首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We conducted a 1-year survey in two humic shallow lakes from the floodplain of the Lower Paraná River, Laguna Grande Lake (LGL) and a relictual oxbow lake (ROL). We aimed to test two hypotheses: (1) the efficiency in light use of picoplankton (0.2–3 μm) is greater as light restriction increases and (2) the contribution of picoplankton to the total productivity is higher when the total photosynthetic biomass is lower. We performed PE curves for picoplankton and nano- and microplankton (>3 μm) using the 14C assimilation technique. The light environments of the water bodies differed mainly owing to the development of free floating plants on the surface of the ROL and the dominance of phytoplankton in LGL. Primary productivity patterns in LGL were seasonality driven whilst in the ROL they were related to the coverage of floating macrophytes, which promoted light limitation and a lower productivity. In LGL, nano- and microplankton were in general more productive and the relative contribution of picoplankton to the total phytoplankton production decreased with the increase in total photosynthetic biomass. Hence, our study extends previously observed patterns to subtropical shallow lakes, where seasonality and free floating plants may influence the dynamics of phytoplankton production.  相似文献   

2.
The abundance of picoplankton (0.2-2 μm) was measured seasonally in the surface waters of six New Zealand lakes that represent a range of trophic states. The lakes were: Wakatipu, Te Anau, Manapouri, Hayes, Mahinerangi and Ross Creek Reservoir. Among the lakes, picoplankton abundance was associated positively with temperature; picoplankton were most abundant in summer and autumn when they attained densities of 108,000-270,000 cells/ml in the oligotrophic lakes. In these lakes, prokaryotic picoplankton was generally an order of magnitude more abundant than eukaryotic picoplankton. Consistent with the hypothesis that picoplankton are more important in oligotrophic than eutrophic ecosystems, there was a weak negative correlation between the density of prokaryotic picoplankton in the lakes and the level of chlorophyll a. The presence of large numbers of chroococcoid cyanobacteria in the guts of Ceriodaphnia dubia and Bosmina meridionalis implies that prokaryotic picoplankton are collected, but not digested, by these species.  相似文献   

3.
Key features of photosynthetic picoplankton populations were compared during 1988 in ten lakes in northern England ranging from oligotrophic to slightly eutrophic; two of the three eutrophic lakes were shallow and lacked a thermocline. Measurements were made at 0.5 m depth of temperature, total chlorophyll a, chlorophyll-containing picoplankton cell density, mean picoplankton cell volume and percentage of phycoerythrin-rich cells in the total picoplankton population. All lakes showed maxima for total chlorophyll concentration and picoplankton cell density in mid- to late summer. The maximum value for picoplankton density ranged from 3.4 × 103 (Esthwaite Water) to 1.3 × 106 cells ml−1 (Ennerdale Water). There was a significant negative relationship (p < 0.05) between log10 of maximum picoplankton cell density and maximum total chlorophyll, the latter being taken as an indicator of lake trophic status. The ratio of maximum to minimum picoplankton density during the year in a particular lake ranged from 39 to 2360 and showed no obvious relationship to lake type. Overall, the seasonal range in picoplankton density was about one order of magnitude greater than the range in total chlorophyll a, but there were considerable differences between lakes. Phycoerythrin-rich picoplankton as a percentage of total picoplankton reached a maximum in summer in all lakes. Values were always very low (<5%) in the two shallow eutrophic lakes, but reached 97% and over in the four most oligotrophic lakes. In two of the oligotrophic lakes, Wast-water and Ennerdale Water, phycoerythrin-rich picoplankton was a major component of the summer phytoplankton biomass.  相似文献   

