首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Strauss JF  Liu P  Christenson LK  Watari H 《Steroids》2002,67(12):947-951
Cholesterol is an important structural component of membranes as well as a precursor for steroid hormone, bile acid and regulatory oxysterol biosynthesis. Recent observations revealed that cholesterol plays an important role in signaling and the regulation of intracellular vesicular trafficking. Studies on Niemann-Pick type C disease, a fatal neuro-visceral cholesterol storage disorder, led to the elucidation of a sterol-modulated vesicular trafficking pathway. Mutations in the NPC1 gene, which cause the majority of cases of Niemann-Pick type C disease, result in the accumulation of free cholesterol in lysosomes and associated defects in glycolipid sorting. NPC1 has a sterol-sensing domain that presumably recognizes free sterols in the protein's environment and participates in the movement of cholesterol out of lysosomes. The compartment containing NPC1 is a subset of late endosomes; it is highly mobile, travels along microtubules, emitting flexible tubules. The movements of this compartment require an intact NPC1 sterol-sensing domain and are dramatically suppressed when free cholesterol accumulates in the late endosomes. Two other proteins involved in sterol trafficking enter into the NPC1 compartment, NPC2 also known as HE1, a secreted sterol-binding glycoprotein, and MLN64, a StAR-related lipid transfer (START) domain protein, which can bind cholesterol and promote its movement from donor to acceptor membranes. Mutations in NPC2 cause a rarer form of Niemann-Pick type C disease, establishing its importance in intracellular sterol movement. NPC2, NPC1 and MLN64 may act in an ordered sequence to sense cholesterol, effect sterol movement, and consequently, influence the process of vesicular trafficking.  相似文献   

2.
Niemann-Pick type C (NPC) is a lysosomal storage disorder that results in the accumulation of cholesterol and sphingolipids. Mutations in the NPC1 or NPC2 gene are responsible for the disease but the precise functions of the encoded proteins remain unresolved. Recent observations have challenged the traditional concept of NPC as a primary cholesterol transport defect. This review updates the recent NPC literature, summarizing the increasing insight into the cholesterol trafficking circuits and also addressing the contribution of other lipids in the cellular pathogenesis. The importance of NPC as a model for subcellular lipid imbalance in studying more common diseases, such as Alzheimer's and cardiovascular diseases, is discussed.  相似文献   

3.
Niemann-Pick type C disease (NPC) is a sphingolipid storage disorder characterized by progressive neurodegeneration that typically shows juvenile onset. Mutations in the Npc1 gene cause approximately 95% of NPC cases. NPC1 is a multipass transmembrane protein involved in lipid and cholesterol trafficking. Loss of function mutations in Npc1 lead to the accumulation of sphingolipids and cholesterol in late endosomes and lysosomes. In our study, we demonstrated that NPC1 deficiency results in increased basal autophagy in human fibroblasts and in mice. We further demonstrated that NPC1 deficiency activate basal autophagy through increased expression of Beclin-1, a highly conserved member of the class III PI3K complex that is critical for the formation of autophagosomes. In contrast, enhanced basal autophagy was not associated with activation of the Akt-mTORp70 S6K signaling pathway. Increased Beclin-1 levels and elevated autophagy were also observed in other sphingolipid storage diseases characterized by disrupted cholesterol and sphingolipid trafficking. We propose a model in which the disordered cholesterol trafficking that occurs in many sphingolipid storages diseases results in upregulation of Beclin-1 and enhanced levels of autophagy.  相似文献   

4.
Different primary lysosomal trafficking defects lead to common alterations in lipid trafficking, suggesting cooperative interactions among lysosomal lipids. However, cellular analysis of the functional consequences of this phenomenon is lacking. As a test case, we studied cells with defective Niemann‐Pick C1 (NPC1) protein, a cholesterol trafficking protein whose defect gives rise to lysosomal accumulation of cholesterol and other lipids, leading to NPC disease. NPC1 cells also develop a secondary defect in acid sphingomyelinase (SMase) activity despite a normal acid SMase gene (SMPD1). When acid SMase activity was restored to normal levels in NPC1‐deficient CHO cells through SMPD1 transfection, there was a dramatic reduction in lysosomal cholesterol. Two other defects, excess lysosomal bis‐(monoacylglycerol) phosphate (BMP) and defective transferrin receptor (TfR) recycling, were also markedly improved. To test its relevance in human cells, the acid SMase activity defect in fibroblasts from NPC1 patients was corrected by SMPD1 transfection or acid SMase enzyme replacement. Both treatments resulted in a dramatic reduction in lysosomal cholesterol. These data show that correcting one aspect of a complex lysosomal lipid storage disease can reduce the cellular consequences even if the primary genetic defect is not corrected.  相似文献   

