首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
时磊 《四川动物》2007,26(2):258-262,I0002
对隶属蟒科的东方沙蟒唇鳞的光学显微结构和扫描电镜下的超微结构的观察发现了类似小窝的结构,可能是原始的鳞片感受器官;对鳞片感受器的大小做了测量;同时观察了头部其他鳞片和身体中部背鳞和腹鳞的显微皮纹结构。所有鳞片的角皮层细胞平坦,没有大的表面特征结构,除了后缘齿状结构、微孔和窄而短的边界。考虑到穴居种类减少反光不是主要的选择因子,而主要选择是减少摩擦和清除污物,显微皮纹特征很好地符合这一假说。不同部位鳞片的差异主要表现在角皮层细胞的形状和的大小,微孔的有无,细胞后缘齿状结构的有无和大小以及细胞边界重叠的程度。首次描述了鹅卵石样多孔细胞这一微饰类型。  相似文献   

2.
Microornamentation was examined on the exposed oberhautchen surface of dorsal, lateral, and ventral scales from the midbody region of 20 species of the fossorial snake family Uropeltidae and seven species of fossorial scolecophidian and anilioid outgroups. No substantial variation was observed in microornamentation from the different areas around the midbody circumference within species. All oberhautchen cells were flat and exhibited no major surface features other than occasional posterior margin denticulations, small pores/pits, and narrow, low ridges. This is largely consistent with the hypothesis that friction reduction and dirt shedding are the main selective pressures on microornamentation, given that reducing shine is not of key importance in fossorial animals. Variations among taxa were observed in the shape and size of oberhautchen cells, in the presence of pores/pits, in the presence and size of denticulations on posterior cell margins, and in the level or imbricate nature of cell borders. Six microornamentation characters were formulated, scored, and plotted onto a selected phylogeny. Character evolution and phylogenetic signal were explored, accepting the incomplete understanding of intraspecific variation and of uropeltid interrelationships. There is evidence that all but one of these characters evolved homoplastically, probably by multiple independent origin. There is no clear evidence for character state reversal, but greater phylogenetic resolution is required to test this further. Phylogenetic signal appears to exist in some instances, including possible microornamentation synapomorphies for Uropeltidae and Melanophidium. These derived character states are found elsewhere within Squamata. A microornamentation of narrow, finely, and regularly spaced ridges is associated with scale iridescence. These ridges, and possibly pores/pits, are also associated with scales that are less wettable, and that therefore might be expected to be better at shedding dirt in moist conditions. Testable hypotheses are presented that might explain minor variations in the form of ridges and pits among uropeltids.  相似文献   

3.
The Oberhautchen of scales from the dorsal, parietal, and ventral regions of Sceloporus occidentalis (Iguanidae), Gerrhonotus multicarinatus (Anguinidae), and Anniella pulchra (Anniellidae) were examined with a scanning electron microscope. At low magnification, all scales of S. occidentalis exhibit well-defined outlines of cells belonging to the Oberhautchen layer and the previously overlying clear layer. The dorsal and parietal cells of this species exhibit a minutely dentate Oberhautchen that forms tooth-like spinules 0.2 to 0.5 μ long and arranged in irregular rows. Minute pits 0.1 to 0.3 μ in diameter characterize the Oberhautchen of a ventral scale. Cell outlines are not evident on the scales of G. multicarinatus. The Oberhautchen of dorsal and parietal scales of this species is prominently laminated. Laminae are less prominent on scales of the lateral fold, and no intrinsic surface structure is evident on a ventral scale. In contrast, the fossorial anguinomorph Anniella pulchra exhibits Oberhautchen surfaces with practically no intrinsic microornamentation. However, what appear to be outlines of Oberhautchen cells are visible on the dorsal and ventral scales. These observations suggest that modifications of Oberhautchen microornamentation may have evolved to reduce friction with the substrate or other scales. The lack of pronounced microornamentation of the Oberhautchen on some body scales may indicate that a complex interdigitation between clear layer and Oberhautchen cells is not essential to the sloughing process.  相似文献   

