首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lipopolysaccharides and O-specific polysaccharides were isolated from the outer membrane of bacterial cells of three strains belonging to two Azospirillum species, and their structures were established by monosaccharide analysis including determination of the absolute configurations, methylation analysis, and one- and two-dimensional NMR spectroscopy. It was shown that while having the identical composition, the O-polysaccharides have different branched tetrasaccharide repeating units. Two neutral polysaccharides were found in the lipopolysaccharide of A. brasilense 54, and the structure for the predominant O-polysaccharide was determined. The structural data, together with results of serological studies, enabled assignment of strains examined to a novel serogroup, III. The chemical basis for the serological relatedness among the azospirilla of this serogroup is presumably the presence of a common →3)-α-L-Rhap-(1→2)-α-L-Rhap-(1→3)-α-L-Rhap-(1→oligosaccharide motif in their O-polysaccharides.  相似文献   

2.
The lipopolysaccharides (LPSs) extracted from the outer membrane of Azospirillum brasilense Sp245 and its Omegon-Km mutants KM018 and KM252 with a hot aqueous solution of phenol were found to differ in the content of carbohydrates, glucosamine, and total phosphorus and in the proportion of octadecenoic and hexadecanoic acids in the lipid moieties of the LPSs. The carbohydrate moieties of the LPSs were heterogeneous in charge. The analysis of the O-specific polysaccharides (O-PSs) of the mutants KM018 and KM252 by gas–liquid chromatography, IR spectroscopy, and NMR spectroscopy showed that they are composed of the same linear pentasugar repeating units 2)--D-Rhap-(1 3)--D-Rhap-(1 3)--D-Rhap-(1 2)--D-Rhap-(1 2)--D-Rhap-(1 as the O-PSs of the parent strain Sp245. The reported differences in the biological activity of the LPSs of the parent and mutant strains can be due to their different chemical composition.  相似文献   

3.
The structural identity of the repeated unit in O-specific polysaccharides (OPSs) present in the outer membrane of strain SR75 of the bacterium Azospirillum brasilense, isolated from wheat rhizosphere in Saratov oblast, and the previously studied OPSs of A. brasilense strain Sp245, isolated from surfacesterilized wheat roots in Brazil, has been demonstrated. Plasmid profiles, DNA restriction, and hybridization assays suggested that A. brasilense strains SR75 and Sp245 have different genomic structures. It was shown that homologous lps loci of both strains were localized in their plasmid DNA. This fact allows us to state that, despite their different origin, the development of the strains studied was convergent. Presumably, the habitation of these bacteria in similar ecological niches influenced this process in many respects. __________ Translated from Mikrobiologiya, Vol. 74, No. 5, 2005, pp. 626–632. Original Russian Text Copyright ? 2005 by Fedonenko, Borisov, O. Konnova, Zdorovenko, Katsy, S. Konnova, Ignatov.  相似文献   

4.
Lipopolysaccharides (LPSs) of two strains Pragia fontium 97U116 and 27480 were isolated and characterized; they were close to those of other representatives of the family Enterobacteriaceae in fatty acid composition and contained, respectively, 3-hydroxytetradecanoic acid as the predominant component (45.8 and 45.1%), tetradecanoic (23.5 and 28.9%), hexadecanoic (12.6 and 7.9%), hexadecenoic (12.6 and 7.9%), and dodecanoic (4.9 and 4.2%) fatty acids. The O-specific polysaccharides consisted of linear penta- and tetrasaccharide repeating units: →2)-α-D-Galf-(1→3)-α-L-Rhap2Ac-(1→4)-α-D-GlcpNAc-(1→2)-α-L-Rhap-(1→3)-β-D-GlcpNAc-(1→ →4)-β-D-ManpNAc3NAcA-(1→2)-α-L-Rhap-(1→3)-β-L-Rhap-(1→4)-α-D-GlcpNAc-(1→ The LPSs of P. fontium 97U116 and 27480 were serologically active and belonged to different serogroups; they were less toxic than those of strain E. coli O55:B5, but more pyrogenic than the Pyrogenal preparation.  相似文献   

