首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The seasonal pattern of concentrations of nitrogen, starch and vegetative storage protein (VSP) in stolons of Trifolium repens L. grown in the field were studied. Two different genotypes, cv. Aran and cv. Rivendel, differing in their morphology (stolon thickness and branching rate) but with similar growth rates, were used. Maximum concentrations of starch were found in summer whereas hydrolysis of starch took place throughout winter, suggesting that C storage is more important for winter survival than for promotion of early spring growth. On the other hand, VSP and nitrogen accumulated in autumn and early winter and then decreased when growth was resumed during early spring. For both cultivars, an inverse relationship was found between VSP concentration in stolons and mean air temperature, suggesting that VSP accumulation may be triggered by low temperature. Further experiments with plants grown under different regimes of temperature and daylength, suggested that VSP synthesis is stimulated by low root temperatures, with a slight synergistic effect of short daylength.
The effects of root temperature on growth, N2 fixation, NH4+ uptake and N allocation within Trifolium repens L., were studied under controlled conditions. The shoot growth rate was greatly reduced when root temperatures were lowered from 12 to 6°C, while the rate of stolon growth was less affected. Low root temperatures inhibited N2 fixation more than it did NH4+ uptake, but the relative allocation of N to stolons was increased. Lowering root temperature also increased the accumulation of VSP in stolons. These results are discussed in terms of the mechanism associated with low temperature stimulation of VSP accumulation and its coupling with changes in the source/sink relations for allocation of N, between growth and storage.  相似文献   

4.
BACKGROUND AND AIMS: The regrowth dynamics after defoliation of the invasive grass Calamagrostis epigejos were studied. As nitrogen (N) reserves have been shown to play an important role during plant regrowth, the identity, location and relative importance for regrowth of N stores were determined in this rhizomatous grass. METHODS: Plant growth, nitrate uptake and root respiration were followed during recovery from defoliation. Water soluble carbohydrates, nitrate, free amino acids and soluble proteins were analysed in the remaining organs. KEY RESULTS: Nitrate uptake and root respiration were severely reduced during the first days of regrowth. Roots were the main net source of mobilized N. The quantitatively dominant N storage compounds were free amino acids. Free amino acids and soluble proteins in the roots decreased by 55 and 50%, respectively, and a substantial (approximately 38%) decrease in stubble protein was also observed. Although the relative abundance of several soluble proteins in roots decreased during the initial recovery from defoliation, no evidence was found for vegetative storage protein (VSP). Furthermore, rhizomes did not act as a N storage compartment. CONCLUSIONS: Production of new leaf area was entirely reliant, during the first week after defoliation, on N stores present in the plant. Mobilized N originated mainly from free amino acids and soluble proteins located in roots, and less so from proteins in stubble. Presence of VSP in the roots was not confirmed. The data suggest that rhizomes played an important role in N transport but not in N storage.  相似文献   

5.
6.
Our objective was to identify amylases that may participate in starch degradation in alfalfa (Medicago sativa L.) taproots during winter hardening and subsequent spring regrowth. Taproots from field-grown plants were sampled at intervals throughout fall, winter, and early spring. In experiment 1, taproots were separated into bark and wood tissues. Concentrations of soluble sugars, starch, and buffer-soluble proteins and activities of endo- and exoamylase were determined. Starch concentrations declined in late fall, whereas concentrations of sucrose increased. Total amylolytic activity (primarily exoamylase) was not consistently associated with starch degradation but followed trends in soluble protein concentration of taproots. This was especially evident in spring when both declined as starch degradation increased and shoot growth resumed. Activity of endoamylase increased during periods of starch degradation, especially in bark tissues. In experiment 2, a low starch line had higher specific activity of taproot amylases. This line depleted its taproot starch by late winter, after which taproot sugar concentrations declined. As in experiment 1, total amylolytic activity declined in spring in both lines, whereas that of endoamylase increased in both lines even though little starch remained in taproots of the low starch line. Several isoforms of both amylases were distinguished using native polyacrylamide electrophoresis, with isoforms being similar in bark and wood tissues. The slowest migrating isoform of endoamylase was most prominent at each sampling. Activity of all endoamylase isoforms increased during winter adaptation and in spring when shoot growth resumed. Endoamylase activity consistently increased at times of starch utilization in alfalfa taproots (hardening, spring regrowth, after defoliation), indicating that it may serve an important role in starch degradation.  相似文献   