4.
The legless locomotion of snakes requires specific adaptations of their ventral scales to maintain friction force in different directions. The skin microornamentation of the snake Corallus hortulanus was studied by means of scanning electron microscopy and the friction properties of the skin were tested on substrates of different roughness. Skin samples from various parts of the body (dorsal, lateral, ventral) were compared. Dorsal and lateral scales showed similar, net-like microornamentation and similar friction coefficients. Average friction coefficients for dorsal and lateral scales on the epoxy resin surfaces were 0.331 and 0.323, respectively. In contrast, ventral scales possess ridges running parallel to the longitudinal body axis. They demonstrated a significantly lower friction coefficient compared to both dorsal and lateral scales (0.191 on average). In addition, ventral scales showed frictional anisotropy comparing longitudinal and perpendicular direction of the ridges. This study clearly demonstrates that different skin microstructure is responsible for different frictional properties in different body regions.  相似文献   

5.
Concurrent natural and sexual selection have been inferred from laboratory and comparative studies in a number of taxa, but are rarely measured in natural populations. Because the interaction of these two general categories of selection may be complex when they occur simultaneously, empirical evidence from natural populations would help us to understand this interaction and probably give us greater insight into each separate episode as well. In male sockeye salmon, sexual selection for larger body size has been indicated in both deep and shallow water habitats. However, in shallow habitats male sockeye are generally smaller and less deep-bodied than in deep habitats, a difference that has been ascribed to natural selection. We measured concurrent natural and sexual selection in two years on breeding male sockeye salmon with respect to body size, body shape, and time of arrival to the breeding grounds. Natural selection was variable in effect and sexual selection was variable in intensity in these two years. The patterns of selection also appear to be interdependent; areas where predation on spawning adults is not intense have yielded different patterns of sexual selection than those measured here. It appears that some of the body shape differences in sockeye salmon associated with different spawning habitats, which were previously attributed to selective mortality, may be a result of different patterns of sexual selection in the different habitats. Total selection resulting from the combination of both natural and sexual selection was less intense than either natural or sexual selection in most cases. Measurement of concurrent selection episodes in nature may help us to understand whether the pattern of differential sexual selection is common, and whether observed patterns of habitat-related differentiation may be due to differences in sexual selection.  相似文献   

6.
More than any other taxonomic character, megaspores have been used in the genusIsoetes (known by the English common name of “quillwort”), despite the fallacy of a single-character taxonomy. Microspores, on the other hand, have been largely neglected in taxonomic schemes. Like megaspores, terms for microspore ornamentation (also known as “sculpturing”) have not been standardized. I examined microspore ornamentation, including both macroornamentation and microornamentation, of 52 taxa from Africa, Asia, Australasia, Europe, North America, and South America with the scanning electron microscope. Macroornamentation is discernible with light microscopy; microornamentation requires scanning electron microscopy. Ornately sculptured spores were much more frequent than were laevigate or psilate patterns: 21 taxa had an echinate pattern; 19 had an aculeate pattern; 6 were cristate; 5 were psilate; and 1 was laevigate. The proximal and distal ridges and surfaces may vary in both the type and density of ornamentation. Distinct macroornamentation patterns characterize certain species groups. Microornamentation types include granulate, bacillate, fimbriate, and filamentose: of the microspores I examined, virtually all were partially granulate; 11 were bacillate; 4 were fimbriate; and 1 was filamentose. Based on this limited sampling, species with a higher ploidy level often have larger microspores, but no clear relationship between microspore ornamentation and ploidy level was established, nor were any geographical or ecological trends clear. Like megaspores, microspore ornamentation is strongly convergent. Although microspores are often attached to megaspores, the role of spore ornamentation in coordinated dispersal remains unclear.  相似文献   