4.
The community structure and succession of autotrophic picoplankton in several oligotrophic to hypertrophic German freshwater ecosystems were studied with emphasis on the occurrence and characterization of chlorophyte picoplankton. Depending on the trophic status and the time of the year, the relation of green eukaryotic picoplankton to picocyanobacteria, the contribution of the picoplankton to the total phytoplankton biomass, and the succession and dominance of picoplankton groups changed considerably. A significant correlation between the picoplankton abundances, their biomass and their biomass contribution could not be found. Although the chlorophyte picoplankton were similar with respect to their ultrastructure, phylogenetic analyses of the rbcL genes revealed that these organisms evolved independently within several green algal lineages. The most common picoplanktonic green algae in the lakes that were studied belong to the genera Choricystis and Pseudodictyosphaerium. Considering the new molecular biological findings, the systematics of picoplanktonic green algae from freshwater and marine habitats are discussed.  相似文献   

5.
  • 1 Picoplankton community production (0.2–2μm) was investigated over 3 months, June-September 1991, in Llyn Padarn, a mesotrophic upland lake in north Wales.
  • 2 The picoplankton was differentiated into autotrophic algae (<1–3μm) and heterotrophic bacteria (<0.2–1 μm) using differential filtration through a 1 μm pore size Nuclepore filter.
  • 3 Efficient separation of these distinct metabolic constituents of picoplankton was obtained. A good correlation (r= 0.81, P < 0.001) was found between physical separation of bacterial and picoalgal cells from fluorescence microscopy and the distribution of heterotrophic metabolic activity between different cell size fractions measured by uptake of 14C-glucose.
  • 4 Picoplankton community production was differentiated into the ‘absolute’ autotrophic production by picoalgae, corrected for overestimation due to retention of bacteria with the picoalgae, and the heterotrophic component, bacterial uptake of ‘extracellular organic carbon’ (EOC), derived from the entire phytoplankton community.
  • 5 The heterotrophic contribution to picoplankton community production ranged from 88 to 1%, mean value 55% of total. Autotrophic picoplankton production was dominant in June and July, but in August and September heterotrophic uptake of EOC was the major input to picoplankton community production.
  • 6 During the 3 months, the mean contributions to plankton production were autotrophic picoplankton 10.3%, heterotrophic bacterial uptake of EOC 9.7%, EOC in lake water 11.6% and phytoplankton (>3μm) 68.3%.
  • 7 Bacteria accounted for about half the picopfankton community production via uptake of EOC. Thus although autotrophic picoplankton were ubiquitous, it is likely that their contribution via primary production to the carbon balance of planktonic environments has been overestimated in previous studies.
  相似文献   

6.
The seasonal abundance and composition of photosynthetic picoplankton (0.2-2 μm) was compared among five oligotrophic to mesotrophic lakes in Ontario. Epilimnetic picocyanobacteria abundance followed a similar pattern in all lakes; maximum abundance (2-4 × 105 cells · ml−1) occurred in late summer following a period of rapid, often exponential increase after epilimnetic temperatures reached 20 °C. In half of the lakes picocyanobacteria abundance was significantly correlated with temperature, while in other lakes the presence of a small spring peak resulted in a poor correlation with temperature. In all lakes there was a significant correlation between epilimnetic abundance and day of the year. Correlations with water chemistry parameters (soluble reactive phosphorus, total phosphorus, particulate C: P and C: N) were generally weaker or insignificant. However, in the three lakes with the highest spring nitrate concentrations, a significant negative correlation with nitrate was observed. During summer stratification, picocyanobacteria abundance reached a maximum within the metalimnion and at or above the euphotic zone (1% of incident light) in all lakes. These peaks were not related to nutrient gradients. The average total phytoplankton biomass ranged from 0.5 g m−3 (wet weight) in the most oligotrophic lake to 1.4 g m−3 for the most mesotrophic with picoplankton biomass ranging from 0.01 g m−3 to 0.3 g m−3. Picocyanobacteria biomass comprised 1 to 9 % of total phytoplankton biomass in late summer, but in one year for one lake represented a maximum of 56%. Other photosynthetic picoplankton (unidentified eukaryotes, Chlorella spp. Nannochloris spp.), although less abundant (103 cells · ml−1) than picocyanobacteria, represented biomass equal or greater than that of the picocyanobacteria in spring and early summer. On average, half of the photosynthetic picoplankton biomass was eukaryotic in the more coloured lakes, while in the clear lakes less than 20% was eukaryotic. Among the lakes there was a significant positive correlation between the average light extinction coefficient and the proportion of eukaryotic biomass of the picoplankton. In mesotrophic Jack's Lake, the contribution of picoplankton to the maximum photosynthetic rate ranged from 10 to 47% with the highest values in the spring (47%) and late summer (33%), as a result of eukaryotic picoplankton and picocyanobacteria respectively. Picocyanobacteria cell specific growth rates were high during July (0.6-0.8 day−1) and losses were close to 80% of the growth rate. Thus, despite low biomass, photosynthetic picoplankton populations appeared to turn over rapidly and potentially contributed significantly to planktonic food webs in early spring and late summer.  相似文献   