7.
Irrigation and fertilisation were recently considered as useful tools to control tree shape, and reduce pruning costs. The role of the N reserves, which determined spring growth, was considered to be essential. We intended therefore to evaluate its effects on peach tree architecture. Four levels of N fertilisation were applied on 1-year-old trees, from the end of shoot growth to leaf fall. In subsequent spring, each bud fell into one of the ten classes of positions previously defined within the crown. Its development was followed weekly from burst to June. Fertilisation promoted growth until a threshold level, since no differences were evidenced between the three highest N treatments. Fall N did not affect burst but the further transformation of the buds into rosettes, proleptic or ramificated axes. Crown base was little affected. Fall N increased the number of proleptic axes on most median and upper positions. Axes lengthening and thickening were limited on the median positions, promoted at crown top. The variations concerned the mean internodes lengths, not the number of phytomers per axis. Sylleptic ramification was limited to the crown outer parts, and decreased with fall N. Treatment did neither affect the fruit dry weights, nor the ratio between the number of leaves and the number of fruits. Fruit number was proportioned to vegetative growth by blossoming and fruit set. We conclude that a moderate autumn fertilisation improved orchard productivity, but favoured vegetative growth in the crown outer parts. Additional pruning may therefore be required to control tree shape.  相似文献   

8.
Qualitative and quantitative variations in the level of two low molecular weight vegetative storage proteins (VSP 19 kDa and 16.5 kDa) in peach shoots were compared with annual variations in total nitrogen and total soluble proteins. Protein patterns were obtained by SDS-PAGE and silver staining on each of the 12 kinetic samples collected between October 1995 and November 1996. VSP 16.5 kDa and 19 kDa exhibited typical annual VSP variations in both parenchyma and phloem. In wood, VSP 16.5 kDa was only present in November. All N compounds tested were stored in the autumn and their levels fell in the spring. Parenchyma was the principal stem storage tissue for all N compounds tested, even if proteins were more often highly concentrated in phloem and even if wood was the major shoot constituent. In winter, the two VSP accounted for 13% of bark proteins and 11% of wood proteins. Their storage yield, given by the winter/summer (W/S) ratio was higher (18.5) than that of total proteins (4). Between August to March, i.e. during the storage phase, N fractions obtained from VSP (N3) and total soluble proteins minus VSP (N2) accounted, respectively, for only 3% and 21% of total N accumulation in the bark, the remainder being due to the fraction not extracted (N1). A marked drop in all N compound levels characterized the mobilization phase (March to April), particularly for N3 (-84% between March and April) which were mobilized slightly before other N compounds. Although N3 exhibited the best mobilization yield, it represented only 5% of the total N mobilized. So, in spite of a similarity between VSP and N annual variation patterns, there was no tight correlation between their contents in bark. N2 supplied a high proportion of the N used for spring regrowth (40%), but the larger share (55%) came from N1 which was probably made up of free amino acids. Very tight positive correlations have been observed between these two N fractions and the N status. The lower bark total N content measured in August (6.4 mg N g(-1 )DW) during the assimilation phase (April to August) was equal to the unavailable N fraction, and the bark N mobilization potential (between March and August) was estimated at 6.35 mg N g(-1) DW. VSP did not quantitatively represent the main stored N pool. But, because of their high W/S ratio and their early remobilization, they seemed to play an important role in spring regrowth initiation.  相似文献   

