首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Agbavwe C  Somoza MM 《PloS one》2011,6(7):e22177
Cy3 and Cy5 are among the most commonly used oligonucleotide labeling molecules. Studies of nucleic acid structure and dynamics use these dyes, and they are ubiquitous in microarray experiments. They are sensitive to their environment and have higher quantum yield when bound to DNA. The fluorescent intensity of terminal cyanine dyes is also known to be significantly dependent on the base sequence of the oligonucleotide. We have developed a very precise and high-throughput method to evaluate the sequence dependence of oligonucleotide labeling dyes using microarrays and have applied the method to Cy3 and Cy5. We used light-directed in-situ synthesis of terminally-labeled microarrays to determine the fluorescence intensity of each dye on all 1024 possible 5'-labeled 5-mers. Their intensity is sensitive to all five bases. Their fluorescence is higher with 5' guanines, and adenines in subsequent positions. Cytosine suppresses fluorescence. Intensity falls by half over the range of all 5-mers for Cy3, and two-thirds for Cy5. Labeling with 5'-biotin-streptavidin-Cy3/-Cy5 gives a completely different sequence dependence and greatly reduces fluorescence compared with direct terminal labeling.  相似文献   

3.
4.
The regulation of membrane formation in bacteriophage PM2 serves as a simple model for changes in membrane structure in eukaryotic cells. Prior to Pseudomonas host lysis, wild-type virions mature to an icosahedral morphology at the inner face of the cytoplasmic membrane. The proliminary charcterization of two temperature-sensitive mutants of PM2 is described. In cells infected at the restrictive temperature with ts 1, an abundance of “empty” virus-size membrane vesicles are seen. Synthesis of DNA is also reduced in ts 1 infected cells. The preponderance of vesicles is not sen in cells infected with wil-type virus or with ts 1 at the permissive temperature. The “empty” appearance of the viral membranes suggests that viral DNA is not encapsulated. The major viral capsid protein (MW 26,000) is located just out side the viral membrane and normallyl sediments with host and virus membranes; insted, large amounts of capsid protein can be precipitated from the supernatant with TCA. Compared to cells infected with wild type virus, cells infected with is 5 at th restrictive temperature produce inside the cell an aboundance of virus-soze membrane vesicles. Taken Together, These results with viral mutants suggest that formation of a viral membrane of the proper size does not require a DNA core around which to form, or an outer scaffolding of coat protein against which to form a spherical bilayer.  相似文献   

5.
Bacteriophage PM2 presently is the only member of the Corticoviridae family. The virion consists of a protein-rich lipid vesicle, which is surrounded by an icosahedral protein capsid. The lipid vesicle encloses a supercoiled circular double-stranded DNA genome of 10,079 bp. PM2 belongs to the marine phage community and is known to infect two gram-negative Pseudoalteromonas species. In this study, we present a characterization of the PM2 genome made using the in vitro transposon insertion mutagenesis approach. Analysis of 101 insertion mutants yielded information on the essential and dispensable regions of the PM2 genome and led to the identification of several new genes. A number of lysis-deficient mutants as well as mutants displaying delayed- and/or incomplete-lysis phenotypes were identified. This enabled us to identify novel lysis-associated genes with no resemblance to those previously described from other bacteriophage systems. Nonessential genome regions are discussed in the context of PM2 genome evolution.  相似文献   

6.
The effects of a series of thiadicarbocyanine dyes, diSCn(5), in altering the electrical properties of lipid bilayer membranes have been studied as a function of the membrane's intrinsic surface-charge density, the aqueous ionic strength, and the length (n) of the hydrocarbon side chains on the dye. Zero-current conductances, transmembrane potentials, and conductance-voltage relationships induced by these dyes were measured. All dyes studied altered membrane permeability properties; however these alterations were much larger at lower (e.g. 10(-3) M) than at higher (e.g. 10(-1) M) ionic strengths. The data suggest that such perturbations would not be troublesome for most biological preparations in which these dyes have been studied. The mechanisms by which these dyes alter membrane permeabilities vary in going from short-chained to long-chained dyes, the former forming voltage-gated, ion-permeant pores and the latter acting predominantly as anion carriers (forming 2:1 dye-anion complexes). In the case of diSC3(5), the predominant mechanism of altering membrane permeabilities changes in going from neutral to negatively charged membranes and also depends upon aqueous ionic strength and dye concentration.  相似文献   

7.
8.
Fifteen polymethine cyanine dyes were studied as fluorescent stains for DNA in electrophoretic gels. Among studied cyanines, two dyes CPent V and CCyan 2-O most effectively visualized covalently closed and linear double-stranded DNA molecules in gels under standard conditions using UV-illumination, green filter and black-and-white photo film. Ethidium bromide was 1.2-1.6 times more effective as compared to cyanine dyes in staining of DNA in the concentration range of 8-18 ng, while studied cyanines were more sensitive to DNA quantity above 50 ng.  相似文献   

9.
PM2 is an Aeromonas-specific bacteriophage isolated on A. hydrophila strain AH-3. The bacteriophage receptor for this phage was found to be the lipopolysaccharide (LPS), specifically a low-molecular weight LPS fraction (LPS-core oligosaccharides). Mutants resistant to this phage were isolated and found to be devoid of LPS O-antigen and altered in the LPS-core. No other outer-membrane (OM) molecules appeared to be involved in phage binding.  相似文献   

