首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleic Acid Homologies Among Species of Saccharomyces   总被引:19,自引:4,他引:15       下载免费PDF全文
Evolutionary divergence among species of the yeast genus Saccharomyces was estimated from measurements of deoxyribonucleic acid (DNA)/DNA and ribosomal ribonucleic acid (RNA)/DNA homology. Much diversity was found in the DNA base sequences with several species showing little or no homology to the three reference species, S. cerevisiae, S. lactis, and S. fragilis. These three reference species also showed little or no homology to each other. On the other hand the diversity among ribosomal RNA base sequences was small since most species showed a high degree of homology to the reference species. The arrangement of species based on ribosomal RNA homologies agrees in most cases with current taxonomic groupings. A yeast hybrid (S. fragilis x S. lactis) was shown to contain two nonhomologous genomes. A minimum genome size of 9.2 x 10(9) daltons for S. cerevisiae was calculated from the rate of DNA renaturation.  相似文献   

2.
3.
4.
cDNA clones for a fifth polypeptide of rat brain calmodulin-dependent protein kinase II were isolated and sequenced. The cDNA sequence encoded a polypeptide, designated delta, consisting of 533 amino acid residues with a molecular weight of 60,080. Comparison of amino acid sequences of this and alpha, beta, beta', and gamma polypeptides of calmodulin-dependent protein kinase II reveals marked homology among them. The mRNAs for delta were expressed in rat brain tissues with different regional specificities. The distribution of alpha, beta/beta', gamma, and delta mRNAs in cerebrum, skeletal muscle, diaphragm, heart, small intestine, uterus, aorta, liver, kidney, lung, and testis were examined by RNA blot hybridization analysis with probes specific for the respective mRNAs. A 3.9-kilobase (kb) RNA species hybridizable with a probe for gamma was found in all the tissues examined, and 4.0-4.2-kb RNA species hybridizable with a probe for delta were found in all the tissues examined except for liver, while a 4.8-kb RNA species hybridizable with a probe for alpha and a 4.2-kb RNA species hybridizable with a probe for beta were present in brain but not in the other tissues. With the alpha probe, however, a 4.1- and 2.6-kb RNA species were both detected in skeletal muscle and diaphragm. With the beta probe, a 4.3-kb RNA in skeletal muscle and diaphragm, 2.9-kb RNA in small intestine, and 4.0-kb RNA in testis were detected. With the delta probe, a 3.5-kb RNA in heart and 1.8-kb RNA in testis were detected. Thus, gamma and delta mRNAs were expressed in various tissues, while alpha and beta/beta' mRNAs were primarily, if not exclusively, expressed in brain.  相似文献   

5.
Isolation and Characterization of Simian Virus 40 Ribonucleic Acid   总被引:50,自引:22,他引:28       下载免费PDF全文
Deoxyribonucleic acid-ribonucleic acid (RNA) hybridization in formamide was used to isolate simian virus 40-specific RNA. Early in the lytic cycle, a 19S viral RNA species was observed. Late in the lytic cycle, 16S and 19S viral species were found. The 16S and 19S species of viral RNA were localized in the cytoplasm. High-molecular-weight heterogeneous RNA, containing viral sequences, was isolated from the nuclear fraction of infected cells late in the lytic cycle. This RNA may contain non-viral sequences linked to viral sequences. The formamide hybridization technique can be used to isolate intact late lytic viral RNA which is at least 99% pure.  相似文献   

6.
7.
The properties of the ribonucleic acid (RNA) synthesized by the influenza (WSN) virion polymerase have been investigated. Most of the product RNA is synthesized in association with virion RNA species from which it can be released by heat treatment as single-stranded, ribonuclease-sensitive polynucleotides (average molecular weight, 2-hr sample, about 10(5) daltons). At least 95% of the product is complementary to the viral RNA species. On the basis of the molar ratio of the RNA species isolated from a (3)H-uridine-labeled virus preparation, it was calculated that the WSN genome consists of seven pieces of RNA with a sum molecular weight of about 5 x 10(6) daltons.  相似文献   