7.
Unicellular autofluorescent picoplankton ranging from 0.4 to 1.5 µm in diameter were found to be a significant component of phytoplankton in the North Basin of Lake Biwa during early summer in 1989 and 1990. The abundance of these picoplankton varied seasonally by about three orders of magnitude with one maximum of up to 106 cells ml–1. Bloom-forming picoplankton were isolated by dilution and further cultivated in liquid medium. Three clones were found to be representative species of the bloom. Using epifluorescence and electron microscopy as well as absorption and fluorescence emission spectroscopy, we examined these clones according to shape and pigment composition. They have ringlike thylakoids, are photosynthetically active and have no nuclear envelope. The cyanobacterial clones isolated represent three types containing phycobilisomes with either phycocyanin or phycoerthrin as the dominant accessory pigment. They are described here as three new species, two phycoerythrin-rich types and one phycocyanin-rich type, all of them belonging to the Synechococcus group. The differences found by fluorescence emission of isolated clones are discussed with respect to in situ strain identification.  相似文献   

8.
Autumn picoplankton (Synechococcus, picoeukaryotes and heterotrophic bacteria) and environmental factors have been investigated in a series of reservoirs along the Wujiang River in Guizhou Province, SW China. The average abundances of Synechococcus, picoeukaryotes and heterotrophic bacteria was 104, 102 and 106 cells ml−1, respectively. In autumn meso-eutrophic reservoirs, thermal stratification was clear and abundances of different picoplankton groups in release water was low; whereas these phenomena were not obvious in autumn hypereutrophic reservoir. Picoplankton numbers decreased with increasing water depth and showed a positive correlation with water temperature, which reflected the importance of light and temperature on the picoplankton growth. Contribution of Synechococcus to total phytoplankton production and contribution of picoeukaryotes to total phytoplankton production asynchronous changed with varying trophic states. Synechococcus preferred meso-eutrophic reservoirs over hypereutrophic reservoir and picoeukaryotes showed no preference for the investigated reservoirs in autumn. Handling editor: L. Naselli-Flores  相似文献   

9.
Investigation of marine eukaryotic picoplankton composition is limited by missing morphological features for appropriate identification. Consequently, molecular methods are required. In this study, we used 454‐pyrosequencing to study picoplankton communities at four stations in the West Spitsbergen Current (WSC; Fram Strait). High abundances of Micromonas pusilla were detected in the station situated closest to Spitsbergen, as seen in surveys of picoplankton assemblages in the Beaufort Sea. At the other three stations, other phylotypes, affiliating with Phaeocystis pouchetii and Syndiniales in the phylogenetic tree, were present in high numbers, dominating most of them. The picoplankton community structures at three of the stations, all with similar salinity and temperature, were alike. At the fourth station, the influence of the East Spitsbergen Current, transporting cold water from the Barents Sea around Spitsbergen, causes different abiotic parameters that result in a significantly different picoeukaryote community composition, which is dominated by M. pusilla. This observation is particularly interesting with regard to ongoing environmental changes in the Arctic. Ongoing warming of the WSC could convey a new picoplankton assemblage into the Arctic Ocean, which may come to affect the dominance of M. pusilla.  相似文献   

