首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ca2+ waves in astrocytes.   总被引:10,自引:0,他引:10  
The glial cell is the most numerous cell type in the central nervous system and is believed to play an important role in guiding brain development and in supporting adult brain function. One type of glial cell, the astrocyte also may be an integral computational element in the brain since it undergoes neurotransmitter-triggered signalling. Here we review the role of the astrocyte in the central nervous system, emphasizing receptor-mediated Ca2+ physiology. One focus is the recent discovery that the neurotransmitter glutamate induces a variety of intracellular Ca2+ changes in astrocytes. Simple Ca2+ spikes or intracellular Ca2+ oscillations often appear spatially uniform. However, in many instances, the Ca2+ rise has a significant spatial dimension, beginning in one part of the cell it spreads through the rest of the cell in the form of a wave. With high enough agonist concentration an astrocyte syncitium supports intercellular waves which propagate from cell to cell over relatively long distances. We present results of experiments using more specific pharmacological glutamate receptor agonists. In addition to describing the intercellular Ca2+ wave we present evidence for another form of intercellular signalling. Some possible functions of a long-range glial signalling system are also discussed.  相似文献   

2.
Arachidonic acid (AA) plays important physiological or pathophysiological roles. Here, we show in cultured rat astrocytes that: (i) endothelin-1 or thapsigargin (Tg) induces store-depleted activated Ca2+ entry (CCE), which is inhibited by 2-aminoethoxydiphenyl borane (2-APB) or La3+; (ii) AA (10 μM) and other unsaturated fatty acids (8,11,14-eicosatrienoic acid and γ-linoleic acid) have an initial inhibitory effect on the CCE, due to AA- or fatty acid-induced internal acid load; (iii) after full activation of CCE, AA induces a further Ca2+ influx, which is not inhibited by 2-APB or La3+, indicating that AA activates a second Ca2+ entry pathway, which coexists with CCE; and (iv) Tg or AA activates two independent and co-existing non-selective cation channels and the Tg-induced currents are initially inhibited by addition of AA or weak acids. A possible pathophysiological effect of the AA-induced [Ca]i overload is to cause delayed cell death in astrocytes.  相似文献   

3.
Control and cholesterol-depleted human erythrocytes were loaded with permeant Ca2+ chelators (Benz2-AM or Quin2-AM) in order to increase their exchangeable Ca2+ pool and to measure both Ca2+ fluxes and [Ca]i (free cytoplasmic calcium concentration). The fluxes were independent of the concentration and of the nature of the intracellular chelator. The ATP content was not decreased by more than 50% under our experimental conditions. Cholesterol depletion (up to 28%) induced a decrease in both Ca2+ fluxes and [Ca]i which was proportional to the extent of the depletion. It is shown that cholesterol depletion primarily altered the properties of the system responsible for Ca2+ entry causing a diminution of the [Ca]i. This, in turn, induced a diminution of the activity of the Ca2+ pump without affecting the properties of this pump.  相似文献   

4.
Oxytocin-induced Ca2+ responses in human myometrial cells   总被引:1,自引:0,他引:1  
Complex spatiotemporal changes in intracellular Ca2+ were monitored in an immortalized human myometrial cell line (PHM1-41) and first-passage human myometrial cells after oxytocin stimulation (1. 0-1000 nM). Laser cytometry revealed intracellular Ca2+ oscillations in both culture systems starting at 1.0 nM, which were followed by repetitive Ca2+ transients by 10-15 min that lasted for at least 90 min. The amplitude of the initial Ca2+ spike was dose dependent, while the frequency of Ca2+ oscillations identified by Fast Fourier Transform (FFT) tended to increase with dose. Removal of oxytocin resulted in termination of oscillations. Analysis of the sources of the Ca2+ involved in oscillations indicated that the major contribution to oscillation frequencies of 相似文献   