5.
Several proteins that play key roles in cholesterol synthesis, regulation, trafficking and signaling are united by sharing the phylogenetically conserved 'sterol-sensing domain' (SSD). The intracellular parasite Toxoplasma possesses at least one gene coding for a protein containing the canonical SSD. We investigated the role of this protein to provide information on lipid regulatory mechanisms in the parasite. The protein sequence predicts an uncharacterized Niemann-Pick, type C1-related protein (NPC1) with significant identity to human NPC1, and it contains many residues implicated in human NPC disease. We named this NPC1-related protein, TgNCR1. Mammalian NPC1 localizes to endo-lysosomes and promotes the movement of sterols and sphingolipids across the membranes of these organelles. Miscoding patient mutations in NPC1 cause overloading of these lipids in endo-lysosomes. TgNCR1, however, lacks endosomal targeting signals, and localizes to flattened vesicles beneath the plasma membrane of Toxoplasma. When expressed in mammalian NPC1 mutant cells and properly addressed to endo-lysosomes, TgNCR1 restores cholesterol and GM1 clearance from these organelles. To clarify the role of TgNCR1 in the parasite, we genetically disrupted NCR1; mutant parasites were viable. Quantitative lipidomic analyses on the ΔNCR1 strain reveal normal cholesterol levels but an overaccumulation of several species of cholesteryl esters, sphingomyelins and ceramides. ΔNCR1 parasites are also characterized by abundant storage lipid bodies and long membranous tubules derived from their parasitophorous vacuoles. Interestingly, these mutants can generate multiple daughters per single mother cell at high frequencies, allowing fast replication in vitro, and they are slightly more virulent in mice than the parental strain. These data suggest that the ΔNCR1 strain has lost the ability to control the intracellular levels of several lipids, which subsequently results in the stimulation of lipid storage, membrane biosynthesis and parasite division. Based on these observations, we ascribe a role for TgNCR1 in lipid homeostasis in Toxoplasma.  相似文献   

6.
Niemann-Pick type C (NPC) is an autosomal recessive lipid storage disorder characterized by lysosomal accumulation of cholesterol and gangliosides resulting from a defect in intracellular lipid trafficking. The NPC1 gene encodes a 1278-amino acid integral membrane protein involved in the sub-cellular trafficking of lipids. The exact biological function of NPC1 remains unclear. Recent evidence suggests that NPC1 is a eukaryotic member of the RND permease family of transport proteins, which when expressed in bacteria is capable of transporting fatty acids. The goal of this project was to assess the role of NPC1 in the transport of fatty acids in primary human fibroblasts using normal fibroblasts and fibroblasts from patients with three lysosomal storage diseases: NPC, mucolipidosis IV, and Sandhoff disease. If NPC1 is a fatty acid transporter, we expect to find fatty acid accumulation only in NPC fibroblasts. We used three experimental approaches to assess the role of NPC1 as a fatty acid transporter. First, we evaluated the accumulation versus metabolism of low density lipoprotein-derived oleic acid. Second, we assessed the amount of free fatty acid present after growth in lipoprotein-containing media. Third, we assessed the cellular accumulation of acriflavine, a fluorescent substrate for a number of resistance-nodulation-cell division permease transporters. Our results indicate that fatty acid flux through NPC1-deficient lysosomes is normal.  相似文献   