7.
A new method is developed for revealing the latent surfaces in the structure of organs by scanning electronic microscopy. The method is based on the treatment of specimens with potassium ethoxide until cells start to appear in the dissociating solution. Using this method, thoracic aorta of nine human fetuses at the stage of 20-28 weeks was studied. Subendothelial intima and media of human fetal aorta contain smooth muscle cells differing by their arrangement, shape and surface microrelief. The intima cells are arranged in a mosaic pattern formed of single cells or cell clusters. By means of cell processes they are connected with each other, as well as with endothelial and smooth muscle cells of the media. Smooth muscle cells in the inner part of the media also have processes and form an open network. Part of the cells penetrate the intima through pores of the inner elastic membrane. In the deeper layers of the media, laterally adjoining spindle-shaped smooth muscle cells are found. It is suggested that the observed cell polymorphism is due mostly to penetration of the media smooth muscle cells into subendothelium and modification of their shape under the effect of the microenvironment.  相似文献   

8.
D. M. Warfe  L. A. Barmuta  S. Wotherspoon 《Oikos》2008,117(12):1764-1773
Habitat complexity is often used to explain the distribution of species in environments, yet the ability to predict outcomes of structural differences between habitats remains elusive. This stems from the difficulty and lack of consistency in measuring and quantifying habitat structure, making comparison between different habitats and systems problematic. For any measure of habitat structure to be useful it needs to be applicable to a range of habitats and have relevance to their associated fauna. We measured three differently‐shaped macrophyte analogues with nine indices of habitat structure to determine which would best distinguish between their shape and relate to the abundance and rarefied species richness of their associated macroinvertebrate assemblages. These indices included the physical, whole‐plant attributes of surface area (SA) and plant volume (PV), the interstitial space attributes of average space size and frequency (ISI), average refuge space from predation (Sp/Pr), and total refuge space (FFV), and the degree of surface convolution at a range of scales (i.e. the fractal dimension at four spatial scales: 7.5×, 5×, 2.5× and 1× magnification). We found a high degree of inter‐correlation between the structural indices such that they could be organised into two suites: one group describing interstitial space and surface convolution at coarse scales, the other describing whole‐plant attributes and surface convolution at fine scales. Two of these indices fell into both suites: the average refuge space from predation (Sp/Pr) and the fractal dimension at 5× magnification. These two measures were also strongly related to macroinvertebrate abundance and rarefied species richness, which points to their usefulness in quantifying habitat structure and illustrates that habitat structure depends not just on shape, but on the space associated with shape.  相似文献   

9.
Formation of scales in different body regions of embryonic alligators is described using light and electron microscopy. Transformation of the skin surface to produce scales takes place between stages 19 and 23, after which the shape of scales is complete over most of the embryonic surface. Scalation is not synchronous; different regions develop scales at different rates. Initially scales are formed on the back and dorsal side of the proximal tail and appear as undulations of the epidermis which form symmetrical (bumps) or asymmetrical (serrated) scale anlagen. No dermal condensations are apparent beneath the epidermis, although in some areas of the skin (belly, limbs) mesenchymal cells are more numerous within the bumps than in other areas. At stage 21, scalation has spread to the neck and belly but is absent or poorly developed over most areas of the flank, gular, jaw, limb and head regions. Grooves form between the outer edges of adjacent scales or interbump regions. A superficial denser dermis and a reticulated deep subdermis are visible in many scales from stage 21. The dermis forms a superficial loose and a deep dense layer from stage 22. Both loose and deep dermis, and sometimes the deep reticulate subdermis, move towards the surface to form the dermal core of scales, although the mechanism of this movement is not known. Bundles of collagen fibrils, with almost no elastic fibrils, are progressively deposited, especially in the denser dermis. At stage 22, the flank, gular and proximal areas of limbs form scales, but the head, jaw, distal limbs and digits still lack scales. The digits become scaled at stage 23 when scalation is well advanced in the other regions. By stage 24 most of the body is scaled and subsequent scale modifications occur only by growth. Five main types of scales are recognized by their shape: symmetrical scutes, asymmetrical scutes, overlapping scutes, tuberculate scales, and elevated asymmetrical scutes (tail verticils). Pigmentation, mainly due to epidermal melanocytes, is visible at embryonic stage 23 and progresses through stages 24 and 25.  相似文献   