5.
Interferon-gamma (IFN-gamma) has multiple effects on Ca2+ signalling in polymorphonuclear neutrophils (PMNs), including evoked cytosolic Ca2+ transients, increased capacitative calcium influx and increased sequestration of Ca2+ in intracellular stores. The present study was conducted to elucidate the mechanism behind the Ca2+ transients. As observed before, the IFN-gamma-evoked Ca2+ signals were apparent when extracellular Ca2+ was removed. A new finding was that the proportion of responding cells and the extent of calcium release increased with increasing time in EGTA buffer. As assessed by N-formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated Ca2+ release, the intracellular stores were depleted during this incubation period, and the extent of depletion correlated well with the appearance of IFN-gamma-induced Ca2+ signals. This store dependence of the IFN-gamma-induced Ca2+ signals was confirmed by the appearance of IFN-gamma-evoked Ca2+ signals in the presence of extracellular Ca2+ after store depletion by thapsigargin. The appearance of IFN-gamma-mediated Ca2+-signals in the presence of EGTA indicates that IFN-gamma stimulates Ca2+ release from intracellular stores. This was confirmed by the inability of the calcium transportation blocker La3+ to abolish the IFN-gamma response and the total abrogation of the response by the phospholipase C inhibitor U73122. Although these latter results imply a role for inositol 1,4,5-trisphosphate(IP3) in IFN-gamma signalling, comparison of IFN-gamma-evoked responses with fMLP responses revealed clear differences that suggest different signal-transduction pathways. However, responses to fMLP and IFN-gamma were both depressed by pertussis toxin, and the IFN-gamma responses were, in addition, inhibited by the tyrosine kinase inhibitor genistein. Further evidence of the involvement of tyrosine kinase was a slight stimulatory effect of the protein tyrosine phosphatase inhibitor sodium orthovanadate. The PI-3K activity was of minor importance. In conclusion, we present evidence of a novel signal-transduction mechanism for IFN-gamma in PMNs, dependent on tyrosine kinase activity, a pertussis toxin-sensitive G protein and phospholipase C activity.  相似文献   

6.
Intracellular Ca2+ (Cai) signaling following the binding of surface receptors activates a Ca2+ permeable plasma membrane conductance which has been shown to be associated with store depletion in a number of cell types. We examined the activation of this conductance in human monocyte-derived macrophages (HMDMs) using whole-cell voltage-clamp techniques coupled with fura-2 microfluorimetry and characterized the importance of external pH (pHo) as a modulator of current amplitude. Current activation was observed following experimental maneuvers designed to deplete intracellular Ca2+-stores including: (i) dialysis of the cell with 100 m inositol 1,4,5-triphosphate (IP3), (ii) intracellular dialysis with high concentrations of the Ca2+ buffers EGTA and BAPTA, or (iii) exposure of the cell to the Ca2+-ATPase inhibitor thapsigargin (1 m). Currents associated with store depletion were inwardly rectifying with kinetics, inactivation, and selectivity that appeared similar irrespective of the mode of activation. Currents were Ca2+ selective with a selectivity sequence of Ca2+ > Sr2+ Mg2+ = Mn2+ = Ni2+. The Ca2+ influx current was modulated by changes in pHo; modulation was not produced as a consequence of changes in internal pH (pHi). External acidification led to a reversible reduction in current amplitude with a pKa at pH 8.2. Changes in pHo alone failed to induce current activation. These observations are consistent with a scheme by which changes in pHo, as would be encountered by macrophages at sites of inflammation, could change the time course and magnitude of the Cai transient associated with receptor activation by regulating the influx of Ca2+ ions.The authors wish to gratefully acknowledge the expert technical assistance of Weiwen Xie without whom the study could not have been completed. This work was supported by National Institutes of Health GM36823.  相似文献   

7.
Intracellular Ca(2+) signals provide astrocytes with a specific form of excitability that enables them to regulate synaptic transmission. In this study, we demonstrate that NAADP-AM, a membrane-permeant analogue of the new second messenger nicotinic acid-adenine dinucleotide phosphate (NAADP), mobilizes Ca(2+) in astrocytes and that the response is blocked by Ned-19, an antagonist of NAADP signalling. We also show that NAADP receptors are expressed in lysosome-related acidic vesicles. Pharmacological disruption of either NAADP or lysosomal signalling reduced Ca(2+) responses induced by ATP and endothelin-1, but not by bradykinin. Furthermore, ATP increased endogenous NAADP levels. Overall, our data provide evidence for NAADP being an intracellular messenger for agonist-mediated calcium signalling in astrocytes.  相似文献   