5.
Structure of the O-specific polysaccharide chain of the lipopolysaccharide (LPS) of Shewanella japonica KMM 3601 was elucidated. The initial and O-deacylated LPS as well as a trisaccharide representing the O-deacetylated repeating unit of the O-specific polysaccharide were studied by sugar analysis along with 1H and 13C NMR spectroscopy. The polysaccharide was found to contain a rare higher sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-d-glycero-d-talo-non-2-ulosonic acid (a derivative of 4-epilegionaminic acid, 4eLeg). The following structure of the trisaccharide repeating unit was established: →4)-α-4eLegp5Ac7Ac-(2→4)-β-d-GlcpA3Ac-(1→3)-β-d-GalpNAc-(1→.  相似文献   

6.
Motility of the serologically different Azospirillum brasilense strains Sp245 (serogroup I) and Sp7 (serogroup II) was studied in the presence of antibodies to their lipopolysaccharides (LPS). A procedure was proposed in order to determine the motility patterns indicating the specificity of the interaction between the anti-LPS antibodies and bacteria. Analysis of the effect of such antibodies on motility of 25 strains (A. brasilense, A. lipoferum, A. irakense, and Azospirillum sp.) revealed bacteria exhibiting antigenic cross reactions with A. brasilense Sp7 or Sp245. The effect of anti-LPS antibodies on motility of azospirilla was in agreement with the results of immune agglutination analysis of bacterial cells and of immunodiffusion analysis of the LPS preparations. According to our results, strains Azospirillum sp. SR81 and A. brasilense SR14 should be included into serogroups I and II, respectively.  相似文献   

7.
On mild acid degradation of the lipopolysaccharide of Escherichia coli O108, the O-polysaccharide was isolated and studied by sugar analysis and one- and two-dimensional 1H- and 13C-NMR spectroscopy. The polysaccharide was found to contain an unusual higher sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-d-galacto-non-2-ulosonic acid (di-N-acetyl-8-epilegionaminic acid, 8eLeg5Ac7Ac). The following structure of the tetrasaccharide repeating unit of the polysac-charide was established: →4)-α-8eLegp5Ac7Ac-(2→6)-α-D-Galp-(1→3)-α-L-FucpNAc-(1→3)-α-D-GlcpNAc-(1→. Functions of the E. coli O108 antigen biosynthetic genes, including seven putative genes for synthesis of 8eLeg5Ac7Ac, were assigned by sequencing the O-antigen gene cluster along with comparison with gene databases and known biosynthetic pathways for related nonulosonic acids.  相似文献   

8.
Bifidobacterium adolescentis, a gram-positive saccharolytic bacterium found in the human colon, can, alongside other bacteria, utilise stachyose in vitro thanks to the production of an α-galactosidase. The enzyme was purified from the cell-free extract of Bi. adolescentis DSM 20083T. It was found to act with retention of configuration (α→α), releasing α-galactose from p-nitrophenyl galactoside. This hydrolysis probably operates with a double-displacement mechanism, and is consistent with the observed glycosyltransferase activity. As α-galactosides are interesting substrates for bifidobacteria, we focused on the production of new types of α-galactosides using the transgalactosylation activity of Bi. adolescentisα-galactosides. Starting from melibiose, raffinose and stachyose oligosaccharides could be formed. The transferase activity was highest at pH 7 and 40 °C. Starting from 300 mM melibiose a maximum yield of 33% oligosaccharides was obtained. The oligosaccharides formed from melibiose were purified by size-exclusion chromatography and their structure was elucidated by NMR spectroscopy in combination with enzymatic degradation and sugar linkage analysis. The trisaccharide α-d-Galp-(1 → 6)-α-d-Galp-(1 → 6)-d-Glcp and tetrasaccharide α-d-Galp-(1 → 6)-α-d-Galp-(1 → 6)-α-d-Galp-(1 → 6)-d-Glcp were identified, and this indicates that the transgalactosylation to melibiose occurred selectively at the C-6 hydroxyl group of the galactosyl residue. The trisaccaride α-d-Galp-(1 → 6)-α-d-Galp-(1 → 6)-d-Glcp formed could be utilised by various intestinal bacteria, including various bifidobacteria, and might be an interesting pre- and synbiotic substrate. Received: 15 March 1999 / Received revision: 8 June 1999 / Accepted: 11 June 1999  相似文献   