10.
Eight New Zealand lakes were surveyed for 14C uptake by phytoplankton as a function of light intensity. The results support the view that the photosynthetic picoplankton is an important contributor to primary productivity in oligotrophic lakes but is relatively unimportant in more eutrophic lakes. A comparison of carbon uptake vs. light intensity characteristics (P vs. I) of the picoplankton size class vs. that of the total phytoplankton community supports the view that the picoplankton size class may be adapted to utilization of dimmer light.  相似文献   

11.
Autotrophic picoplankton were highly abundant during the thermalstratification period in late July in the pelagic area (waterdepth 500–1300 m) of southern Lake Baikal; maximum numberswere 2 x 106 cells ml–1 in the euphotic zone ({small tilde}15m). Unicellular cyanobacteria generally dominated the picoplanktoncommunity, although unidentified picoplankton that fluorescedred under blue excitation were also abundant (maximum numbers4 x 105 cells ml–1) and contributed up to {small tilde}40%of the total autotrophic picoplankton on occasions. Carbon andnitrogen biomasses of autotrophic picoplankton estimated byconversion from biovolumes were 14–84 µg C l–1and 3.6–21 µg N l–1. These were comparableto or exceeded the biomass of heterotrophic bacteria. Autotropicpicoplankton and bacteria accounted for as much as 33% of paniculateorganic carbon and 81% of nitrogen in the euphotic zone. Measurementsof the photosynthetic uptake of [l4C]bicarbonate and the growthof picoplankton in diluted or size-fractionated waters revealedthat 80% of total primary production was due to picoplankton,and that much of this production was consumed by grazers inthe <20 µ.m cell-size category. These results suggestthat picoplankton-protozoan trophic coupling is important inthe pelagic food web and biogeochemical cycling of Lake Baikalduring summer.  相似文献   

12.
Picoplankton BIOMASS in the Ross Sea (Antarctica)   总被引:1,自引:1,他引:0  
Summary Spatial distribution of picoplankton in the Ross Sea was studied. The authors discuss the biomasses of various picoplanktonic-sized fractions and of bacterial cells between 0.2 and 2.0 m capable of growing on Marine Agar 2216 (Difco). Picoplankton having a cellular diameter cf between 1.0 and 2.0 m (PP1) generally predominate, accounting for 73% of the whole picoplankton biomass. However, smaller cells (PP2) can represent 28% of the picoplankton biomass at depths corresponding to 1% of surface light. These results are in good agreement with those found in the coastal regions of McMurdo Sound (Fuhrman and Azam 1980) and in other areas of the Antarctic seas where total bacterioplankton was studied (Hanson et al. 1983b; El-Sayed 1987; Lancelot et al. 1989). Biomasses of total picoplankton (TPP) are not correlated with any of the environmental parameters studied. The PP1 is correlated with O2 and silicates and PP2 is correlated with O2, phosphates temperature and nitrates. Aerobic heterotrophic biomasses are correlated with O2 and salinity.  相似文献   

13.
Marine picoplankton are central mediators of many oceanic biogeochemical processes, but much of their biology and ecology remains ill defined. One approach to better defining these environmentally significant microbes involves the acquisition of genomic data that can provide information about genome content, metabolic capabilities, and population variability in picoplankton assemblages. Previously, we constructed and phylogenetically screened a Bacterial Artificial Chromosome (BAC) library from surface water picoplankton of Monterey Bay. To further describe niche partitioning, metabolic variability, and population structure in coastal picoplankton populations, we constructed and compared several picoplankton BAC libraries recovered from different depths in Monterey Bay. To facilitate library screening, a rapid technique was developed (ITS-LH-PCR) to identify and quantify ribosomal RNA (rRNA) gene-containing BAC clones in BAC libraries. The approach exploited natural length variations in the internal transcribed spacer (ITS) located between SSU and LSU rRNA genes, as well as the presence and location of tRNA-alanine coding genes within the ITS. The correspondence between ITS-LH-PCR fragment sizes and 16S rRNA gene phylogenies facilitated rapid identification of rRNA genes in BAC clones without requiring direct DNA sequencing. Using this approach, 35 phylogenetic groups (previously identified by cultivation or PCR-based rRNA gene surveys) were detected and quantified among the BAC clones. Since the probability of recovering chimeric rRNA gene sequences in large insert BAC clones was low, we used these sequences to identify potentially chimeric sequences from previous PCR amplified clones deposited in public databases. Full-length SSU rRNA gene sequences from picoplankton BAC libraries, cultivated bacterioplankton, and nonchimeric RNA genes were then used to refine phylogenetic analyses of planktonic marine gamma Proteobacteria, Roseobacter, and Rhodospirillales species.(M.T. Suzuki and C.M. Preston) These authors contributed equally to this paper.  相似文献   

