首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The majority of flowering plants, including many rare and threatened species, are pollinated by animals, but little is known of pollination and breeding systems of many endangered species. Polemonium caeruleum (Polemoniaceae) is a red‐listed species and is regarded as dichogamous, self‐compatible and bee pollinated. However, some studies show that it is visited by a vast assemblage of anthophilous insects from many taxonomic orders and that breeding systems vary greatly between closely related taxa of this genus. Over a period of 3 years we investigated breeding system, dichogamy, nectar secretion and composition, insect visitations and pollen loads in flowers of P. caeruleum in north‐eastern Poland to determine whether the reproductive biology of the plant explains its rarity. Contrary to published data, our study plants were self‐incompatible and showed a high degree of outcrossing. Our experimental work confirmed the occurrence of protandry in this species, revealed that nectar is sucrose‐dominant and proline‐rich and, for the first time for Polemoniaceae, that nectar secretion and nectar sugar concentration in flowers of P. caeruleum is female‐biased. Although flowers were visited by at least 39 species of insects from five taxonomic orders, overall the plant exhibited many characters associated with bee pollination, and analysis of insect performance showed that bumblebees and honeybees are the key pollinators; occasionally hoverflies and butterflies may also be involved. We conclude that, in terms of pollination system, P. caeruleum demonstrates high apparent generalization, but low realized generalization, and is a functional specialist, as most pollinators belong to a single functional group (guild). Its conservation status, at least in our study population, cannot be explained in terms of the biological properties of its breeding or pollination systems; rather, the present decline of the species is caused by habitat loss. However, if this process and bumblebee decline in Europe continue, P. caeruleum populations may diminish in numbers and density and, owing to the self‐incompatibility of the species, quickly become severely pollen‐limited, thereby accelerating further local extinctions. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 92–107.  相似文献   

2.
The floral visitors of silky oak, Grevillea robusta A. Cunn. ex R.Br., their foraging behaviour and their effects on fruit‐set were studied at Malava, western Kenya. Grevillea robusta is a popular tree for farm plantings in the eastern and central African highlands. Yield of seed has been disappointingly low in some areas and a lack of appropriate pollinators has been suggested as a possible cause. Investigations involved the monitoring of visitors on active inflorescences, assessment of the rewards available to potential pollinators, and exclusion experiments to establish the effects of various visitors on fruit‐set. The flowers are visited mainly by birds and insects. The likely pollinators of G. robusta are sunbirds (Nectarinia amethystina, N. cyanolaema, N. olivacea, N. superba and N. venusta) and white‐eyes (Zosterops kikuyuensis and Z. senegalensis). Very little aggressive behaviour between birds was recorded. No nocturnal pollinators were observed. Nectar was the major floral reward for pollinators, but is likely depleted by ants and honey bees, the foraging behaviour of which confirmed them to be nectar‐robbers. These insects hardly ever touched stigmas during their visits. Eighty‐nine per cent of bird visits were in the morning (07.00–10.00 hours) when nectar volume was highest. Inflorescences bagged to exclude birds set no fruits, and unmanipulated flowers and flowers bagged with self‐pollen set no fruits, indicating a self‐incompatibility mechanism. Control cross‐pollinated flowers displayed greatly increased fruit‐set (25.1%) compared with natural open‐pollination (0.9%). All these findings confirm the importance of cross‐pollen transfer to flowers and the necessity of pollinators for fruit‐set. Effective seed production requires activity of pollinators for self‐pollen removal and cross‐pollen deposition. Seed production stands for G. robusta should be established where flowering is prolific and bird pollinators are abundant.  相似文献   

3.
Flowering plants typically use floral rewards to attract animal pollinators. Unlike nectar, pollen rewards are usually visible and may thus function as a signal that influences landing decisions by pollen‐seeking insects. Here we artificially manipulate the presence of both pollen and staminal hairs (a putative false signal of pollen reward availability) in the hermaphroditic lily Bulbine abyssinica (Xanthorrhoeaceae) to investigate their effects on bee visitation and fecundity, and also test for trade‐offs between pollen production and seed production. Honeybees, the primary floral visitors, are probably not able to distinguish between colours of petals, staminal hairs and pollen of B. abyssinica, according to analysis of reflectance spectra in a bee vision model. Flowers with both pollen and hairs removed had the lowest levels of bee visitation, seed set and seed abortions. Flowers containing hairs had an ~50% increase in visitation rate and seed set compared with emasculated flowers, while intact controls had the highest seed abortion rate. Ovule discounting in intact flowers is probably due to ovarian self‐incompatibility (or strong early inbreeding depression) as ovules penetrated by tubes from self‐pollen uniformly failed to develop into seeds. These results show that staminal hairs can enhance plant fecundity by increasing attraction of pollen‐seeking insects to flowers without increasing the risk of ovule discounting through pollinator‐mediated self‐pollination. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 481–490.  相似文献   