8.
Reperfusion of isolated mammalian hearts with a Ca2+-containing solution after a short Ca2+-free period at 37°:C results in massive influx of Ca2+ into the cells and irreversible cell damage: the Ca2+paradox. Information about the free intracellular, cytosolic [Ca2+] ([Ca2+]i) during Ca2+ depletion is essential to assess the possibility of Ca2+ influx through reversed Na+/Ca2+ exchange upon Ca2+ repletion. Furthermore, the increase in end-diastolic pressure often seen during Ca2+-free perfusion of intact hearts may be similar to that seen during ischemia and caused by liberation of Ca2+ from intracellular stores. Therefore, in this study, we measured [Ca2+]i during Ca2+- free perfusion of isolated rat hearts. To this end, the fluorescent indicator Indo-1 was loaded into isolated Langendorff-perfused hearts and Ca2+-transients were recorded. Ca2+-transients disappeared within 1 min of Ca2+ depletion. Systolic [Ca2+]i during control perfusion was 268±54 nM. Diastolic [Ca2+]i during control perfusion was 114±34 nM and decreased to 53±19 nM after 10 min of Ca2+ depletion. Left ventricular end-diastolic pressure (LVEDP) significantly increased from 13±4 mmHg during control perfusion after Indo-1 AM loading to 31±5 mmHg after 10 min Ca2+ depletion. Left ventricular developed pressure did not recover during Ca2+ repletion, indicating a full Ca2+ paradox. These results show that LVEDP increased during Ca2+ depletion despite a decrease in [Ca2+]i, and is therefore not comparable to the contracture seen during ischemia. Furthermore, calculation of the driving force for the Na+/Ca2+ exchanger showed that reversed Na+/Ca2+ exchange during Ca2+ repletion is not able to increase [Ca2+]i to cytotoxic levels.  相似文献   

9.
The expression of 5-hydroxytryptamine-2B (5-HT2B) receptor mRNA has recently been shown in cultured astrocytes. Here the expression of functional 5-HT2B receptors has been studied in cultured astrocytes from rat cerebral cortex, hippocampus, and brain stem. Fluo-3- and fura-2-based microspectrofluorometry was used for measuring changes in intracellular free calcium concentrations ([Ca2+]i). The 5-HT2B agonist alpha-methyl 5-HT (40 nM) produced rapid transient increases in [Ca2+]i in astrocytes from all three brain regions studied, and these responses were blocked by the selective 5-HT2B antagonist rauwolscine (1 microM). The specificity of the responses to alpha-methyl 5-HT was further demonstrated by the failure of 4-(4-fluorobenzoyl)-1-(4-phenylbutyl)-piperidine oxalate (1 microM), a specific 5-HT2A/5-HT2C antagonist, to block these responses. The 5-HT2B-induced increases in [Ca2+]i persisted in Ca2+-free buffer, indicating that the increase in [Ca2+]i results from mobilization of intracellular Ca2+ stores. The expression of 5-HT2B receptors on astroglial cells was further verified immunohistochemically and by Western blot analysis. These results provide evidence of the existence of 5-HT2B receptors on astrocytes in primary culture.  相似文献   

10.
There is a growing body of evidence suggesting a functional relationship between Ca2+ signals generated in astroglia and the functioning of nearby excitatory synapses. Interference with endogenous Ca2+ homeostasis inside individual astrocytes has been shown to affect synaptic transmission and its use-dependent changes. However, establishing the causal link between source-specific, physiologically relevant intracellular Ca2+ signals, the astrocytic release machinery and the consequent effects on synaptic transmission has proved difficult. Improved methods of Ca2+ monitoring in situ will be essential for resolving the ambiguity in understanding the underlying Ca2+ signalling cascades.  相似文献   