9.
The rhizobacteria Azospirillum brasilense Sp245 produce immunochemically different lipopolysaccharides LPSI and LPSII, both containing identical pentasaccharides built from D-rhamnose residues as the repeating units of O-specific polysaccharides (OPS). In this study, we report the structure of the OPS from A. brasilense LPSILPSII mutant Sp245.5, which spontaneously lost the p85 and p120 plasmids upon the formation of a new 300-MDa megaplasmid after the long-term storage of the bacteria in a rich medium. The repeating unit of the OPS of A. brasilense Sp245.5 appeared to be a disaccharide consisting of residues of N-acetyl-D-galactosamine and N-acetyl-D-mannosaminuronic acid:
$ \to 6) - \alpha - D - GalpNAc - (1 \to 4) - \beta - D - ManpNAcA - (1 \to $ \to 6) - \alpha - D - GalpNAc - (1 \to 4) - \beta - D - ManpNAcA - (1 \to   相似文献   

10.
Lactococcus lactis subspecies cremoris SBT 0495 produces the phosphopolysaccharide viilian, which consists of the repeating unit β-d-glucosyl-(1→4)-(α-l-rhamnosyl-(1→2))-(α-d-galactose-1-phosphoryl-(→3)-β-galactosyl-(1→4)-β-d-glucose. A lipid extract was prepared from cells in the late exponential phase of growth and was hydrolyzed by hydrochloric acid under mild conditions to split lipid-linked intermediates in the extract into lipid and sugar moieties. Both moieties were purified by chromatographic techniques and were characterized to identify intermediates of the viilian biosynthetic pathway. A polyisoprenoid isolated from the chloroform-soluble fraction of the hydrolyzed lipid extract was identified by mass spectrometry as undecaprenol. Saccharides isolated from the water-soluble fraction of the hydrolyzed lipid extract by anion-exchange chromatography, were characterized by glycosidic linkage analysis to discriminate sugar moieties of intermediates of viilian biosynthesis from compounds liberated from cell wall components. Some oligosaccharide analogues contain a glycerol residue, suggesting that these are fragments of glycosylglycerides and/or lipoteichoic acid. Three fragments were identified to be glucose, galactosyl-(1→4)-glucose, and rhamnosyl-(1→2)-galactosyl-(1→4)-glucose, which are in agreement with the structure of the repeating unit of viilian. These saccharides most likely represent the first three steps of the sequential assembly of the repeating unit of the undecaprenol assembly. Received: 2 November 1998 / Accepted: 3 March 1999  相似文献   

11.
It is known that in Azospirillum brasilense strains Sp245 and SR75 included in serogroup I, the repeat units of their O-polysaccharides consist of five residues of D-rhamnose, and in strain SR15, of four; and the heteropolymeric O-polysaccharide of A. brasilense type strain Sp7 from serogroup II contains not less than five types of repeat units. In the present work, a complex of nondegenerate primers to the genes of A. brasilense Sp245 plasmids AZOBR_p6, AZOBR_p3, and AZOBR_p2, which encode putative enzymes for the biosynthesis of core oligosaccharide and O-polysaccharide of lipopolysaccharide, capsular polysaccharides, and exopolysaccharides, was proposed. By using the designed primers, products of the expected sizes were synthesized in polymerase chain reactions on genomic DNA of A. brasilense Sp245, SR75, SR15, and Sp7 in 36, 29, 23, and 12 cases, respectively. As a result of sequencing of a number of amplicons, a high (86–99%) level of identity of the corresponding putative polysaccharide biosynthesis genes in three A. brasilense strains from serogroup I was detected. In a blotting-hybridization reaction with the biotin-labeled DNA of the A. brasilense gene AZOBR_p60122 coding for putative permease of the ABC transporter of polysaccharides, localization of the homologous gene in ~120-MDa plasmids of the bacteria A. brasilense SR15 and SR75 was revealed.  相似文献   