7.
Impaired cell cholesterol trafficking in Niemann-Pick type C (NPC) disease results in the first known instance of impaired regulation of the ATP-binding cassette transporter A1 (ABCA1), a lipid transporter mediating the rate-limiting step in high density lipoprotein (HDL) formation, as a cause of low plasma HDL-cholesterol in humans. We show here that treatment of human NPC1(-/-) fibroblasts with the liver X receptor (LXR) agonist TO-901317 increases ABCA1 expression and activity in human NPC1(-/-) fibroblasts, as indicated by near normalization of efflux of radiolabeled phosphatidylcholine and a marked increase in efflux of cholesterol mass to apoA-I. LXR agonist treatment prior to and during apoA-I incubation resulted in reduction in filipin staining of unesterified cholesterol in late endosomes/lysosomes, as well as cholesterol mass, in NPC1(-/-) cells. HDL species in human NPC disease plasma showed the same pattern of diminished large, cholesterol-rich alpha-1 HDL particles as seen in isolated heterozygous ABCA1 deficiency. Incubating NPC1(-/-) fibroblasts with the LXR agonist normalized the pattern of HDL particle formation by these cells. ABCG1, another LXR target gene involved in cholesterol efflux to HDL, also showed diminished expression in NPC1(-/-) fibroblasts and increased expression upon LXR agonist treatment. These results suggest that NPC1 mutations can be largely bypassed and that NPC1 protein function is non-essential for the trafficking and removal of cellular cholesterol if the down-stream defects in ABCA1 and ABCG1 regulation in NPC disease cells are corrected using an LXR agonist.  相似文献   

8.
Niemann-Pick C 1 (NPC1) is a large integral membrane glycoprotein that resides in late endosomes, whereas NPC2 is a small soluble protein found in the lumen of lysosomes. Mutations in either NPC1 or NPC2 result in aberrant lipid transport from endocytic compartments, which results in lysosomal storage of a complex mixture of lipids, primarily cholesterol and glycosphingolipids. What are the biological functions of the NPC1 and NPC2 proteins? Here we review what is known about the intracellular itinerary of these two proteins as they facilitate lipid transport. We propose that the intracellular trafficking patterns of these proteins will provide clues about their function.  相似文献   

9.
《Autophagy》2013,9(5):487-489
Niemann-Pick type C disease (NPC) is a sphingolipid storage disorder characterized by progressive neurodegeneration that typically shows juvenile onset. Mutations in the Npc1 gene cause ~95% of NPC cases. NPC1 is a multipass transmembrane protein involved in lipid and cholesterol trafficking. Loss of function mutations in Npc1 lead to the accumulation of sphingolipids and cholesterol in late endosomes and lysosomes. In our study, we demonstrated that NPC1 deficiency results in increased basal autophagy in human fibroblasts and in mice. We further demonstrated that NPC1 deficiency activates basal autophagy through increased expression of Beclin-1, a highly conserved member of the class III PI3K complex that is critical for the formation of autophagosomes. In contrast, enhanced basal autophagy was not associated with activation of the Akt–mTOR–p70 S6K signaling pathway. Increased Beclin-1 levels and elevated autophagy were also observed in other sphingolipid storage diseases characterized by disrupted cholesterol and sphingolipid trafficking. We propose a model in which the disordered cholesterol trafficking that occurs in many sphingolipid storages diseases results in upregulation of Beclin-1 and enhanced levels of autophagy.

Addendum to:

Autophagy in Niemann-Pick Type C is Beclin-1 Dependent and Responsive to Lipid Trafficking Defects

C.D. Pacheco, R. Kunkle and A.P. Lieberman

Human Mol Genet 2007; 16:1495-503  相似文献   

10.
Niemann-Pick disease type C (NPC) and Wolman disease are two members of a family of storage disorders caused by mutations of genes encoding lysosomal proteins. Deficiency in function of either the NPC1 or NPC2 protein in NPC disease or lysosomal acid lipase in Wolman disease results in defective cellular cholesterol trafficking. Lysosomal accumulation of cholesterol and enlarged lysosomes are shared phenotypic characteristics of both NPC and Wolman cells. Utilizing a phenotypic screen of an approved drug collection, we found that δ-tocopherol effectively reduced lysosomal cholesterol accumulation, decreased lysosomal volume, increased cholesterol efflux, and alleviated pathological phenotypes in both NPC1 and Wolman fibroblasts. Reduction of these abnormalities may be mediated by a δ-tocopherol-induced intracellular Ca2+ response and subsequent enhancement of lysosomal exocytosis. Consistent with a general mechanism for reduction of lysosomal lipid accumulation, we also found that δ-tocopherol reduces pathological phenotypes in patient fibroblasts from other lysosomal storage diseases, including NPC2, Batten (ceroid lipofuscinosis, neuronal 2, CLN2), Fabry, Farber, Niemann-Pick disease type A, Sanfilippo type B (mucopolysaccharidosis type IIIB, MPSIIIB), and Tay-Sachs. Our data suggest that regulated exocytosis may represent a potential therapeutic target for reduction of lysosomal storage in this class of diseases.  相似文献   