11.
Local, global and propagating calcium (Ca(2+)) signals provide the substrate for glial excitability. Here we analyse Ca(2+) permeability of NMDA and P2X(1/5) receptors expressed in cortical astrocytes and provide evidence that activation of these receptors trigger astroglial Ca(2+) signals when stimulated by either endogenous agonists or by synaptic release of neurotransmitters. The Ca(2+) permeability of the ionotropic receptors was determined by reversal potential shift analysis; the permeability ratio P(Ca)/P(K) was 3.1 for NMDA receptors and 2.2 for P2X(1/5) receptors. Selective stimulation of ionotropic receptors (with NMDA and α,β-methyleneATP) in freshly isolated cortical astrocytes induced ion currents associated with transient increases in cytosolic Ca(2+) concentration ([Ca(2+)](i)). Stimulation of neuronal afferents in cortical slices triggered glial synaptic currents and [Ca(2+)](i) responses, which were partially blocked by selective antagonists of NMDA (D-AP5 and UBP141) and P2X(1/5) (NF449) receptors. We conclude that ionotropic receptors contribute to astroglial Ca(2+) signalling and may provide a specific mechanism for fast neuronal-glial signalling at the synaptic level.  相似文献   

12.
13.
One current hypothesis for the initiation of Ca2+ entry into nonelectrically excitable cells proposes that Ca2+ entry is linked to the state of filling of intracellular Ca2+ stores. In the human T lymphocyte cell line Jurkat, stimulation of the antigen receptor leads to release of Ca2+ from internal stores and influx of extracellular Ca2+. Similarly, treatment of Jurkat cells with the tumor promoter thapsigargin induced release of Ca2+ from internal stores and also resulted in influx of extracellular Ca2+. Initiation of Ca2+ entry by thapsigargin was blocked by chelation of Ca2+ released from the internal storage pool. The Ca2+ entry pathway also could be initiated by an increase in the intracellular concentration of Ca2+ after photolysis of the Ca(2+)-cage, nitr-5. Thus, three separate treatments that caused an increase in the intracellular concentration of Ca2+ initiated Ca2+ influx in Jurkat cells. In all cases, Ca(2+)-initiated Ca2+ influx was blocked by treatment with any of three phenothiazines or W-7, suggesting that it is mediated by calmodulin. These data suggest that release of Ca2+ from internal stores is not linked capacitatively to Ca2+ entry but that initiation is linked instead by Ca2+ itself, perhaps via calmodulin.  相似文献   

14.
H T Cline  R W Tsien 《Neuron》1991,6(2):259-267
Influx of Ca2+ through NMDA channels may initiate the stabilization of coactive synapses during development of the retinotectal projection in frogs. Ca2+ imaging techniques were applied to cultured tectal cells to investigate whether excitatory amino acids cause a rise in [Ca2+]i. High [K+], NMDA, and glutamate increase [Ca2+]i in about 75% of the cells. NMDA and glutamate responses were completely blocked in the absence of extracellular Ca2+ and by the NMDA receptor or channel blockers APV and MK-801. The NMDA response was also blocked by Mg2+. Quisqualate and kainate produced little or no rise in [Ca2+]i. These studies indicate that when tectal cells are exposed to the retinal ganglion cell transmitter glutamate, the predominant means of Ca2+ entry is through NMDA channels.  相似文献   

15.
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is an important stimulus for cell contraction, migration, and proliferation. Depletion of intracellular Ca2+ stores opens store-operated Ca2+ channels (SOC) and causes Ca2+ entry. Transient receptor potential (TRP) cation channels that are permeable to Na+ and Ca2+ are believed to form functional SOC. Because sarcolemmal Na+/Ca2+ exchanger has also been implicated in regulating [Ca2+]cyt, this study was designed to test the hypothesis that the Na+/Ca2+ exchanger (NCX) in cultured human PASMC is functionally involved in regulating [Ca2+]cyt by contributing to store depletion-mediated Ca2+ entry. RT-PCR and Western blot analyses revealed mRNA and protein expression for NCX1 and NCKX3 in cultured human PASMC. Removal of extracellular Na+, which switches the Na+/Ca2+ exchanger from the forward (Ca2+ exit) to reverse (Ca2+ entry) mode, significantly increased [Ca2+]cyt, whereas inhibition of the Na+/Ca2+ exchanger with KB-R7943 (10 µM) markedly attenuated the increase in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Store depletion also induced a rise in [Ca2+]cyt via the reverse mode of Na+/Ca2+ exchange. Removal of extracellular Na+ or inhibition of the Na+/Ca2+ exchanger with KB-R7943 attenuated the store depletion-mediated Ca2+ entry. Furthermore, treatment of human PASMC with KB-R7943 also inhibited cell proliferation in the presence of serum and growth factors. These results suggest that NCX is functionally expressed in cultured human PASMC, that Ca2+ entry via the reverse mode of Na+/Ca2+ exchange contributes to store depletion-mediated increase in [Ca2+]cyt, and that blockade of the Na+/Ca2+ exchanger in its reverse mode may serve as a potential therapeutic approach for treatment of pulmonary hypertension. sodium-calcium exchange; calcium homeostasis; vascular smooth muscle  相似文献   