4.
The bird pollination syndrome is characterized by red, unscented flowers with dilute nectar in long nectar tubes. However, the extent to which plants with such traits actually depend on birds for seed production is seldom determined experimentally, and traits such as colour and scent production are often assessed only subjectively. We documented bird pollination and quantified floral traits in the critically endangered Satyrium rhodanthum (Orchidaceae) from mistbelt grasslands in the summer‐rainfall region of South Africa. Direct observations and motion trigger camera footage revealed amethyst sunbirds as the only pollinators, despite the presence of other potential pollinators. Experimental exclusion of sunbirds significantly reduced pollination and fruit set to near zero. Pollination success in naturally pollinated plants was close to 100% in one year, and fruit set varied from 23 to 64% in other years. Pollen transfer efficiency was 5.8%, which is lower than in related insect‐pollinated species, probably due to a tendency of birds to wipe pollinaria from their beak. Flowers of S. rhodanthum only reflect light in the red range of the spectrum, and they produce only a few aliphatic and monoterpene scent compounds at comparatively low emission rates. Nectar volume and sugar concentration varied between 2.7 and 3.7 μL and 23.7 and 25.9%, respectively. We conclude that S. rhodanthum is highly specialized for pollination by sunbirds. Colour, scent and nectar characteristics differ from insect‐pollinated Satyrium species and are consistent with those expected for bird‐pollinated flowers, and may contribute to lack of visitation by other potential long‐tongued pollinators. Habitat loss probably underlies the critically endangered conservation status of S. rhodanthum, but the specialization for pollination by a single bird species means that reproduction in this orchid is vulnerable to losses in surrounding communities of plants that subsidize the energetic requirements of sunbirds. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 177 , 141–150.  相似文献   

5.
Reproductive biology and plant fertility are directly related to many aspects of plant evolution and conservation biology. Vriesea friburgensis is an epiphytic and terrestrial bromeliad endemic to the Brazilian Atlantic rainforest. Hand‐pollination experiments were used to examine the reproductive system in a wild population of V. friburgensis. Plant fertility was assigned considering flower production, fruit and seed set, seed germination, and pollen viability. Self‐sterility observed from spontaneous selfing and manual self‐pollination treatments may be the consequence of late‐acting self‐incompatibility. Hand‐pollination results indicated no pollen limitation in the population studied. Floral biology features such as a few daily open flowers, nectar production, and sugar concentration corroborate hummingbirds as effective pollinators, although bees were also documented as pollinators. Components of fitness such as high flower, fruit, and seed production together with high seed and pollen viability indicate that this wild population is viable. From a conservation point of view, we highlight that this self‐sterile species depends on pollinator services to maintain its population fitness and viability through cross‐pollination. Currently, pollinators are not limited in this population of V. friburgensis. Conversely, the maintenance and continuous conservation of this community is essential for preserving this plant–pollinator mutualism.  相似文献   

6.
  • Unrelated plants adapted to particular pollinator types tend to exhibit convergent evolution in floral traits. However, inferences about likely pollinators from ‘pollination syndromes’ can be problematic due to trait overlap among some syndromes and unusual floral architecture in some lineages. An example is the rare South African parasitic plant Mystropetalon thomii (Mystropetalaceae), which has highly unusual brush‐like inflorescences that exhibit features of both bird and rodent pollination syndromes.
  • We used camera traps to record flower visitors, quantified floral spectral reflectance and nectar and scent production, experimentally determined self‐compatibility and breeding system, and studied pollen dispersal using fluorescent dyes.
  • The dark‐red inflorescences are usually monoecious, with female flowers maturing before male flowers, but some inflorescences are purely female (gynoecious). Inflorescences were visited intensively by several rodent species that carried large pollen loads, while visits by birds were extremely rare. Rodents prefer male‐ over female‐phase inflorescences, likely because of the male flowers’ higher nectar and scent production. The floral scent contains several compounds known to attract rodents. Despite the obvious pollen transfer by rodents, we found that flowers on both monoecious and gynoecious inflorescences readily set seed in the absence of rodents and even when all flower visitors are excluded.
  • Our findings suggest that seed production occurs at least partially through apomixis and that M. thomii is not ecologically dependent on its rodent pollinators. Our study adds another species and family to the growing list of rodent‐pollinated plants, thus contributing to our understanding of the floral traits associated with pollination by non‐flying mammals.
  相似文献   