9.
The organogenetic cycle of shoots on main branches of 4-year-old Juglans regia trees was studied. Mono- and bicyclic floriferous and vegetative annual shoots were analysed. Five parent annual shoot types were sampled between October 1992 and August 1993. Organogenesis of summer growth units was monitored between 16 Jun. and 3 Aug. 1993. Variations over time in the number of nodes, cataphylls and embryonic green leaves of terminal buds were studied. The number of nodes of parent shoot buds was compared with the number of nodes of shoots derived from parent shoot buds. The spring growth units of mono- and bicyclic shoots consist exclusively of preformed leaves which were differentiated, respectively, during the spring flush of growth (mid-April until mid-May) or the summer flush of growth (mid-June until early August) in the previous growing season. Thus, winter buds may consist of flower and leaf primordia differentiated in two different periods during annual shoot extension. The summer growth units of bicyclic shoots consist of preformed leaves that were differentiated in spring buds during the spring flush of growth in the current growing season. Bud morphology is compared between spring and summer shoots.  相似文献   

10.
Soybean (Glycine max L. Merr.) contains two related and abundant proteins, VSP alpha and VSP beta, that have been called vegetative storage proteins (VSP) based on their pattern of accumulation, degradation, tissue localization, and other characteristics. To determine whether these proteins play a critical role in sequestering N and other nutrients during early plant development, a VspA antisense gene construct was used to create transgenic plants in which VSP expression was suppressed in leaves, flowers, and seed pods. Total VSP was reduced at least 50-fold due to a 100-fold reduction in VSP alpha and a 10-fold reduction in VSP beta. Transgenic lines were grown in replicated yield trials in the field in Nebraska during the summer of 1999 and seed harvested from the lines was analyzed for yield, protein, oil, and amino acid composition. No significant difference (alpha = 0.05) was found between down-regulated lines and controls for any of the traits tested. Young leaves of antisense plants grown in the greenhouse contained around 3% less soluble leaf protein than controls at the time of flowering. However, total leaf N did not vary. Withdrawing N from plants during seed fill did not alter final seed protein content of antisense lines compared with controls. These results indicate that the VSPs play little if any direct role in overall plant productivity under typical growth conditions. The lack of VSPs in antisense plants might be partially compensated for by increases in other proteins and/or non-protein N. The results also suggest that the VSPs could be genetically engineered or replaced without deleterious effects.  相似文献   

11.
The flowering process in a female tree ofSalix tetrasperma was analysed by culturing its reproductive buds at different developmental stages during the dormant period on a chemically defined medium and examining the nature of sprouts produced by them. Buds at the upper eight nodes of the actively growing shoots developing in an acropetal sequence were cultured in separate lots. While all the buds collected from the 1st and 2nd nodes of the branches from the top downwards were vegetative and produced shoots, a considerable number of those collected from the 3rd and 4th nodes were reproductively determined and produced catkins. All the buds obtained from the 5th node and below were reproductive. Reproductive buds were cultured at regular time intervals during the dormant period. Freshly formed buds cultured in March during the spring growth flush produced catkins and were therefore reproductively determined. However, such a determination was not tantamount to flowering, as the floral meristems present in the axils of catkin bracts remained quiescent. Floral meristems of the buds cultured during April to August developed into small vegetative shoots. This was followed by the crucial period during September to December when the hitherto vegetative sprouts of the floral meristems showed a gradual transition into ovaries (female flowers) resulting in fertile catkins. Catkins produced from buds cultured in January and February produced well-developed ovaries.  相似文献   

12.
The ability of white clover (Trifolium repens L.) to undergo cold acclimation is an important determinant of its persistence in mixed swards since growth rate at low temperatures sustains higher clover contents at the start of spring. During a re-growth period following defoliation, a gradual exposure of the root system (cv. Grasslands Huia) led to some physiological and morphological changes of cold-adaptive significance, similar to those developed by clover ecotypes originating in northern areas of Europe. Thus, cold exposure of the root system resulted in small-leaved prostrate forms of white clover after one month of re-growth. Similarly, cold exposure increased the ability of plants to store nitrogen since the application of low temperatures to the root system enhanced soluble protein accumulation in roots and in stolons. More specifically, cold exposure of the roots induced gene expression of a vegetative storage protein (17.3 kDa VSP) in both organs. These results demonstrate that the root system of clover plants should be a site of perception of the low-temperature stimulus, and gave rise to the question of the transduction of the cold signal from the roots to the aerial parts. On the basis of this study and taking into account molecular aspects concerning the clover VSP, it is suggested that this protein could participate in cold acclimation in addition to its role in nitrogen storage.  相似文献   