11.
Niemann-Pick type C1 disease (NPC1) is an inherited neurovisceral lipid storage disorder, hallmarked by the intracellular accumulation of unesterified cholesterol and glycolipids in endocytic organelles. Cells acquire cholesterol through exogenous uptake and endogenous biosynthesis. NPC1 participation in the trafficking of LDL-derived cholesterol has been well studied; however, its role in the trafficking of endogenously synthesized cholesterol (endoCHOL) has received much less attention. Previously, using mutant Chinese hamster ovary cells, we showed that endoCHOL moves from the endoplasmic reticulum (ER) to the plasma membrane (PM) independent of NPC1. After arriving at the PM, it moves between the PM and internal compartments. The movement of endoCHOL from internal membranes back to the PM and the ER for esterification was shown to be defective in NPC1 cells. To test the generality of these findings, we have examined the trafficking of endoCHOL in four different physiologically relevant cell types isolated from wild-type, heterozygous, and homozygous BALB/c NPC1NIH mice. The results show that all NPC1 homozygous cell types (embryonic fibroblasts, peritoneal macrophages, hepatocytes, and cerebellar glial cells) exhibit partial trafficking defects, with macrophages and glial cells most prominently affected. Our findings suggest that endoCHOL may contribute significantly to the overall cholesterol accumulation observed in selective tissues affected by Niemann-Pick type C disease.  相似文献   

12.
The primary molecular defect underlying Niemann-Pick C disease (NPC) is still unknown. A wide spectrum of clinical and biochemical phenotypes has previously been documented. Indication of genetic heterogeneity has recently been provided for one patient. In the present study, somatic cell hybridization experiments were carried out on skin fibroblast cultures from 32 unrelated NPC patients covering the range of known clinical and biochemical phenotypes. The criterion for complementation was the restoration of a normal intracellular fluorescent pattern in polykaryons stained with filipin to document cholesterol distribution. Crosses between the various cell lines revealed a major complementation group comprising 27 unrelated patients and a second minor group comprising 5 patients. Linkage analysis in one multiplex family belonging to the minor complementation group showed that the mutated gene does not map to the 18q11-12 region assigned to the major gene. Patients in the first group spanned the whole spectrum of clinical and cellular phenotypes. No consistent clinical or biochemical phenotypes was associated with the second complementation group. Three of the five group 2 patients, however, presented with a new rare phenotype associated with severe pulmonary involvement leading to death within the first year of life. No biochemical abnormality specific of either group could be demonstrated with regard to tissue lipid storage pattern, intralysosomal cholesterol storage, and regulation of cholesterol homeostasis. Mutations affecting at least two different genes have thus been shown to underlie NPC. The two gene products may function together or sequentially in a common metabolic pathway affecting intracellular cholesterol transport.  相似文献   

13.

Background

Niemann-Pick type C (NPC) disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles.

Methodology/Principal Findings

The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds.

Conclusions/Significance

Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155–1165).  相似文献   

14.
Vitamin E (α-tocopherol) is the major lipid-soluble antioxidant in many species. Niemann-Pick type C (NPC) disease is a lysosomal storage disorder caused by mutations in the NPC1 or NPC2 gene, which regulates lipid transport through the endocytic pathway. NPC disease is characterized by massive intracellular accumulation of unesterified cholesterol and other lipids in lysosomal vesicles. We examined the roles that NPC1/2 proteins play in the intracellular trafficking of tocopherol. Reduction of NPC1 or NPC2 expression or function in cultured cells caused a marked lysosomal accumulation of vitamin E in cultured cells. In vivo, tocopherol significantly accumulated in murine Npc1-null and Npc2-null livers, Npc2-null cerebella, and Npc1-null cerebral cortices. Plasma tocopherol levels were within the normal range in Npc1-null and Npc2-null mice, and in plasma samples from human NPC patients. The binding affinity of tocopherol to the purified sterol-binding domain of NPC1 and to purified NPC2 was significantly weaker than that of cholesterol (measurements kindly performed by R. Infante, University of Texas Southwestern Medical Center, Dallas, TX). Taken together, our observations indicate that functionality of NPC1/2 proteins is necessary for proper bioavailability of vitamin E and that the NPC pathology might involve tissue-specific perturbations of vitamin E status.  相似文献   