12.
Cell aggregation in the marine sponge Microciona prolifera is mediated by a multimillion molecular-mass aggregation factor, termed MAF. Earlier investigations revealed that the cell aggregation activity of MAF depends on two functional domains: (i) a Ca2+-independent cell-binding domain and (ii) a Ca2+-dependent proteoglycan self-interaction domain. Structural analysis of involved carbohydrate fragments of the proteoglycan in the self-association established a sulfated disaccharide β-d-GlcpNAc3S-(1→3)-α-l-Fucp and a pyruvated trisaccharide β-d-Galp4,6(R)Pyr-(1→4)-β-d-GlcpNAc-(1→3)-α-l-Fucp. Recent UV, SPR, and TEM studies, using BSA conjugates and gold nanoparticles of the synthetic sulfated disaccharide, clearly demonstrated self-recognition on the disaccharide level in the presence of Ca2+-ions. To determine binding forces of the carbohydrate–carbohydrate interactions for both synthetic MAF oligosaccharides, atomic force microscopy (AFM) studies were carried out. It turned out that, in the presence of Ca2+-ions, the force required to separate the tip and sample coated with a self-assembling monolayer of thiol-spacer-containing β-d-GlcpNAc-(1→3)-α-l-Fucp-(1→O)(CH2)3S(CH2)6S- was found to be quantized in integer multiples of 30 ± 6 pN. No binding was observed between the two monolayers in the absence of Ca2+-ions. Cd2+-ions could partially induce the self-interaction. In contrast, similar AFM experiments with thiol-spacer-containing β-d-Galp4,6(R)Pyr-(1→4)-β-d-GlcpNAc-(1→3)-α-l-Fucp-(1→O)(CH2)3S(CH2)6S- did not show a binding in the presence of Ca2+-ions. Also TEM experiments of gold nanoparticles coated with the pyruvated trisaccharide could not make visible aggregation in the presence of Ca2+-ions. It is suggested that the self-interaction between the sulfated disaccharide fragments is stronger than that between the pyruvated trisaccharide.  相似文献   

13.
The alkali extractable and water-soluble cell wall polysaccharides F1SS from Aspergillus wentii and Chaetosartorya chrysella have been studied by methylation analysis, 1D- and 2D-NMR, and MALDI-TOF analysis. Their structures are almost identical, corresponding to the following repeating unit: [→ 3)-β-D-Galf-(1 → 5)-β-D-Galf-(1 →] n → mannan core. The structure of this galactofuranose side chain differs from that found in the pathogenic fungus Aspergillus fumigatus, in other Aspergillii and members of Trichocomaceae: [→ 5)-β-D-Galf-(1 →] n → mannan core. The mannan cores have also been investigated, and are constituted by a (1 → 6)-α-mannan backbone, substituted at positions 2 by chains from 1 to 7 residues of (1 → 2) linked α-mannopyranoses. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Cell walls of Bacillus subtilis VKM B-760 and VKM B-764 are characterized by heterogeneous composition of teichoic acids. Polymer I with structure -6)-β-D-Galp-(1→1)-sn-Gro-(3-P-, polymer II with structure -6)-α-D-Glcp-(1→1)-sn-Gro-(3-P-, and a small amount of unsubstituted 1,3-poly(glycerol phosphate) were detected in strain VKM B-760. Strain VKM B-764 contains an analogous set of teichoic acids, but a characteristic feature of polymer II is the presence of disubstituted glycerol residue with α-glucopyranose localization in the integral chain at C-1 hydroxyl and β-glucopyranose as a side branch at C-2 hydroxyl (polymer III): -6)-α-D-Glcp-(1→1)-[β-D-Glcp-(1→2)]-sn-Gro-(3-P-. The structures of polymer I in bacilli and polymer III in Gram-positive bacteria are described for the first time. Teichoic acids were studied by chemical methods and on the basis of combined analysis of one-dimensional 1H-, 13C-, and 31P-NMR spectra, homonuclear two-dimensional 1H/1H COSY, TOCSY, and ROESY, and heteronuclear two-dimensional 1H/13C gHSQC- and HMQC-TOCSY experiments. Simultaneous presence of several different structure teichoic acids in the bacillus cell walls as well as chemotaxonomical perspectives of the application of these polymers as species-specific markers for members of the Bacillus genus is discussed.  相似文献   