13.
Abstract Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale L.) are persistent weeds, the aerial portions of which do not survive in winter. However, subterranean tissues remain viable and facilitate the rapid resumption of growth in early spring. The source of nutrients for growth prior to the establishment of foliage is the roots. Carbohydrate and N reserves are accrued during late summer and autumn, respectively. Hydrolysis of fructans during late autumn occurs coincidentally with increments in sucrose, the latter providing a readily accessible C pool. Nitrate, free amino acids and soluble protein all play substantial roles in nitrogen storage. Asparagine is the predominant amino acid in the free pool during winter, followed by glutamine, ornithine, serine, aspartic acid and glutamic acid. Storage reserves remain at peak levels throughout winter and deeline prior to the resumption of growth. The patterns observed here provide evidence that N is an important currency of storage metabolism and, thus, a framework has been provided for the examination of regulation of N storage in perennial weeds.  相似文献   

14.
为系统掌握常春二乔玉兰春夏季开花物候节律,探讨其与营养物质的关系,本研究以6年生常春二乔玉兰为试验材料,观测其年生长发育节律、春夏季开花物候特性以及茎段营养物质的含量变化。结果表明:(1)每年12月始至翌年2月下旬为常春二乔玉兰休眠期。2月下旬花芽膨大生长,并于3月开始春季开花,花期持续约20 d。4月进行营养生长,5月完成花芽分化。5月底部分花芽膨大并于6月开始开花,夏季花期持续约20 d。7~9月为未膨大花芽的发育滞缓期。此外,少量夏季开放的花的基部侧芽再次分化形成花芽。10~12月随着落叶的开始,树体逐渐进入休眠期。(2)常春二乔玉兰营养生长后分化的花芽能够花开两季。春季开花为先花后叶,开花率为100%,开花同步率较高,雌、雄蕊发育正常,为可育花。夏季开花为花叶同放,开花率约为30%,且开花同步率较低,开放的花内雌、雄蕊发育异常,为不育花。(3)春季开花期间可溶性糖和可溶性蛋白呈下降趋势,淀粉含量于开花后期下降;夏季开花期间可溶性糖和淀粉总体呈先降后升趋势,而可溶性蛋白总体呈下降趋势。综上所述,常春二乔玉兰春、夏季开花期内开花模式存在一定差异,其显著节律特征与营养物质含量变化有关,推测低水平的可溶性糖及高水平的淀粉和可溶性蛋白有利于春季开花的启动,而低水平的可溶性蛋白及高水平的可溶性糖和淀粉含量则有利于夏季开花的实现。  相似文献   

15.
Oilseed rape (Brassica napus L.) is commonly grown for oil or bio-fuel production, while the seed residues can be used for animal feed. It can also be grown as a catch crop because of its efficiency in extracting mineral N from the soil profile. However, the N harvest index is usually low, due in part to a low ability to remobilize N from leaves and to the fall of N-rich leaves which allows a significant amount of N to return to the environment. In order to understand how N filling of pods occurs, experiments were undertaken to quantify N flows within the plant by (15)N labelling and to follow the changes in soluble protein profiles of tissues presumed to store and subsequently to remobilize N. Whereas N uptake increased as a function of growth, N uptake capacity decreased at flowering to a non-significant level during pod filling. However, large amounts of endogenous N were transferred from the leaves to the stems and to taproots which acted as a buffering storage compartment later used to supply the reproductive tissue. About 15% of the total N cycling through the plant were lost through leaf fall and 48%, nearly all of which had been remobilized from vegetative tissues, were finally recovered in the mature pods. SDS-PAGE analysis revealed that large amounts of a 23 kDa polypeptide accumulated in the taproots during flowering and was later fully hydrolysed. Its putative function of storage protein is further supported by the fact that when plants were grown at lower temperature, both flowering, its accumulation and further mobilization were delayed. The overall results are discussed in relation to plant strategies which optimize N cycling to reproductive sinks by means of buffering vegetative tissues such as stems and taproots.  相似文献   