7.
Inga species present brush‐type flower morphology allowing them to be visited by distinct groups of pollinators. Nectar features in relation to the main pollinators have seldom been studied in this genus. To test the hypothesis of floral adaptation to both diurnal and nocturnal pollinators, we studied the pollination ecology of Inga sessilis, with emphasis on the nectar secretion patterns, effects of sequential removals on nectar production, sugar composition and the role of diurnal and nocturnal pollinators in its reproductive success. Inga sessilis is self‐incompatible and pollinated by hummingbirds, hawkmoths and bats. Fruit set under natural conditions is very low despite the fact that most stigmas receive polyads with sufficient pollen to fertilise all ovules in a flower. Nectar secretion starts in the bud stage and flowers continually secreting nectar for a period of 8 h. Flowers actively reabsorbed the nectar a few hours before senescence. Sugar production increased after nectar removal, especially when flowers were drained during the night. Nectar sugar composition changed over flower life span, from sucrose‐dominant (just after flower opening, when hummingbirds were the main visitors) to hexose‐rich (throughout the night, when bats and hawkmoths were the main visitors). Diurnal pollinators contributed less than nocturnal ones to fruit production, but the former were more constant and reliable visitors through time. Our results indicate I. sessilis has floral adaptations, beyond the morphology, that encompass both diurnal and nocturnal pollinator requirements, suggesting a complementary and mixed pollination system.  相似文献   

8.
Ipomoea habeliana is an endemic, night‐flowering member of the Galápagos flora. Pollination experiments, flower‐visitor observations, nectar sampling, pollen transfer, and pollen to ovule ratio and pollen size studies were included in this project. The large, white flowers of this species set fruit via open pollination (55%), autonomous autogamy (51%), facilitated autogamy (91%), cross‐pollination (80%), diurnal open pollination (60%) and nocturnal open pollination (60%). Fruit set is pollen‐limited. Ants, beetles, crickets and hawk moths regularly visit the flowers. Ants are the most frequent visitors, but hawk moths are the only effective pollinators. Nectar is available throughout the night, but is most abundant early in the evening when hawk moth visits are most frequent. Experiments with fluorescent dust demonstrate intra‐ and inter‐plant pollen movement by hawk moths. Although this species is adapted for hawk moth pollination, it readily sets fruit via autonomous autogamy when no visits are made. Thus, it is concluded that it is facultatively xenogamous. Additional support for this conclusion is provided by the pollen to ovule ratio of 1407 and by the fact that the plants grow in a region that has few or no faithful pollinators. Conservation efforts for I. habeliana should include hand pollinations, which could significantly increase seed set. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 11–20.  相似文献   

9.
Pollination biology studies of the endangered orchid Cypripedium japonicum were conducted in its natural habitat using pollinator observation and hand‐pollination experiments. The observed fruit set was as follows: artificial outcross‐pollinated, 100%; artificial self‐pollinated, 100%; pollinator‐excluded, 0%; and emasculated flowers, 0%. These results show that this species, although self‐compatible, is neither autogamous nor agamospermous. The fruit set for open‐pollinated flowers was 14.9%, which suggests that the study population was subject to pollinator limitation. The nectarless flowers of C. japonicum were exclusively visited and pollinated by the queens of two bumblebee species (Bombus ardens and B. diversus diversus). It is probable that the nectarless flowers of C. japonicum attract pollinators through a generalized food deceptive system.  相似文献   