14.
In situ incubations of natural autotrophic picoplankton populations during a 15 month study were used to test the frequency of dividing cells proceduresin estimating phototrophic picoplankton growth rates. These rates were estimated using dilution experiments and compared to the average frequency of dividing cells over the same time interval. The regression equation of µ = 2.85 × 10–3 (FDC) + 0.022 was calculated to relate autotrophic picoplankton growth rate and the frequency of dividing cells in this study. The resulting relationship was compared to 14C-bicarbonate derived growth rates. Productivity estimates using frequency of dividing cells correlated closely to sodium 14C-bicarbonate results and indicated a range of productivity by autotrophic picoplankton of 55.6% the total phytoplankton primary productivity in July to a January rate of 2.3%. Annual autotrophic picoplankton abundance varied seasonally in the lower Chesapeake Bay ranging from 7.26 × 106 cells 1–1 in winter to 9.28 × 108 cells 1–1 during late summer.  相似文献   

15.
Summary Photoautotrophic picoplankton is reported from some lakes located near the Italian Antarctic station of Terra Nova. Observations, carried out by both flow cytometry on water samples and electron microscopy on micro-organisms in cultures from each lake, have confirmed the occurrence in all the environments studied of this fraction accounting, in several cases, for more than the 50% of the phytoplankton, measured as chlorophyll. Cultures of the picoplankton fraction from these waters contained known prokaryotic (Synechococcus) and eukaryotic (Chlorella) genera as well as two unidentified entities, possibly prochlorophytes.  相似文献   

16.
A 1-year field study monitoring depth profiles of picoplankton and physicochemical data in the oligotrophic Lake Lucerne (Switzerland) showed that picocyanobacteria play an important role in the CaCO3 precipitation process. Laboratory experiments with Mychonastes and Chlorella, isolated from Lake Lucerne and Synechococcus using ion selective electrodes, scanning electron microscopy and X-ray powder diffraction clearly demonstrated the potential of picoplankton for fast and effective CaCO3 precipitation. The combination of a field study with laboratory experiments confirmed the previous reports of picocyanobacteria triggering the CaCO3 precipitation in hardwater oligotrophic lakes. Electron micrographs of particles from the water column often reveal the size and shape of picoplankton cells covered by calcite. In addition the results from the laboratory approach indicated that algae and bacteria induced different precipitation mechanisms. Experiments with Mychonastes and Chlorella produced crystalline calcite completely covering the cells. Experiments with the cyanobacteria Synechococcus, however, yielded amorphous, micritic CaCO3, indicating a different precipitation process.  相似文献   

17.
The abundance and relative importance of autotrophic picoplankton were investigated in two lakes of different trophic status. In the eutrophic lake, measurements of primary production were performed on water samples in situ and in a light incubator three times during the day whereas for the oligotrophic lake, only one measurement of primary production was performed on water samples in the incubator. Dark-carbon losses of phytoplankton from Lake Loosdrecht were investigated in time series. Cell numbers of autotrophic picoplankton in eutrophic Lake Loosdrecht (3.2 × 104 cells ml–1) were lower than in meso-oligotrophic Lake Maarsseveen (9.8 and 11.4 × 104 cells ml–1 at the surface and bottom respectively). In the phytoplankton of both lakes the ratio of picoplankton production increased with decreasing light intensity. In Lake Loosdrecht depth-integrated contribution of picoplankton to total photosynthesis was less than 4%. The P-I-relationship showed diurnal variations in light saturated photosynthesis, while light limited carbon uptake remained constant during the day. Dark carbon losses from short-term labelled phytoplankton during the first 12 hours of the night period accounted for 10–25% of material fixed during the preceeding light period.  相似文献   

