed no effect of Na+ on the initial rate of Ca2+ uptake, but a decrease in the total accumulation. The half-maximal effect of Na+ on Ca2+ accumulation was achieved at 14 mM. The Ca2+ efflux rate constant in the absence of Na+ was 0.16 +/- 0.01 min-1, whereas the efflux rate constant in the presence of 50 mM Na+ was 0.25 +/- 0.02 min-1. Liver homogenate sedimentation fractions from 1,500 to 105,000 X g were assayed for azide-insensitive Mg2+-ATP-dependent Ca2+ accumulation. Na+-sensitive Ca2+ uptake activity was found to specifically co-sediment with the plasma membrane-associated enzymes, 5'-nucleotidase and Na+/K+-ATPase, whereas Na+-insensitive Ca2+ uptake was found to co-sediment with the endoplasmic reticulum-associated enzyme, glucose-6-phosphatase. The plasma membrane Ca2+ pump was also distinguished from the endoplasmic reticulum Ca2+ pump by its sensitivity to inhibition by vanadate. Half-maximal inhibition of plasma membrane Ca2+ uptake occurred at 0.8 microM VO4(3-), whereas half-maximal inhibition of microsomal Ca2+ uptake occurred at 40 microM.  相似文献   

16.

Background

Over the past years, the essential role of vitamin B6 in brain development and functioning has been recognized and genetic metabolic disorders resulting in functional vitamin B6 deficiency have been identified. However, data on B6 vitamers in children are scarce.

Materials and Methods

B6 vitamer concentrations in simultaneously sampled plasma and cerebrospinal fluid (CSF) of 70 children with intellectual disability were determined by ultra performance liquid chromatography-tandem mass spectrometry. For ethical reasons, CSF samples could not be obtained from healthy children. The influence of sex, age, epilepsy and treatment with anti-epileptic drugs, were investigated.

Results

The B6 vitamer composition of plasma (pyridoxal phosphate (PLP) > pyridoxic acid > pyridoxal (PL)) differed from that of CSF (PL > PLP > pyridoxic acid > pyridoxamine). Strong correlations were found for B6 vitamers in and between plasma and CSF. Treatment with anti-epileptic drugs resulted in decreased concentrations of PL and PLP in CSF.

Conclusion

We provide concentrations of all B6 vitamers in plasma and CSF of children with intellectual disability (±epilepsy), which can be used in the investigation of known and novel disorders associated with vitamin B6 metabolism as well as in monitoring of the biochemical effects of treatment with vitamin B6.  相似文献   

17.
In this study plasma levels of vitamin A, carotenoids, retinol binding protein (RBP), prealbumin (PA), HDL-and total cholesterol were determined in 19 female subjects with cervical dysplasia and compared to those of the healthy female subjects described in our previous research. Plasma levels of vitamin A and carotene were determined by a spectrophotometric method using trifluoroacetic acid, plasma RBP and PA by single radial immunodiffusion and HDL- and total cholesterol by enzymatic colorimetry. Plasma mean values of vitamin A and HDL-cholesterol were lower (P less than 0.05 and P less than 0.01, respectively) than in the control group. On the contrary total cholesterol was higher (P less than 0.01) in the patients than in the control group. Vitamin A plasma levels were significantly related (P less than 0.01) to RBP and PA. No significant statistical correlation was found between the severity of the dysplasia and vitamin A plasma levels.  相似文献   

18.
There are few studies in which direct measurement of vitamin B6 status in both plasma and red cells has been assessed. The aims of the present study were to evaluate the use of a simple, robust HPLC method of direct pyridoxal 5'-phosphate (PLP) measurement in plasma and red cells and to assess its use in establishing reference ranges in a healthy population. A reverse phase HPLC method with pre-column derivatisation using semicarbazide for the simultaneous measurement of PLP, its degradation product, 4-pyridoxic acid (PA) and pyridoxal (PL) in plasma and red cells was developed. Pre-column derivatisation, reverse phase chromatography and detection procedures were optimised. The recovery, precision, linearity and sensitivity of the assay for plasma and red cell PLP, PA and PL was established. The recovery of PLP was greater than 95% for both plasma and red cell samples. The Intra and Inter batch imprecision for PLP was less than 6% and 7%, respectively. The method for PLP was linear up to at least 1000 nmol/l and the detection limit was 2.1 nmol/l (limit of quantification; 5.8 nmol/l). Accuracy of PLP measurements in plasma were acceptable, showing a mean bias of 4.5% from the mean value of laboratories (N=34) participating in an external quality assurance scheme. Geometric mean (95% reference intervals) for plasma and red cell PLP in the healthy subjects (N=126) were 56 (21-138) nmol/l and 410 (250-680) pmol/g Hb, respectively. There was a strong positive correlation (r(2)=0.81) between plasma and red cell PLP levels in the reference population. The HPLC method described was found to be suitable for the routine measurement of PLP in both plasma and red cells.  相似文献   