10.
The icosahedral bacteriophage PM2 has a circular double-stranded DNA (dsDNA) genome and an internal lipid membrane. It is the only representative of the Corticoviridae family. How the circular supercoiled genome residing inside the viral membrane is translocated into the gram-negative marine Pseudoalteromonas host has been an intriguing question. Here we demonstrate that after binding of the virus to an abundant cell surface receptor, the protein coat is most probably dissociated. During the infection process, the host cell outer membrane becomes transiently permeable to lipophilic gramicidin D molecules proposing fusion with the viral membrane. One of the components of the internal viral lipid core particle is the integral membrane protein P7, with muralytic activity that apparently aids the process of peptidoglycan penetration. Entry of the virion also causes a limited depolarization of the cytoplasmic membrane. These phenomena differ considerably from those observed in the entry process of bacteriophage PRD1, a dsDNA virus, which uses its internal membrane to make a cell envelope-penetrating tubular structure.  相似文献   

11.
12.
The entire genome and the DNA fragments of the lipid-containing bacteriophage pM2 were cloned in the pBR322 plasmid vector. A physical map including the sites for the following restriction enzymes was obtained: HpaII, HaeIII, TthI, Sau96I, AvaII, PstI, BstNI, AccI, HincII, HpaI and HindIII. No restriction sites on PM2 DNA were found for BalI, BamHI, BclI, BglI, BglII, BstEII, KpnI, PvuII, SacI, SalI, Sau3A, XbaI and XhoI.  相似文献   

13.
The bacteriophage PM2 requires extracellular Ca2+ at concentrations greater than 3 · 10−4 M for the production of viable virus, whereas the host cell Pseudomonas BAL-31 grows normally in medium containing 3 · 10−5 M Ca2+ (low calcium). Virus attachment occurs normally in low calcium, the infected cultures partially lyse, but no infectious virus particles are released. Sucrose gradient analysis shows that lysates made in low calcium contain no PM2-like particles. The addition of calcium very late in the infectious cycle completely restores virus production to cultures infected in low calcium, whereas removal of calcium after infection prevents virus production. Our experiments indicate that Ca2+ is essential for some process late in the lytic cycle, such as the final assembly of stable, infectious PM2 particles.  相似文献   

14.
New chemistry for the fluorescent labeling of oligonucleotides with cyanine dyes is proposed. It is based on the use of pyrylium salts as amine-specific reagents. Monomethyne pyrylium cyanine dye 1 was covalently linked to 5'-aminoalkyl modified oligonucleotide, with simultaneous conversion of the non-fluorescent dye 1 into fluorescent pyridinium cyanine structure 2.  相似文献   

15.
Novel vinylsulfone cyanine dyes (em. 550-850 nm) were designed and synthesized for fluorescent labeling of biomolecules via 1,2-addition reaction in aqueous conditions. Due to the virtue of chemical structures of both fluorophore and reactive group, these dyes could be significantly stable and reactive in various aqueous/organic conditions. A wide variety of pH, temperature, buffer concentration, and protein were tested for the optimal labeling condition.  相似文献   

16.
17.
18.
Summary Spheroplasts of Pseudomonas BAL-31/PM2, obtained by treatment of the bacteria with lysozyme, can be infected with purified DNA from bacteriophage PM2. After 4 h of incubation the yield of progeny phage reaches a value of 107-6×107 plaque forming units/g PM2 DNA. The yield increases linearly with the concentration of DNA over at least 3 orders of magnitude.The biological activity of double-stranded circular PM2 DNA containing one or more single-strand breaks per molecule (component II), does not differ significantly from that of intact PM2 DNA (component I). Single-stranded PM2 DNA obtained by denaturation of component II, and the irreversible alkali-denatured form of component I are also infective.  相似文献   

19.
Optical methods, such as fluorescence, circular dichroism and linear flow dichroism, were used to study the binding to DNA of four symmetrical cyanine dyes, each consisting of two identical quinoline, benzthiazole, indole, or benzoxazole fragments connected by a trimethine bridge. The ligands were shown to form a monomer type complex into the DNA minor groove. The complex of quinoline-containing ligand with calf thymus DNA appeared to be the most resistant to ionic strength, and it did not dissociate completely even in 1 M NaCl. Binding of cyanine dyes to DNA could also be characterized by possibility to form ligand dimers into the DNA minor groove, by slight preference of binding to AT pairs, as well as by possible intercalation between base pairs of poly(dG)-poly(dC). The correlation found between the binding constants to DNA and the extent of cyanine dyes hydrophobicity estimated as the n-octanol/water partition coefficient is indicative of a significant role of hydrophobic interactions for the ligand binding into the DNA minor groove.  相似文献   

20.
Summary In an effort to understand the genetic regulation of membrane morphogenesis, twenty-nine temperature-sensitive mutants of the membrane-containing bacteriophage PM2 were isolated. Characterization at restrictive temperature revealed groups showing no lysis (Groups I–IV), partial lysis (Groups V–VIII), and full lysis (Groups IX–XII) of the host Pseudomonas BAL-31. When the cell lysis data are considered in conjunction with data on stimulation of viral DNA synthesis, at least six mutant groups are defined. Analysis by gel electrophoresis of the pattern of viral proteins synthesized under restrictive conditions further divides the mutants into twelve groups. Temperature shift experiments delineate early, intermediate and late mutants. Complementation data support some of these groupings. The observed low levels of complementation and recombination are discussed in terms of gene product/genome restriction, bound to the membrane at the site of infection.It is of particular interest to membrane morphogenesis that under restrictive conditions late mutants in Groups II, III and IV make empty-appearing vesicles inside the cell that are the size of virus membranes as seen in thin sections of cells in the electron microscope. Mutants ts 1 (Group II) and ts 12 (Group III) show defects in their ability to incorporate into membranes viral structural proteins sp 13 and sp 6.6. The possibility is discussed that either of these proteins control the size and shape of the viral membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号