16.
NMDA receptors (NMDARs) are glutamate-gated ion channels involved in excitatory synaptic transmission and in others physiological processes such as synaptic plasticity and development. The overload of Ca2+ ions through NMDARs, caused by an excessive activation of receptors, leads to excitotoxic neuronal cell death. For this reason, the reduction of Ca2+ flux through NMDARs has been a central focus in finding therapeutic strategies to prevent neuronal cell damage.Extracellular H+ are allosteric modulators of NMDARs. Starting from previous studies showing that extracellular mild acidosis reduces NMDA-evoked whole cell currents, we analyzed the effects of this condition on the NMDARs Ca2+ permeability, measured as “fractional calcium current” (Pf, i.e. the percentage of the total current carried by Ca2+ ions), of human NMDARs NR1/NR2A and NR1/NR2B transiently transfected in HeLa cells. Extracellular mild acidosis significantly reduces Pf of both human NR1/NR2A and NR1/NR2B NMDARs, also decreasing single channel conductance in outside out patches for NR1/NR2A receptor. Reduction of Ca2+ flux through NMDARs was also confirmed in cortical neurons in culture. A comparative analysis of both NMDA evoked Ca2+ transients and whole cell currents showed that extracellular H+ differentially modulate the permeation of Na+ and Ca2+ through NMDARs.Our data highlight the synergy of two distinct neuroprotective mechanisms during acidosis: Ca2+ entry through NMDARs is lowered due to the modulation of both open probability and Ca2+ permeability. Furthermore, this study provides the proof of concept that it is possible to reduce Ca2+ overload in neurons modulating the NMDAR Ca2+ permeability.  相似文献   

17.
Purified plasma membrane vesicles from GH3 rat anterior pituitary cells exhibit a Mg2+-ATP-dependent Ca2+ transport activity. Concentrative uptake of Ca2+ is abolished by exclusion of either Mg2+ or ATP or by inclusion of the Ca2+ ionophore A23187. Furthermore, addition of A23187 to vesicles which have reached a steady state of ATP-supported Ca2+ accumulation rapidly and completely discharges accumulated cation. Ca2+ uptake is unaffected by treatment of vesicles with oligomycin, the uncoupler CCCP, or valinomycin and is greatly reduced in non-plasma membrane fractions. Likewise, Ca2+ accumulation is not stimulated by oxalate, consistent with the plasma membrane origin of this transport system. (Na+, K+)-ATPase participation in the Ca2+ transport process (i.e. via coupled Na+/Ca2+ exchange) was eliminated by omitting Na+ and including ouabain in the reaction medium. Ca2+ transport activity in GH3 vesicles has a similar pH dependence as that seen in a number of other plasma membrane systems and is inhibited by orthovanadate in the micromolar range. Inhibition is enhanced if the membranes are preincubated with vanadate for a short time. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ and ATP are 0.7 and 125 microM, respectively. The average Vmax is 3.6 nmol of Ca2+/min/mg of protein at 37 degrees C. Addition of exogenous calmodulin or calmodulin antagonists had no significant effect on these kinetic properties. GH3 plasma membranes also contain a Na+/Ca2+ exchange system. The apparent Km for Ca2+ is almost 10-fold higher in this system than that for ATP-driven Ca2+ uptake. When both processes are compared under similar conditions, the Vmax of the exchanger is approximately 2-3 times that of ATP-dependent Ca2+ accumulation. Similar results are obtained when purified plasma membranes from bovine anterior pituitary glands were investigated. It is suggested that both Na+/Ca2+ exchange and the (Ca2+ + Mg2+)-ATPase are important in controlling intracellular levels of Ca2+ in anterior pituitary cells.  相似文献   