10.
Gynodioecy is a dimorphic breeding system in which female individuals coexist with hermaphroditic individuals in the same population. Females only contribute to the next generation via ovules, and many studies have shown that they are usually less attractive than hermaphrodites to pollinators. Several mechanisms have been proposed to explain how females manage to persist in populations despite these disadvantages. The ‘resource reallocation hypothesis’ (RRH) states that females channel resources not invested in pollen production and floral advertisement towards the production of more and/or larger seeds. We investigated pollination patterns and tested the RRH in a population of Thymus vulgaris. We measured flower display, flower size, nectar production, visitation rates, pollinator constancy and flower lifespan in the two morphs. In addition, we measured experimentally the effects of pollen and resource addition on female reproductive success (fruit set, seed set, seed weight) of the two morphs. Despite lower investment in floral advertisement, female individuals were no less attractive to pollinators than hermaphrodites on a per flower basis. Other measures of pollinator behaviour (number of flowers visited per plant, morph preference and morph constancy) also showed that pollinators did not discriminate against female flowers. In addition, stigma receptivity was longer in female flowers. Accordingly, and contrary to most studies on gynodioecious species, reproductive success of females was not pollen limited. Instead, seed production was pollen limited in hermaphrodites, suggesting low levels of cross‐pollination in hermaphrodites. Seed production was resource limited in hermaphrodites, but not in females, thus providing support for the RRH. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 395–408.  相似文献   

11.
The pollination biology of the nectarless orchid Pogonia minor was investigated in central Japan. The investigation revealed that the solitary flowers failed to attract pollinators, while high rates of fruit set were observed in the natural population. Comparable levels of fruit set were obtained in bagged, artificial self‐pollinated and artificial cross‐pollinated plants, indicating that the species is not pollinator‐limited for fruit set under natural conditions. Autonomous self‐pollination in P. minor resulted from a reduced rostellum, which allowed contact between the pollinia and the stigma. Self‐pollination is thought to be an adaptive response that provides reproductive assurance under conditions of pollinator limitation. Since pollen limitation is generally known to be frequent among deceptive orchids, strong pollen limitation is probably a driving force in the autonomous self‐pollination mechanism in the nectarless orchid P. minor.  相似文献   

12.
Reward partitioning and replenishment and specific mechanisms for pollen presentation are all geared towards the maximization of the number of effective pollinator visits to individual flowers. An extreme case of an apparently highly specialized plant–pollinator interaction with thigmonastic pollen presentation has been described for the morphologically complex tilt‐revolver flowers of Caiophora arechavaletae (Loasaceae) pollinated by oligolectic Bicolletes pampeana (Colletidae, Hymenoptera). We studied the floral biology of Nasa macrothyrsa (Loasaceae) in the field and in the glasshouse, which has very similar floral morphology, but is pollinated by polylectic Neoxylocopa bees (Apidae, Hymenoptera). We investigated the presence of thigmonastic anther presentation, visitor behaviour (pollinators and nectar robbers), co‐ordination of pollinator visits with flower behaviour and the presence of nectar replenishment. The aim of this study was to understand whether complex flower morphology and behaviour can be explained by a specialized pollination syndrome, or whether alternative explanations can be offered. The results showed that Nasa macrothyrsa has thigmonastic pollen presentation, i.e. new pollen is rapidly (<< 10 min) presented after a pollinator visit. Nectar secretion is independent of removal and averages 7–14 µL h–1. The complex flowers, however, fail to exclude either native (hummingbirds) or introduced (honeybees) nectar robbers, nor does polylectic Neoxylocopa actively collect the pollen presented. The findings do not support a causal link between complex flower morphology and functionality in Loasaceae and a highly specialized pollination. Rapid pollen presentation is best explained by the pollen presentation theory: the large proportion of pollinators coming shortly after a previous visit find little nectar and are more likely to move on to a different plant. The rapid presentation of pollen ensures that all these valuable ‘hungry pollinators’ are dusted with small pollen loads, thus increasing the male fitness of the plant by increasing the likelihood of siring outcrossed offspring. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 124–131.  相似文献   