15.
Two new asterosaponins, diplasteriosides A and B, bearing the same β-D-Fucp-(1→2)-β-D-Galp-(1→4)-[β-D-Quip-(1→2)]-β-D-Quip-(1→3)-β-D-Quip-(1→ oligosaccharide chains linked to the C6 atom of the known genins, 3-O-sulfates of thornasterols A and B, respectively, were isolated from the Antarctic Diplasterias brucei starfish along with the previously known asteriidoside A. The structures of the new compounds were elucidated by two-dimensional NMR spectroscopy and mass spectrometry. Cytotoxicities of the isolated asterosaponins against the human colon cancer HCT-116, human breast cancer T-47D cell line, and human melanoma cancer RPMI-7951 cell lines were studied.  相似文献   

16.
Seven flavonol glycosides were isolated from the leaves ofT. apetalon. They were identified chromatographically and spectrally to be: quercetin/kaempferol 3-O-α-arabinopyranosyl-(1→6)-β-galactopyranoside (TQ and TK), quercetin/kaempferol 3-O-[2‴-O-acetyl-α-arabinopyranosyl]-(1→6)-β-galactopyranoside (TAQ and TAK), quercetin 3-O-β-glucoside (ISQ), isorhamnetin 3-O-α-arabinopyranosyl-(1→6)-β-galactopyranoside (TI) and isorhamnetin 3-O-[2‴-O-acetyl-α-arabinopyranosyl]-(1→6)-β-galactopyranoside (TAI). TQ, TAQ, TI and TAI were major constituents. This is the first report on two new isorhamnetin-type glycosides, TI and TAI. The seven flavonol glycosides identical to those ofT. apetalon were isolated and identified in the leaves ofT. kamtschaticum; TQ and TAQ were also major components, but TI and TAI were only minor components. TI and TAI were not detected in the leaves ofT. tschonoskii. These leaf-flavonoid patterns were discussed from a chemosystematic point of view. Part 3 in the series “Studies of the flavonoids of the genusTrillium”. For Part 2 see Yoshitamaet al., (1997) J. Plant Res.110: 379–381.  相似文献   

17.
The use of lactic acid bacteria in fermentation of milk results in favorable physical and rheological properties due to in situ exopolysaccharide (EPS) production. The EPS from S. thermophilus ST1 produces highly viscous aqueous solutions and its structure has been investigated by NMR spectroscopy. Notably, all aspects of the elucidation of its primary structure including component analysis and absolute configuration of the constituent monosaccharides were carried out by NMR spectroscopy. An array of techniques was utilized including, inter alia, PANSY and NOESY-HSQC TILT experiments. The EPS is composed of hexasaccharide repeating units with the following structure: → 3)[α-d-Glcp-(1 → 4)]-β-d-Galp-(1 → 4)-β-d-Glcp-(1 → 4)[β-d-Galf-(1 → 6)]-β-d-Glcp-(1 → 6)-β-d-Glcp-(1 →, in which the residues in square brackets are terminal groups substituting backbone sugar residues that consequently are branch-points in the repeating unit of the polymer. Thus, the EPS consists of a backbone of four sugar residues with two terminal sugar residues making up two side-chains of the repeating unit. The molecular mass of the polymer was determined using translational diffusion experiments which resulted in Mw = 62 kDa, corresponding to 64 repeating units in the EPS.  相似文献   