8.
Ribonucleic acid (RNA) species from aerobically and anaerobically grown Rhodopseudomonas spheroides were compared via hybridization to deoxyribonucleic acid (DNA). Both long-labeled and stable RNA bound to chromosomal DNA to the same extent, regardless of derivation. About 4% of the chromosomal DNA hybridized with total cell RNA and about 0.08% with stable RNA. About 4% of the mixed satellite DNA could be hybridized to total cell RNA from aerobic or anaerobic cultures, whereas essentially no stable RNA formed a hybrid with this DNA. Hybridization competition experiments with aerobic and anaerobic pulse-labeled RNA and chromosomal or satellite DNA demonstrated that no qualitative differences existed between the RNA species. It is concluded that identical species of RNA in the same relative amounts are synthesized by R. spheroides during aerobic or anaerobic growth on the same medium.  相似文献   

9.
Doi, Roy H. (University of California, Davis), and Richard T. Igarashi. Heterogeneity of the conserved ribosomal ribonucleic acid sequences of Bacillus subtilis. J. Bacteriol. 92:88-96. 1966.-Hybrid formation was demonstrated between Bacillus subtilis ribosomal ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) from various bacterial species. The high degree of complementarity between B. subtilis ribosomal RNA and the DNA from B. cereus and B. stearothermophilus suggested a method to test whether the same RNA sequences were hybridizing with the DNA from these two species. Saturation studies with 16S and 23S RNA preparations from B. subtilis showed that a definite number of complementary sites was present in each DNA. Base composition analyses of the RNA in the hybrid demonstrated that ribosomal RNA sequences were involved. Hybrid competition studies revealed that B. stearothermophilus ribosomal RNA could compete totally against B. subtilis ribosomal RNA for B. stearothermophilus DNA, although it could compete only partially against the B. subtilis ribosomal RNA hybridizing with B. cereus DNA. These observations were made independently with both 16S and 23S ribosomal RNA preparations. These results revealed that different nucleotide sequences of B. subtilis ribosomal RNA were hybridizing with the DNA from B. cereus and B. stearothermophilus. Two possible interpretations of these results are: (i) different nucleotide sequences from a homogeneous ribosomal RNA population are hybridizing with heterologous DNA preparations, and (ii) ribosomal RNA cistrons are heterogeneous.  相似文献   

10.
Zwar JA  Jacobsen JV 《Plant physiology》1972,49(6):1000-1006
The effects of gibberellic acid on the incorporation of radio-active uridine and adenosine into RNA of barley aleurone layers were investigated using a double labeling method combined with acrylamide gel electrophoresis. After 16 hours of incubation, gibberellic acid stimulated the incorporation of label into all species of RNA, but the effects were very small (0-10%) for ribosomal and transfer RNA and comparatively large (up to 300%) for RNA sedimenting between 5S and 14S. This result was obtained for both isolated aleurone layers and for layers still attached to the endosperm. A similar but less marked pattern occurred in layers incubated for 8 hours, but the effect was not observed after 4 hours. The gibberellic acid-enhanced RNA labeling was not due to micro-organisms. The following evidence was obtained for an association between the gibberellic acid-enhanced RNA synthesis and α-amylase synthesis: (a) synthesis of α-amylase took place in parallel with incorporation of label into gibberellic acid-RNA; (b) actinomycin D inhibited amylase synthesis and gibberellic acid-RNA by similar percentages; (c) 5-fluorouracil halved incorporation of label into ribosomal RNA but had no effect on amylase synthesis and gibberellic acid-RNA; and (d) abscisic acid had little effect on synthesis of RNA in the absence of gibberellic acid, but when it was included with gibberellic acid the synthesis of both enzyme and gibberellic acid-RNA was eliminated. We conclude that large changes in the synthesis of the major RNA species are not necessary for α-amylase synthesis to occur but that α-amylase synthesis does not occur without the production of gibberrellic acid-RNA. Gibberellic acid-RNA is probably less than 1% of the total tissue RNA, is polydisperse on acrylamide gels, and could be messenger species for α-amylase and other hydrolytic enzymes whose synthesis is under gibberellic acid control.  相似文献   