18.
1. We used flow cytometry to characterize freshwater photosynthetic picoplankton (PPP) and heterotrophic bacteria (HB) in Lake Kivu, one of the East‐African great lakes. Throughout three cruises run in different seasons, covering the four major basins, phycoerythrin‐rich cells dominated the PPP. Heterotrophic bacteria and PPP cell numbers were always high and spatial variations were modest. This represents an important difference from temperate and high latitude lakes that show high fluctuations in cell abundance over an annual cycle. 2. Three populations of picocyanobacteria were identified: one corresponded to single‐cells (identified as Synechococcus by epifluorescence microscopy, molecular methods and pigment content), and the two other that most probably correspond to two and four celled colonies of the same taxon. The proportion of these two subpopulations was greater under stratified conditions, with stronger nutrient limitation. 3. High PPP concentrations (c. 105 cell mL?1) relative to HB (c. 106 cell mL?1) were always found. Lake Kivu supports relatively less bacteria than phytoplankton biomass than temperate systems, probably as a consequence of factors such as temperature, oligotrophy, nutrient limitation and trophic structure. 4. A review of PPP concentration across aquatic systems suggests that the abundance of Synechococcus‐like cyanobacteria in large, oligotrophic, tropical lakes is very high. 5. Photosynthetic picoplankton cell abundances in the oligotrophic tropical lakes Kivu and Tanganyika are comparable to those of eutrophic temperate lakes. This apparently contradicts the view that PPP abundance increases with increasing eutrophy. More data on PPP in tropical lakes are needed to explore further this particular pattern.  相似文献   

19.
Seasonal abundances of phototrophic picoplankton (PP) and heterotrophic nanoflagellates in Lake Biwa were studied from 1994 to 1998. Seasonal variation in cell volume and biomass of the phototrophic picoplankton were also studied. PP were counted using disposable glass microscopic plates, which gave superior accuracy to sample filtration onto membrane filters. Phycoerythrin-rich rod-shaped cyanobacteria (PEC), one of the major components of the picoplankton community, were sparse (about 104 cells ml –1) in winter and began to increase in April. Several PEC peaks were observed during the period of thermal stratification, and a rapid fall took place after October or November. In the northern basin, PEC peaked during late June and early July in 3 of the 5 years, and in late summer in the remaining years. Phycocyanin-rich rod-shaped cyanobacteria (PCC) were abundant in the southern basin and were present in smaller numbers in the eutrophic nearshore area of the northern basin; they peaked several times during the period from July to October. Seasonal variations of these two kinds of picoplankton were correlated with seasonal changes in water temperature. Phycoerythrin-rich cylinder-shaped cyanobacteria exhibited narrow peaks in July, their abundance declining as the year progressed. The density of heterotrophic nanoflagellates was greatest in early spring. Average cell volume of PEC was largest in winter, then decreased gradually to a minimum in late summer; after the fall, it recovered to the winter cell volume. This change can likely be attributed to the depletion of nitrogen in the warmer seasons.  相似文献   

20.
Data on the whitefly parasitoid species known from the Macaronesian archipelagos of the Canary Islands, Madeira and the Azores are presented, based largely on recently collected material. A total of 26 species are treated, including six new species, six new records for the Canary Islands, two new records for Madeira, and two new records for the Azores. All species are fully described and illustrated. New species described are: Encarsia atlantica Polaszek & Hernández; Encarsia levadicola Polaszek & Hernández; Encarsia melanostoma Polaszek & Hernández; Encarsia noahi Polaszek & Hernández; Euderomphale gomer LaSalle & Hernández; Euderomphale insularis LaSalle & Hernández. A fully illustrated identification key based on females is provided for recognition of whitefly parasitoids in these archipelagos. Data on the known distribution and hosts are provided, as well as references to biology and use in biological control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号