15.
Cholesterol accumulation in an aberrant endosomal/lysosomal compartment is the hallmark of Niemann-Pick type C (NPC) disease. To gain insight into the etiology of the NPC compartment, we studied a novel Chinese hamster ovary cell mutant that was identified through a genetic screen and phenocopies the NPC1 mutation. We show that the M87 mutant harbors a mutation in a gene distinct from the NPC1 and HE1/NPC2 disease genes. M87 cells have increased total cellular cholesterol with accumulation in an aberrant compartment that contains LAMP-1, LAMP-2, and NPC1, but not CI-MPR, similar to the cholesterol-rich compartment in NPC mutant cells. We demonstrate that low-density lipoprotein receptor activity is increased 3-fold in the M87 mutant, and likely contributes to accumulation of excess cholesterol. In contrast to NPC1-null cells, the M87 mutant exhibits normal rates of delivery of endosomal cholesterol to the endoplasmic reticulum and to the plasma membrane. The preserved late endosomal function in the M87 mutant is associated with the presence of NPC1-containing multivesicular late endosomes and supports a role for these multivesicular late endosomes in the sorting and distribution of cholesterol. Our findings implicate cholesterol overload in the formation of an NPC-like compartment that is independent of inhibition of NPC1 or HE1/NPC2 function.  相似文献   

16.
Niemann-Pick disease type C (NPC) is a fatal, autosomal recessive lipidosis characterized by lysosomal accumulation of unesterified cholesterol and multiple neurological symptoms, such as vertical supranuclear ophthalmoplegia, progressive ataxia, and dementia. More than 90% of cases of NPC are due to a defect in Niemann-Pick C1 (NPC1), a late endosomal, integral membrane protein that plays a role in cholesterol transport or homeostasis. Biochemical diagnosis of NPC has relied on the use of patient skin fibroblasts in an assay to demonstrate delayed low-density lipoprotein (LDL)-derived cholesterol esterification and a cytological technique-filipin staining-to demonstrate the intracellular accumulation of cholesterol. A small percentage of patients, referred to as "NPC variants," present with clinical symptoms of NPC but show near-normal results of these biochemical tests, making laboratory confirmation of NPC disease problematic. Here, we demonstrate that NPC-variant fibroblast samples can be detected as sphingolipid storage disease cells, using a fluorescent sphingolipid analog, BODIPY-lactosylceramide. This lipid accumulated in endosomes/lysosomes in variant cells preincubated with LDL cholesterol but targeted to the Golgi complex in normal cells under these conditions. The reproducibility of this technique was validated in a blinded study. In addition, we performed mutation analysis of the NPC1 gene in NPC variant and "classical" NPC cell samples and found a high incidence of specific mutations within the cysteine-rich region of NPC1 in variants. We also found that 5 of the 12 variant cell samples had no apparent defect in NPC1 but were otherwise indistinguishable from other variant cells. This is a surprising result, since, in general, approximately 90% of patients with NPC possess defects in NPC1. Our findings should be useful for the detection of NPC variants and also may provide significant new insight regarding NPC1 genotype/phenotype correlations.  相似文献   

17.
Niemann-Pick type C, or NPC for short, is an early childhood disease exhibiting progressive neurological degeneration, associated with hepatosplenomegaly in some cases. The disease, at the cellular level, is a result of improper trafficking of lipids such as cholesterol and glycosphingolipids (GSLs) to lysosome-like storage organelles (LSOs), which become engorged with these lipids. It is believed that the initial defect in trafficking, whether of cholesterol or a GSL, results in an eventual traffic jam in these LSOs. This leads to the retention of not only other lipids, but also of transmembrane proteins that transiently associate with the late endosomes (LE) in normal cells, on their way to other cellular destinations such as the trans-Golgi network (TGN). In this review, we discuss the biophysical properties of lipids and cholesterol that might determine their intracellular itineraries, and how these itineraries are altered in NPC cells, which have defects in the proteins NPC1 or NPC2. We also discuss some potential therapeutic directions being suggested by recent research.  相似文献   