11.
12.
RNA biosynthesis in adipose tissue: effect of fasting   总被引:2,自引:0,他引:2  
RNA metabolism has been examined in intact adipose tissue and isolated fat cells from rats. The lipocyte contains three species of RNA with sedimentation rates corresponding to those of ribosomal and transfer RNA. The de novo biosynthesis of RNA by adipose tissue cells in vitro was demonstrated. The base ratios of the RNA formed indicate that it was synthesized from a DNA template. Actinomycin D administered in vivo and in vitro decreased total RNA synthesis with the most marked effect on the synthesis of the heavy RNA components. Actinomycin D or puromycin added in vitro was not toxic: they did not inhibit total fatty acid biosynthesis or glucose utilization by the fat pad nor did they inhibit the immediate stimulation of fatty acid biosynthesis and glucose uptake by the addition of insulin in vitro. Starvation for 48-72 hr significantly depressed the synthesis of the heavy RNA components as measured by in vitro uridine incorporation into the individual RNA classes. Refeeding the fasted rat with glucose repaired the defect in RNA biosynthesis before the biosynthesis of monoenoic fatty acid was completely restored. Actinomycin D administered at the time of refeeding prevented the repair of monoenoic fatty acid synthesis. It is concluded that RNA metabolism is intimately involved in the control of biosynthetic reactions in adipose tissue.  相似文献   

13.
The techniques of deoxyribonucleic acid-ribonucleic acid (DNA-RNA) hybridization and immunological precipitation were used to compare the synthesis of adenovirus-specific macromolecules in African green monkey kidney (AGMK) cells infected with adenovirus, an abortive infection, and coinfected with both adenovirus and simian virus 40 (SV40), which renders the cells permissive for adenovirus replication. When viral protein synthesis was proceeding at its maximum rate, the incorporation of (14)C-amino acids into adenovirus structural proteins was about 90 times greater in the doubly infected cells than in cells infected only with adenovirus. However, the rates of synthesis of virus-specific ribonucleic acid appeared to be comparable in the two infections at all times measured. A time-dependent increase in the rate of RNA synthesis observed late in the abortive infection was dependent upon the prior replication of viral DNA. Moreover, all virus-specific RNA species that are normally made late in a productive adenovirus infection (i.e., the true late and class II early RNA species) were also detected in the abortive infection. Adenovirus-specific RNA was detected by molecular hybridization in both the cytoplasm and nuclei of abortively infected cells. Comparable amounts of viral RNA were found in the cytoplasmic fractions of AGMK cells infected either with adenovirus or with both adenovirus and SV40. The results of hybridization-inhibition experiments clearly showed that there was a class of virus-specific RNA molecules, representing about 30% of the total, in the nucleus that was not transported to the cytoplasm. This class of RNA was also identified in similar amounts in productively infected human KB cells. The difference in the abilities of cytoplasmic and nuclear RNA to inhibit the hybridization of virus-specific RNA from whole cells was shown not to be due to a difference in the molecular size of the RNA species from the two cell fractions or to the specific loss of a cytoplasmic species during RNA extraction procedures.  相似文献   

14.
15.
Differential Gene Action in Neurospora crassa   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

16.
Plaque-forming B particles of vesicular stomatitis virus (VSV) induce the synthesis of virus-specific ribonucleic acid (RNA) in Chinese hamster ovary cells, whereas defective T particles do not. Infection with low input multiplicities of B results in the formation of four species of RNA. During infection with high multiplicities, RNA synthesis begins with mainly these four species of RNA but gradually shifts to a new pattern of RNA synthesis involving five other species of RNA. The change can also be induced by superinfection with T at 2.5 hr after infection with a low multiplicity of B. T added at the same time as B prevents virtually all RNA synthesis. Synthesis of the first group of RNA species correlates with the formation of B particles, whereas synthesis of the second group correlates with the formation of T particles. The various species of RNA formed after infection with VSV particles include single-stranded RNA, a completely double-stranded RNA, and RNA with partially double-stranded regions. These observations begin to establish a molecular basis for understanding the ability of T particles to interfere with the growth of B particles.  相似文献   