10.
Mallomonas splendens (G. S. West) Playfair has a cell covering of siliceous scales and bristles. Interphase cells bear four anterior and four posterior bristles that each articulate, at their flexed basal ends via a complex of labile fibers (the fibrillar complex), on a specialized body scale (a base-plate scale). Body scales, base-plate scales and bristles are formed independently of each other and at different times in silica deposition vesicles (SDVs) that are associated with one of the two chloroplasts. The fine structure of scale and bristle morphogenesis in M. splendens agrees with that previously described for Synura and Mallomonas. Four new posterior bristles are formed at late interphase with their basal ends towards the cell posterior. The fibrillar complex is formed in situ on the bristle in the SDV. Mature bristles are secreted one by one onto the surface of the protoplast, beneath the layer of body scales, where the basal ends of the bristles adhere to the plasma membrane via the fibrillar complex. The extrusion of posterior bristles and their deployment onto the cell surface was monitored with video. A fine cellular protuberance accompanies the bristles as they are extruded from beneath the scale layer with their basal ends leading. When distant from the cell, the basal ends of the bristles appear attached to the protuberance, possibly by way of their fibrillar complexes. Once bristles are fully extruded, and their tips free in the surrounding environment, the bristle bases are drawn back to the posterior apex of the cell, apparently by the now shortening protuberance. Thus a 180° reorientation of the posterior bristles has been effected outside the cell. Thin-sections of cells that are extruding bristles show a threadlike, cytoplasmic extension of the cell posterior which may be analogous to the protuberance seen in live cells. Four new posterior base-plate scales are secreted after the bristles have reoriented. Scanning electron microscopy indicates that the fibrillar complex is involved in positioning the bristles onto their respective base-plate scales. Anterior bristles are formed in new daughter cells in the same orientation as the posterior bristles; thus they are extruded tip first and no reorientation is required.  相似文献   

11.
Previous reports on the fine structure of lizard epidermis are confirmed and extended by SEM and TEM observations of cell differentiation and the form of shed material from the American anole Anolis carolinensis. Attention is drawn to two issues: 1) the tips of the spinules arising from the mature oberhautchen are markedly curved; this morphology can be seen during differentiation; 2) the median keels of scales from all parts of the body show “naked” oberhautchen cells that lack characteristic spinules, but have a membrane morphology comprising a complex system of serpentine microridges. Maderson's ([1966] J. Morphol. 119:39–50) “zip-fastener” model for the role of the shedding complex formed by the clear layer and oberhautchen is reviewed and extended in the light of recent SEM data. Apparently periodic lepidosaurian sloughing permits somatic growth; understanding how the phenomenon is brought about requires integration of data from the organismic to the molecular level. The diverse forms of integumentary microornamentation (MO) reported in the literature can be understood by considering how the cellular events occurring during the renewal phase prior to shedding relate to the emergence of the form-function complex of the β-layer, which provides physical protection. Issues concerning the evolutionary origin of lepidosaurian skin-shedding are discussed. J. Morphol. 236:1–24, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Summary

Changes in egg shape and surface morphology during maturation may be related to the localization of cytoplasmic determinants in the embryos of organisms with spiral cleavage. The eggs of the polyclad turbellarian Hoploplana inquilino undergo pronounced shape changes during the meiotic divisions which have been examined with the scanning electron microscope. Unfertilized eggs have a smooth surface that becomes covered with microvilli and microblebs within 10 min of fertilization. First polar body extrusion is accompanied by the asymmetric appearance of large blebs (Blebbing Cycle I) primarily in the animal hemisphere with one quadrant characteristically smoother than the others and bearing fewer blebs. Blebbing Cycle II, which is less pronounced than the first but is still characterized by a relatively un blebbed quadrant of the zygote, coincides with second polar body formation. These asymmetric shape changes in the animal hemisphere during meiosis may possibly correlate with a primitive form of morphogenetic segregation and beginning quadrant specialization in polyclads, the most primitive spiralians with mosaic development.  相似文献   