18.
Somatic cell hydridization and linkage studies indicated the implication of a second gene as a cause of Niemann-Pick C disease in a minority (5%) of patients. A study of the lysosomal proteome led to the identification of a previously known gene, HE1, as the NPC2 gene. The mature NPC2/HE1 protein is a ubiquitous soluble small 132-amino-acid glycoprotein, first characterized as a major secretory protein in the human epididymis, but also detected in most tissues. Seventeen families with mutations in the NPC2 gene are known. Good genotype-phenotype correlations were observed. No distinction can be made between the biochemical phenotypes of NPC1 or NPC2 mutants. The NPC2 protein binds cholesterol with submicromolar affinity at neutral and acidic pH. The bovine protein has been crystallized, and the cholesterol-binding site assigned to a hydrophobic loosely packed region. There is strong evidence that the NPC1 and NPC2 proteins must function in a closely related fashion. Current data have led to the hypothesis that NPC2 would bind cholesterol from internal lysosomal membranes, enabling a physical interaction with NPC1 (or another protein) and allowing postlysosomal export of cholesterol. In this model, the activity of NPC1 would depend on that of NPC2. The precise function of the NPC2 protein has, however, not been fully elucidated.  相似文献   

19.
The StAR-related lipid transfer (START) domain, first identified in the steroidogenic acute regulatory protein (StAR), is involved in the intracellular trafficking of lipids. Sixteen mammalian START domain-containing proteins have been identified to date. StAR, a protein targeted to mitochondria, stimulates the movement of cholesterol from the outer to the inner mitochondrial membranes, where it is metabolized into pregnenolone in steroidogenic cells. MLN64, the START domain protein most closely related to StAR, is localized to late endosomes along with other proteins involved in sterol trafficking, including NPC1 and NPC2, where it has been postulated to participate in sterol distribution to intracellular membranes. To investigate the role of MLN64 in sterol metabolism, we created mice with a targeted mutation in the Mln64 START domain, expecting to find a phenotype similar to that in humans and mice lacking NPC1 or NPC2 (progressive neurodegenerative symptoms, free cholesterol accumulation in lysosomes). Unexpectedly, mice homozygous for the Mln64 mutant allele were viable, neurologically intact, and fertile. No significant alterations in plasma lipid levels, liver lipid content and distribution, and expression of genes involved in sterol metabolism were observed, except for an increase in sterol ester storage in mutant mice fed a high fat diet. Embryonic fibroblast cells transfected with the cholesterol side-chain cleavage system and primary cultures of granulosa cells from Mln64 mutant mice showed defects in sterol trafficking as reflected in reduced conversion of endogenous cholesterol to steroid hormones. These observations suggest that the Mln64 START domain is largely dispensable for sterol metabolism in mice.  相似文献   

20.
Niemann-Pick type C1 disease (NPC1) is an autosomal recessive lysosomal storage disorder characterized by neonatal jaundice, hepatosplenomegaly, and progressive neurodegeneration. The present study provides the lipid profiles, mutations, and corresponding associations with the biochemical phenotype obtained from NPC1 patients who participated in the National NPC1 Disease Database. Lipid profiles were obtained from 34 patients (39%) in the survey and demonstrated significantly reduced plasma LDL cholesterol (LDL-C) and increased plasma triglycerides in the majority of patients. Reduced plasma HDL cholesterol (HDL-C) was the most consistent lipoprotein abnormality found in male and female NPC1 patients across age groups and occurred independent of changes in plasma triglycerides. A subset of 19 patients for whom the biochemical severity of known NPC1 mutations could be correlated with their lipid profile showed a strong inverse correlation between plasma HDL-C and severity of the biochemical phenotype. Gene mutations were available for 52 patients (59%) in the survey, including 52 different mutations and five novel mutations (Y628C, P887L, I923V, A1151T, and 3741_3744delACTC). Together, these findings provide novel information regarding the plasma lipoprotein changes and mutations in NPC1 disease, and suggest plasma HDL-C represents a potential biomarker of NPC1 disease severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号