17.
Previously we showed that the mitochondrial deoxyribonucleic acid (DNA) from Paramecium aurelia consists of a linear genome and that replication of this genome is initiated at one terminus and proceeds unidirectionally to the other terminus. Analyses of mitochondria from four closely related species (1, 4, 5, and 7) indicated that the species 1, 5, and 7 DNAs are essentially completely homologous but that the species 4 mitochondrial DNA is only 40 to 50% homologous with that from species 1. The major regions of homology are those containing the genes for ribosomal ribonucleic acid (RNA). To understand the replication and organization of the linear mitochondrial genome better, we compared species 1 (Paramecium primaurelia) and 4 (Paramecium tetraaurelia) DNAs with regard to restriction fragment mapping and homology between initiation regions; we also identified the sites of the genes for ribosomal RNA. In general, the structures of the species 1 and 4 mitochondrial genomes were quite similar. Each ribosomal RNA gene was present in one copy per genome, with the large ribosomal RNA gene located near the terminal region of replication and the small ribosomal RNA gene located more centrally. These two genes were separated by about 10 kilobases in the species 1 genome and by about 12 kilobases in the species 4 genome. In contrast to our previous findings, by using nonstringent hybridization conditions we detected homology between the species 1 and 4 DNA fragments containing the initiation regions. We constructed recombinant DNA clones for many fragments, especially those containing the initiation region and the ribosomal RNA genes. We also constructed restriction enzyme maps for six enzymes for both P. primaurelia and P. tetraaurelia.  相似文献   

18.
Two discrete simian virus 40 (SV40) RNA species sedimenting at 19 and 16S, respectively, that are present in infected BS-C-1 cells were characterized with respect to the base composition and the ribonuclease T1 fingerprints. The base composition of the 19S SV40 RNA was found to be cytidylic acid (C), 23.0; adenylic acid (A), 28.3; guanylic acid (G), 23.9; and uridylic acid (U), 24.8; that of the 16S SV40 RNA was C, 19.3; A, 34.0; G, 22.0; and U, 24.7 mol%. Analysis of the ribonuclease T1 fingerprints indicated a difference in the base sequence of the 19 and 16S SV40 RNA. The presence of long sequences of adenylic acid residues (poly A) in these viral RNAs was confirmed.  相似文献   

19.
Foot-and-mouth disease virus (FMDV)-specific ribonucleic acid (RNA) was analyzed by electrophoresis on 0.5% agarose gels. Four classes of RNA were resolved as a function of mobility in agarose: two classes of slowly migrating multistranded RNA, the infectious viral RNA with intermediate mobility, and a minor fast-moving class of lower-molecular-weight single-stranded RNA. The major RNA species were infectious viral RNA and the slowest migrating class of multistranded RNA. The latter RNA was polydisperse when analyzed by sucrose gradient centrifugation, it was partially ribonuclease resistant, and it was the predominant RNA species labeled during the initial period of (3)H-uridine triphosphate incorporation in the cell-free system. Heat treatment studies indicated that part of the slowest-moving RNA was degraded at 60 C and almost complete degradation was detected at 100 C. It was concluded that this RNA is the replicative intermediate in viral RNA synthesis. The second class of multistranded RNA contained both a ribonuclease-resistant RNA and a second RNA peak which was detected only after heat treatment at temperatures above 75 C. Fractions of FMDV-specific RNA isolated by sucrose gradient centrifugation were analyzed by agarose-gel electrophoresis. Infectious viral RNA was detected only in the 37S zone and was the major species of RNA in this part of the gradient. The ribonuclease-resistant RNA (the 20S zone) contained about equal amounts of multistranded RNA (both classes) and the low-molecular-weight single-stranded RNA. All sucrose gradient fractions between 20 and 40S were found to contain the replicative intermediate, although the major portion was detected in the 20 to 25S region.  相似文献   

20.
The production of virus-specific ribonucleic acid (RNA) was investigated in KB cells infected with herpes simplex virus. A fraction of RNA annealable to virus deoxyribonucleic acid (DNA) was found in these cells as early as 3 hr after virus inoculation. Production of this species of RNA increased up to 6 or 7 hr after infection, at which time elaboration of virus messenger RNA (mRNA) declined. At 24 hr after infection, the rate of incorporation of uridine into this RNA was approximately one-half of the rate present at 6 hr after inoculation. Nucleotide analysis of the RNA annealable to virus DNA was compatible with that expected for virus mRNA. Centrifugation showed considerable spread in the size of the virus-induced nucleic acid, the bulk of this RNA sedimenting between 12 and 32S. Incorporation of uridine into cell mRNA, ribosomal precursor RNA, and soluble RNA was suppressed rapidly after infection. As is the case with most other cytocidal viruses investigated to date, virus-induced suppression of cell RNA synthesis appears to be a primary mechanism of cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号