13.
Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three‐dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro‐CT scanning, gel‐based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro‐CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver‐like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond‐like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading‐to‐trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns.  相似文献   

14.
Experiments performed in the field and in the laboratory show that the barnacle, Balanus improvisus, preferentially settles on smooth surfaces. Settlement and recruitment of B. improvisus was evaluated on micro-textured surfaces with scales of surface texture ranging from 1 to 100 μm in profile heights. Surface texture with profile heights within a topographic range of 30-45 μm reduced settlement and recruitment by 92% as compared to smooth surfaces. The reduction in recruitment on micro-textured surfaces is best explained by behavioural responses to surface topography. Behavioural experiments show that cyprids have a higher propensity for smooth surfaces than for micro-textured surfaces. Cyprids spend more time exploring smooth surfaces and more time swimming when exposed to micro-textured surfaces. Micro-textured surfaces are more often rejected by cyprids after exploration than smooth surfaces. It is suggested that some scales of surface texture could be exploited to improve future anti-fouling techniques in geographical areas where Balanus improvisus is a severe fouling problem.  相似文献   

15.

Marine habitats vary widely in structure, from incredibly complex coral reefs to simpler deep water and open ocean habitats. Hydromechanical models of swimming kinematics and microevolutionary studies suggest that these habitats select for different body shape characteristics. Fishes living in simple habitats are predicted to experience selection for energy-efficient sustained swimming, which can be achieved by fusiform body shapes. In contrast, fishes living in complex habitats are predicted to be under selection for maneuverability, which can be enhanced by deep-bodied and laterally compressed forms. To look for a signature of these processes at a broad macroevolutionary scale, we quantified the body shapes of 3322 species of marine teleostean fishes using a series of linear measurements. We scored each species for whether they were reef-associated or not and tested for morphological differences using a phylogenetic framework. Our results confirmed significant overall shape differences between reef-associated teleosts and those occupying structurally simpler marine habitats. Reef-associated species have, on average, deeper bodies and higher depth-to-width ratios, while non-reef species are more streamlined with narrower and shallower caudal peduncles. Despite the numerous evolutionary forces that may influence body shapes on a broad macroevolutionary scale, our results reveal differences in body shapes between reef-associated and non-reef species that are consistent with hydromechanical models of swimming kinematics as well as with microevolutionary patterns.

  相似文献   

16.
Geckos are a highly diverse group of lizards, with more than 1,700 species that exhibit a wide range of behaviors, ecologies, and sizes. However, no study has examined links between habitat use and body shape in pad-bearing geckos. We set out to answer a basic question using a data set of pad-bearing geckos (112 species, 103 pad-bearing, 9 padless, 42 genera): Do geckos that occur in different habitats also differ in body shape? Overall, we found that body shape was surprisingly similar among our sample of pad-bearing species, with the exception of the genus Uroplatus, which was clearly distinct from other geckos due to its depressed body and long limbs. However, the padless geckos differed in body shape from the pad-bearing geckos by having longer arms and legs and less rotund bodies. We found that about half of the pad-bearing species primarily inhabit trees, with the other half, divided approximately equally among rocks, the ground, and mixed habitats. We found no significant links between habitat use and body shape, nor any propensity for larger species to occupy different habitats than smaller species. Padless species tend to inhabit rock and ground substrates. Our results indicate that pad-bearing geckos have a relatively uniform body form, which contrasts with to their diversity in color, size, and behavior. Indeed, our data show that the general gecko body shape is suitable for a wide range of habitats, ranging from arboreal to terrestrial. This pattern is a departure from other ecomorphological studies and suggests that geckos may not easily fit into the mold of adaptive radiation, as suggested by prior studies.  相似文献   