16.
In stolon of white clover (Trifolium repens L.), the 17.3 kDa protein has been newly identified as a vegetative storage protein (VSP) which has preponderant roles in N accumulation and mobilization to sustain growth when capacity of N uptake is strongly reduced. To characterize the water deficit effect on this protein, the kinetic pattern of soluble protein, SDS–PAGE, Western blotting, and proteomic analysis was studied in the stolon of white clover during 28 days of water-deficit. Water deficit led to decrease protein concentration. SDS–PAGE revealed that two major proteins of 17.3 and 16 kDa were accumulated to high level in response to water stress. These proteins cross-reacted positively with antibodies raised against the 17.3 kDa VSP, a protein which shared biochemical features with stress proteins implied in dehydration tolerance. Using two-dimensional electrophoresis (2-DE) gel and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) analysis, it was demonstrated that 19.5 and 17.3 kDa protein spots were up-regulated by water stress, and both spots were identical to nucleoside diphosphate kinase (NDPK) and lipid transfer proteins (LTPs), respectively. These results suggest that low molecular proteins induced by water-deficit in the stolon of white clover act as an alternative N reserves or play significant roles in plant protection against water-deficit stress.  相似文献   

17.
J. Tromp 《Plant and Soil》1983,71(1-3):401-413
Summary In trees, nutrient reserves built up in the previous year are of primary importance for early spring growth. Despite the relatively great importance of roots for nutrient storage, the root system should not be regarded as a special storage organ. Quantitatively, carbohydrates predominate in these reserves, but qualitatively N and other minerals are of more than minor significance. In roots carbohydrates are usually stored in insoluble form, mainly as starch; sorbitol is the predominant soluble compound in apple and peach. For nitrogen reserves, the soluble form predominates in roots, especially arginine in apple and peach, followed by asparagine. The level of reserves usually becomes maximal early in the winter. During leafing-out the reserves are drawn on until, later in the season, the supply of newly produced or absorbed nutrients exceeds the demand and replenishment occurs. The initial carbohydrate reserves do not determine the amount of new growth, whereas reserve nitrogen is of decisive importance for shoot growth vigour. Environmental factors such as light intensity and temperature affect the level of carbohydrates in roots; the concentration can be reduced by defoliation and summer pruning and increased by ample supply of nitrogen fertilizer in the autumn. The main cultural factors that influence nitrogen reserves are the amount and the time of nitrogen fertilization.  相似文献   

18.
The spring growth and the utilization of carbohydrate and nitrogen reserves in this growth was studied in Taxus media cv. Hicksii plants 0, 2, 4 and 6 weeks after the plants started growing in the spring. The effect of nitrogen applied the previous season on the storage and utilization of the carbohydrate and nitrogen reserves during spring growth was determined. The plants were separated into buds (all new growth), stems, needles (those produced the previous season) and roots and analyzed for changes in total nitrogen, basic and non-basic amino acids, total available carbohydrate, sugars, hemicelluloses, organic acids and chlorophyll. The bulk of the soluble nitrogen reserves were stored as arginine in the stems and old needles. With the onset of spring growth, arginine nitrogen was converted to other amino acids which accumulated in the new growth (buds). The roots, stems and needles of plants grown under high nitrogen levels always contained more total nitrogen than those grown under low nitrogen levels. The bulk of the carbohydrate reserves were stored as hemicelluloses. The plants grown under high nitrogen levels utilized the bulk of the carbohydrate reserves from the roots and smaller amounts from the stems and old needles, while plants grown under low nitrogen levels used only the reserves in the roots. In the low nitrogen plants, carbohydrates accumulated in the needles and stems. Both the carbohydrate and nitrogen reserves were important in the dry weight increase due to spring growth. However, the nitrogen reserves were the limiting factor and the high nitrogen plants grew twice as much, produced more chlorophyll, and utilized more nitrogen and carbohydrate reserve in spring growth than low nitrogen plants. The additional chlorophyll allowed the production of more carbohydrates and these additional carbohydrates were used in increased growth rates, while in the low nitrogen plants the carbohydrate produced was less and accumulated within the plant.  相似文献   