13.
Jatropha curcas L. is the subject of many research and breeding programs concerned with its potential as an oil crop for biodiesel production. Despite an increasing amount of information regarding this relatively new crop, pollination requirements of this plant are largely neglected. The aim of the study was to evaluate the relative significance of ants and honeybees as potential pollinators of J. curcas grown under Mediterranean conditions. Jatropha curcas plants bloomed throughout the summer and fall, peaking twice, in early summer and late fall. During this period, the plants were visited by 70 species of insects representing 45 families from seven orders, with most species rarely being observed. Ants and Honeybees were the most common species, accounting for >95% of all flower visits. The foraging behavior of the honeybees followed the pattern of bloom phenology, especially during the summer, and mostly promoted cross‐pollination. Ants on the other hand, mostly promoted self pollination showing no such correlative behavior, reacting often too late to nectar availability, and were highly susceptible to climatic changes. Pollinator exclusion treatments revealed that during summer, fruit and seed sets, as well as seed size and oil and protein contents, were relatively similar for ant and bee‐pollinated flowers. During fall, however, reproductive success of bee‐pollinated flowers was relatively high (66%), while fruit set of ant‐pollinated flowers was significantly reduced from 71 to 11%. In conclusion, while both groups are equal in their pollination effectiveness in the summer, during the fall the honeybees are almost the sole pollinators of the plant. Based on bloom phenology and pollination activity data, the honeybees are responsible for the pollination of more than 80% of the annual reproductive potential of J. curcas, under Mediterranean conditions.  相似文献   

14.
Calanthe striata has nectarless flowers that are self‐compatible, but pollinator dependent. Field observations showed that the flowers were pollinated exclusively by the carpenter bee Xylocopa appendiculata circumvolans, although the bees occasionally wasted pollen by delivering to the stigmatic surface pollinaria that retained their anther caps. Fruit set ratios at the population level varied spatiotemporally, but were generally low (8.3–17.3%). Calanthe striata blooms in spring when post‐overwintering carpenter bees have not yet started foraging for brood production. It can therefore exploit an abundance of opportunistic/naïve foragers. This timing may also increase the possibility of pollinator visits, because no rewarding co‐flowering plants are available in the orchid habitats. A literature review of Orchidaceae pollinated by carpenter bees revealed that at least 14 species of Orchidoideae and Epidendroideae have evolved flowers specialized for carpenter bee pollination. They typically have shallow pink/magenta flowers with a foothold for pollinators; pollinaria are attached to the head, ventral thorax or base of the middle legs of carpenter bees when they insert their heads and/or proboscises into flowers; pollination success is generally low, a probable consequence of the deceptive pollination systems. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013 , 171 , 730–743.  相似文献   

15.
Floral morphology, nectar secretion strategies and the contribution of pollinators to the reproductive success of plants provide important clues regarding the levels of generalization or specialization in pollination systems. Anthesis throughout the day and night allows flowers to be visited by diurnal and nocturnal pollinators, promoting generalization or specialization. We studied three species in the diverse tropical genus Inga to: (1) quantify the response of flowers to successive nectar extractions and (2) determine the contribution of diurnal and nocturnal floral visitors to female reproductive success. Inga flowers could be clearly distinguished mainly on the basis of the staminal tube diameter and the quantities of filaments and pollen grains. Successive nectar removals led to a decrease of 60% in the total nectar secretion in I. vera and to increases of 20% in I. ingoides and 10% in I. striata. Despite these differences, the studied Inga spp. exhibited similar patterns of visitation rates and shared diurnal and nocturnal pollinators. Nocturnal pollinators contributed ten times more than diurnal pollinators to the female reproductive success of Inga. Floral morphology, nectar secretion patterns and pollination ecology data suggest an evolutionary trend towards specialization for nocturnal pollinators in Inga spp. with crepuscular or nocturnal flowers. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 230–245.  相似文献   

16.
Nectar is the most common floral reward that plants produce to attract pollinators. To determine the effect of nectar production on hawkmoth behavior, pollen movement, and reproductive success in Mirabilis multiflora, I manipulated nectar volumes and observed the subsequent foraging behavior of the hawkmoth Hyles lineata and the resulting pollen movement patterns. Individual hawkmoths visited significantly more flowers on plants with more nectar. The increase in flower visits significantly increased pollen deposition on stigmas and pollen removal from anthers when nectar volume was raised to twice the highest level found in nature. As hawkmoths visited flowers consecutively on a plant, the proportion of self pollen deposited on stigmas increased significantly and rapidly. Based on simulated hawkmoth visits, seed set was significantly reduced for flowers later in a visit sequence. A simple model combining these results predicts that the form of selection on nectar production varies depending on pollinator abundance. Using a multiple regression analysis a nearly significant (P < 0.08) effect of stabilizing selection was detected during a single season as predicted by the model for the prevailing hawkmoth abundance. Although increased nectar production may indirectly affect plant fitness by reducing resources available for other plant functions, the direct effect of high nectar production on pollinator behavior and self pollination may generally limit floral nectar production.  相似文献   