17.
The response of single breast cancer cells (cell line T-47D) to 17beta-estradiol (E(2)) under different concentrations was studied by using an instrument that allows to combine far-field light microscopy with high resolution scanning near-field (AFM/SNOM) microscopy on the same cell. Different concentrations of E(2) induce clearly different effects as well on cellular shape (in classical bright-field imaging) as on surface topography (atomic force imaging) and absorbance (near-field light transmission imaging). The differences range from a polygonal shape at zero via a roughly spherical shape at physiological up to a spindle-like shape at un-physiologically high concentrations. The surface topography of untreated control cells was found to be regular and smooth with small overall height modulations. At physiological E(2) concentrations the surfaces became increasingly jagged as detected by an increase in membrane height. After application of the un-physiological high E(2) concentration the cell surface structures appeared to be smoother again with an irregular fine structure. The general behaviour of dose dependent differences was also found in the near-field light transmission images. In order to quantify the treatment effects, line scans through the normalised topography images were drawn and a rate of co-localisation between high topography and high transmission areas was calculated. The cell biological aspects of these observations are, so far, not studied in detail but measurements on single cells offer new perspectives to be empirically used in diagnosis and therapy control of breast cancers.  相似文献   

18.
Summary Distribution and organization of the extracellular glycoproteins, fibronectin and laminin, in clonal cultures of chick retinal pigmented epithelial cells have been investigated using indirect immunofluorescence microscopy. Fibronectin is located on the apical and basal cell surfaces and between the cells in the undifferentiated regions of the colony (outer edge and stratified region). It seems to run parallel to intracellular microfilament bundles and to be associated with them across the cell membrane. In the differentiated region of thecolony (center), it is located exclusively on the basal cell surface and seems to be primarily associated with the collagen bundles of the basement membrane. The locations suggest that it may be necessary to stabilizing the sheet of differentiated cells in the colony center. In all regions except the outer edge of the colony, laminin is associated with the basal cell surfaces where it forms a meshwork of short, fine strands. The laminin has a totally different staining pattern from the fibronectin and does not seem to be associated with collagen bundles. The location suggests that laminin may be present in the basal lamina and may be involved in adhesion of the cells to the substratum. This work was supported by Medical Research Council of Canada (MA-6337).  相似文献   

19.
S. sphagnicola resembles other species of Synura previously described by electron microscopy in most features of structure but differs in possessing pyrenoids and up to five cylindrical stacks of smooth cisternae which occur between the pyrenoids and leucosin vesicles. Each stack is surrounded by a tubular cisterna which bears ribosomes on its distal face but there are no clear permanent connections between this and the chloroplast ER. Other features apparently unique to this species previously known from light microscopy are described. These include the axial position of the chloroplasts; the peripheral position of the leucosin vesicles; and the loose attachment of the scales. The structure of the body scales is described for the first time from sections. The flagellar scales are formed in the swollen edges of the Golgi cisternae and appear to pass to the cell surface in large vesicles.  相似文献   

20.
Individuals of Dunaliella salina (Dunal.) Teod. change their shape during ontogenesis. Here we describe the fine structure of this species with emphasis on distinctions between young and adult individuals. The cell coat is present at early stages of cell development and may be synthesized by vesicles of nuclear membrane-associated endoplasmic reticulum. Scanning electron microscopical observations show differences in the surface pattern of the cell coat in young and adult cells. The nucleus of young cells is more or less spherical, whereas that of adult cells is pyriform. The Golgi apparatus is positioned immediately under the basal bodies and consists of three dictyosomes in young cells and six to eight dictyosomes in adult cells. The flagellar apparatuses of young and adult cells have a 1/7 o'clock (i.e. clockwise) displacement of basal bodies and are grossly similar, but there are subtle differences between specific components. Two non-axonemic basal bodies (1′, 2′) appear in a plane perpendicular to that determined by the flagella-bearing basal bodies (1, 2). The cruciate microtubular rootlet system has a 4–2–4–2 alternation pattern. In adult cells, rhizoplasts emerge from each terminal body and run parallel to the four rootlets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号