18.
ATP produces a variety of Ca2+ responses in astrocytes. To address the complex spatio-temporal Ca2+ signals, we analyzed the ATP-evoked increase in intracellular Ca2+ concentration ([Ca2+]i) in cultured rat hippocampal astrocytes using fura-2 or fluo-3 based Ca2+ imaging techniques. ATP at less than 10 nM produced elementary Ca2+ release event "puffs" in a manner independent of extracellular Ca2+. Stimulation with higher ATP concentrations (3 or 10 micro M) resulted in global Ca2+ responses such as intercellular Ca2+ wave. These Ca2+ responses were mainly mediated by metabotropic P2Y receptors. ATP acting on both P2Y1 and P2Y2 receptors produced a transient Ca2+ release by inositol 1,4,5-trisphosphate (InsP3). When cells were stimulated with ATP much longer, the transient [Ca2+]i elevation was followed by sustained Ca2+ entry from the extracellular space. This sustained rise in [Ca2+]i was inhibited by Zn2+ (<10 micro M), an inhibitor of capacitative Ca2+ entry (CCE). CCE induced by cyclopiazonic acid or thapsigargin and Ca2+ entry evoked by ATP share the same pharmacological profile in astrocytes. Taken together, the hierarchical Ca2+ responses to ATP were observed in hippocampal astrocytes, i.e., puffs, global Ca2+ release by InsP3, and CCE in response to depletion of InsP3-sensitive Ca2+ stores. It should be noted that these Ca2+ signals and their modulation by Zn2+ could occur in the hippocampus in situ since both ATP and Zn2+ are rich in the hippocampus and could be released by excitatory stimulation.  相似文献   

19.
20.
Activation of a wide variety of membrane receptors leads to a sustained elevation of intracellular Ca2+ ([Ca2+]i) that is pivotal to subsequent cell responses. In general, in nonexcitable cells this elevation of [Ca2+]i results from two sources: an initial release of Ca2+ from intracellular stores followed by an influx of extracellular Ca2+. These two phases, release from intracellular stores and Ca2+ influx, are generally coupled: stimulation of influx is coordinated with depletion of Ca2+ from stores, although the mechanism of coupling is unclear. We have previously shown that histamine effects a typical [Ca2+]i response in interphase HeLa cells: a rapid rise in [Ca2+]i followed by a sustained elevation, the latter dependent entirely on extracellular Ca2+. In mitotic cells only the initial elevation, derived by Ca2+ release from intracellular stores, occurs. Thus, in mitotic cells the coupling of stores to influx may be specifically broken. In this report we first provide additional evidence that histamine-stimulated Ca2+ influx is strongly inhibited in mitotic cells. We show that efflux is also strongly stimulated by histamine in interphase cells but not in mitotics. It is possible, thus, that in mitotics intracellular stores are only very briefly depleted of Ca2+, being replenished by reuptake of Ca2+ that is retained within the cell. To ensure the depletion of Ca2+ stores in mitotic cells, we employed the sesquiterpenelactone, thapsigargin, that is known to affect the selective release of Ca2+ from intracellular stores by inhibition of a specific Ca(2+)-ATPase; reuptake is inhibited. In most cells, and in accord with Putney's capacitative model (1990), thapsigargin, presumably by depleting intracellular Ca2+ stores, stimulates Ca2+ influx. This is the case for interphase HeLa cells. Thapsigargin induces an increase in [Ca2+]i that is dependent on extracellular Ca2+ and is associated with a strong stimulation of 45Ca2+ influx. In mitotic cells thapsigargin also induces a [Ca2+]i elevation that is initially comparable in magnitude and largely independent of extracellular Ca2+. However, unlike interphase cells, in mitotic cells the elevation of [Ca2+]i is not sustained and 45Ca2+ influx is not stimulated by thapsigargin. Thus, the coupling between depletion of intracellular stores and Ca2+ influx is specifically broken in mitotic cells. Uncoupling could account for the failure of histamine to stimulate Ca2+ influx during mitosis and would effectively block all stimuli whose effects are mediated by Ca2+ influx and sustained elevations of [Ca2+]i.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号