17.
1. Sympatric flower visitor species often partition nectar and pollen and thus affect each other's foraging pattern. Consequently, their pollination service may also be influenced by the presence of other flower visiting species. Ants are solely interested in nectar and frequent flower visitors of some plant species but usually provide no pollination service. Obligate flower visitors such as bees depend on both nectar and pollen and are often more effective pollinators. 2. In Hawaii, we studied the complex interactions between flowers of the endemic tree Metrosideros polymorpha (Myrtaceae) and both, endemic and introduced flower‐visiting insects. The former main‐pollinators of M. polymorpha were birds, which, however, became rare. We evaluated the pollinator effectiveness of endemic and invasive bees and whether it is affected by the type of resource collected and the presence of ants on flowers. 3. Ants were dominant nectar‐consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar‐foraging honeybees (Apis mellifera) strongly decreased on ant‐visited flowers, whereas pollen‐collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were ineffective pollinators. 4. The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant‐visited and ant‐free inflorescences. 5. Our results suggest that invasive social hymenopterans that often have negative impacts on the Hawaiian flora and fauna may occasionally provide neutral (ants) or even beneficial net effects (honeybees), especially in the absence of native birds.  相似文献   

18.
  • Pollinator specialisation through exploitation barriers (such as long floral tubes) does not necessarily mean a lack of pollination when the favoured pollinator is rare or absent. Theory predicts that suboptimal visitors will contribute to plant reproduction in the absence of the most effective pollinator. Here I address these questions with Chasmanthe floribunda a long‐tubed plant species in the Cape Floristic Region, which is reliant on one species of pollinator, the long‐billed Malachite Sunbird. In contrast to short‐billed sunbirds, the Malachite Sunbird occurs in lower abundance or is absent in transformed landscapes. Short‐billed sunbirds rob and thieve nectar from long‐tubed flowers, but their potential contribution towards pollination is unknown.
  • Experiments assessing seed set after single flower visits were performed to determine whether thieving short‐billed sunbirds can act as substitute pollinators. To determine whether short‐billed sunbirds reduce pollen limitation in transformed areas, pollen supplementation was done by hand and compared to natural fruit set.
  • Short billed sunbirds are unable to act as substitute pollinators, and seed set is significantly lower in the flowers that they visited, compared to flowers visited by long‐billed sunbirds. This is substantiated on a landscape scale, where fruit production in Chasmanthe floribunda could artificially be increased by 35% in transformed landscapes, but not so in natural areas.
  • These findings have important consequences for the management and conservation of long‐tubed bird‐pollinated plant species that exist in recently transformed landscapes. The potential vulnerability of specialised plant species in transformed landscapes is highlighted.
  相似文献   

19.
Flowers of Liparia parva from which rodents were excluded had lower seed‐set than open flowers. The rodent Acomys subspinosus was captured in the vicinity of this plant species and captures had substantial numbers of L. parva pollen in their scats. Captured individuals of A. subspinosus visited L. parva flowers in tanks and removed standard petals to obtain the nectar. Typical of rodent‐pollinated species, L. parva, flowered in winter and flowers mostly opened in the evenings and the stigma‐nectar distance was about 10 mm. This is the first evidence for rodent pollination in the large cosmopolitan family, the Fabaceae.  相似文献   

20.
A study was carried out in Kakamega forest, in the western region of Kenya, to evaluate the effectiveness of the stingless bee Hypotrigona gribodoi (Magretti, 1884) on the pollination of green pepper. Three treatments were applied and consisted of self‐pollination, pollination by feral pollinators in the open field and pollination by H. gribodoi in a net cage. The differences in fruit yield and seed quality were compared among treatments. Flowers pollinated by H. gribodoi produced the heaviest fruits with the highest seed numbers followed by feral pollinators and lastly self‐pollinated flowers. Moreover, seeds were significantly bigger in size in fruits resulting from flowers pollinated by H. gribodoi compared to fruits obtained from self‐pollinated flowers or flowers pollinated by feral insects. We, therefore, conclude that H. gribodoi is an efficient pollinator of green pepper in the tropical region of East Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号