19.
Liu W  Toney MD 《Biochemistry》2004,43(17):4998-5010
Dialkylglycine decarboxylase (DGD) is a tetrameric pyridoxal phosphate (PLP)-dependent enzyme that catalyzes both decarboxylation and transamination in its normal catalytic cycle. Its activity is dependent on cations. Metal-free DGD and DGD complexes with seven monovalent cations (Li(+), Na(+), K(+), Rb(+), Cs(+), NH(4)(+), and Tl(+)) and three divalent cations (Mg(2+), Ca(2+), and Ba(2+)) have been studied. The catalytic rate constants for cation-bound enzyme (ck(cat) and ck(cat)/bK(AIB)) are cation-size-dependent, K(+) being the monovalent cation with the optimal size for catalytic activity. The divalent alkaline earth cations (Mg(2+), Ca(2+), and Ba(2+)) all give approximately 10-fold lower activity compared to monovalent alkali cations of similar ionic radius. The Michaelis constant for aminoisobutyrate (AIB) binding to DGD-PLP complexes with cations (bK(AIB)) varies with ionic radius. The larger cations (K(+), Rb(+), Cs(+), NH(4)(+), and Tl(+)) give smaller bK(AIB) ( approximately 4 mM), while smaller cations (Li(+), Na(+)) give larger values (approximately 10 mM). Cation size and charge dependence is also found with the dissociation constant for PLP binding to DGD-cation complexes (aK(PLP)). K(+) and Rb(+) possess the optimal ionic radius, giving the lowest values of aK(PLP). The divalent alkaline earth cations give aK(PLP) values approximately 10-fold higher than alkali cations of similar ionic radius. The cation dissociation constant for DGD-PLP-AIB-cation complexes (betaK(M)z+) was determined and also shown to be cation-size-dependent, K(+) and Rb(+) yielding the lowest values. The kinetics of PLP association and dissociation from metal-free DGD and its complexes with cations (Na(+), K(+), and Ba(2+)) were analyzed. All three cations tested increase PLP association and decrease PLP dissociation rate constants. Kinetic studies of cation binding show saturation kinetics for the association reaction. The half-life for association with saturating Rb(+) is approximately 24 s, while the half-life for dissociation of Rb(+) from the DGD-PLP-AIB-Rb(+) complex is approximately 12 min.  相似文献   

20.
Burmese pythons (Python molurus) regulate digestive performance and metabolism with the ingestion of each meal. To explore the python's postprandial responses, we monitored the concentrations of blood micronutrients and homocysteine during fasting and for 15 days after feeding. Plasma folate concentrations peaked with a 270% increase over fasting levels 3 days after feeding, whereas plasma B-12 peaked with a 66% increase within 1 day. Erythrocyte folate concentrations were highest 15 days after feeding with a 44% increase. The major plasma folate was 5-methyltetrahydrofolate during fasting and was non-5-methyltetrahydrofolate during digestion, whereas erythrocytes contained polyglutamyl forms of non-5-methyltetrahydrofolate. Plasma homocysteine concentrations peaked with a 56% increase 3 days after feeding, and were markedly greater than those of mammals. Plasma zinc and copper did not change significantly. Plasma zinc concentrations were 20 times greater than plasma copper and approximately 30 times higher than those of mammals. Pythons showed a significant postprandial decline of 25% in hematocrit. Plasma pyridoxal 5'-phosphate (coenzyme form of vitamin B-6) was not detected probably due to its tight protein binding. Most micronutrient concentrations appear to plateau 3 days after feeding, suggesting that pythons have relatively rapid homeostasis of micronutrients despite the ingestion of large meals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号