19.
The spring flush of growth and the utilization of reserve materials in this growth was studied in lilac plants 0, 2, 4 and 6 weeks after bud break. The influence of nitrogen applied the previous season on the storage and utilization of carbohydrate and nitrogen reserves was determined. The plants were separated into buds, stems and roots and analyzed for changes in total available carbohydrates, sugars, hemi-celluloses, total nitrogen, basic and non-basic amino acids and organic acids. The bulk of the carbohydrate reserves occurred as soluble sugars in the roots, although the reserves of sugars and hemicellulose in the stem was important during the first two weeks after bud break. The bulk of the nitrogen reserves were stored as non-basic amino acids in the stems and roots. However, the roots of plants grown under high nitrogen levels contained twice us much total nitrogen as roots grown under low nitrogen. This additional nitrogen which was stored in the roots of high nitrogen plants was released as arginine. The dry weight of buds increased 3–10 fold during the initial two week period and during the next four weeks doubled again. This bud growth was correlated with the stored nitrogen reserves. The high nitrogen plants grew twice as much and utilized more of the reserve carbohydrates in spring growth than low nitrogen plants. Carbohydrates were synthesized in this new growth and the high nitrogen plants utilized this carbohydrate for additional growth while low nitrogen plants transported it to the stems and roots.  相似文献   

20.
Rhizome dynamics and resource storage in Phragmites australis   总被引:6,自引:1,他引:5  
Seasonal changes in rhizome concentrations of total nonstructural carbohydrates (TNC), water soluble carbohydrates (WSC), and mineral nutrients (N, P and K) were monitored in two Phragmites australis stands in southern Sweden. Rhizome biomass, rhizome length per unit ground area, and specific weight (weight/ length ratio) of the rhizomes were monitored in one of the stands.Rhizome biomass decreased during spring, increased during summer and decreased during winter. However, changes in spring and summer were small (< 500 g DW m-2) compared to the mean rhizome biomass (approximately 3000 g DW m–2). Winter losses were larger, approximately 1000 g DW m-2, and to a substantial extent involved structural biomass, indicating rhizome mortality. Seasonal changes in rhizome length per unit ground area revealed a rhizome mortality of about 30% during the winter period, and also indicated that an intensive period of formation of new rhizomes occurred in June.Rhizome concentrations of TNC and WSC decreased during the spring, when carbohydrates were translocated to support shoot growth. However, rhizome standing stock of TNC remained large (> 1000 g m–2). Concentrations and standing stocks of mineral nutrients decreased during spring/ early summer and increased during summer/ fall. Only N, however, showed a pattern consistent with a spring depletion caused by translocation to shoots. This pattern indicates sufficient root uptake of P and K to support spring growth, and supports other evidence that N is generally the limiting mineral nutrient for Phragmites.The biomass data, as well as increased rhizome specific weight and TNC concentrations, clearly suggests that reloading of rhizomes with energy reserves starts in June, not towards the end of the growing season as has been suggested previously. This resource allocation strategy of Phragmites has consequences for vegetation management.Our data indicate that carbohydrate reserves are much larger than needed to support spring growth. We propose that large stores are needed to ensure establishment of spring shoots when deep water or stochastic environmental events, such as high rhizome mortality in winter or loss of spring shoots due to late season frost, increase the demand for reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号