18.
The rumen anaerobic fungusPiromonas communis, unlike the rumen anaerobic fungiNeocallimastix frontalis andNeocallimastix patriciarum, produced extracellular α-(4-O-methyl)-d-glucuronidase when grown in cultures containing filter-paper, barley straw, birchwood xylan or birchwood sawdust as carbon source. The highest concentration of enzyme was produced in cultures containing birchwood sawdust. The aldobiouronic acidO-α-(4-O-methyl-d-glucopyran-osyluronic acid)-(1 → 2)-d-xylopyranose (MeGlcAXyl) was the best substrate of those tested: the aldotriouronic acidO-α-(4-O-methyl-d-glucopyranosyluronic acid (1 → 2)-O-\-d-xylopyranosyl-(1 → 4)-d-xylopyranose (MeGlcAXyl2) and the aldotetraouronic acidO-α-(4-O-methyl-d-glucopyranosyluronic acid)-(1 → 2)-O-\-d-xylopyranosyl-(1 → 4)-O-\-d-xylopyranosyl-(1 → 4)-d-xylopyranose (MeGlcAXyl3) were also attacked but the rate fell as the degree of polymerisation increased. When the same substituted xylooligosaccharides were reduced to the corresponding alditols the enzyme activity disappeared. Similarly,p-nitrophenyl-α-d-glucuronide was not a substrate. Remarkably, the relative rates of attack shown by the α-(4-O-methyl)-d-glucuronidase on the aldouronic acids and on xylans extracted from birchwood, oat spelts and oat straw differed according to the carbon source used to produce the enzyme. The α-(4-O-methyl)-d-glucuronidase had a pH optimum of 5.5 and a temperature optimum of 50°C. On gel filtration the enzyme was shown to be associated with proteins covering the range 100–300 kDa, but a major peak of activity in the column effluent appeared to have a molecular mass of 103 kDa.  相似文献   

19.
The O polysaccharide (OPS) of the lipopolysaccharide (LPS) of Pseudomonas syringae pv. atrofaciens IMV 7836 and some other strains that are classified in serogroup O1 was shown to be a novel linear alpha-D-rhamnan with the tetrasaccharide O repeat -->3)-alpha-D-Rhap-(1-->3)-alpha-D-Rhap-(1-->2)-alpha-D-R hap-(1-->2)- alpha-D-Rhap-(1--> (chemotype 1A). The same alpha-D-rhamnan serves as the backbone in branched OPSs with lateral (alpha1-->3)-linked D-Rhap, (beta1-->4)-linked D-GlcpNAc, and (alpha1-->4)-linked D-Fucf residues (chemotypes 1B, 1C, and 1D, respectively). Strains of chemotype 1C demonstrated variations resulting in a decrease of the degree of substitution of the backbone 1A with the lateral D-GlcNAc residue (chemotype 1C-1A), which may be described as branched regular left arrow over right arrow branched irregular --> linear OPS structure alterations (1Cleft arrow over right arrow 1C-1A --> 1A). Based on serological data, chemotype 1D was suggested to undergo a 1D left arrow over right arrow 1D-1A alteration, whereas chemotype 1B showed no alteration. A number of OPS backbone-specific monoclonal antibodies (MAbs), Ps(1-2)a, Ps(1-2)a(1), Ps1a, Ps1a(1), and Ps1a(2), as well as MAbs Ps1b, Ps1c, Ps1c(1), Ps1d, Ps(1-2)d, and Ps(1-2)d(1) specific to epitopes related to the lateral sugar substituents of the OPSs, were produced against P. syringae serogroup O1 strains. By using MAbs, some specific epitopes were inferred, serogroup O1 strains were serotyped in more detail, and thus, the serological classification scheme of P. syringae was improved. Screening with MAbs of about 800 strains representing all 56 known P. syringae pathovars showed that the strains classified in serogroup O1 were found among 15 pathovars and the strains with the linear OPSs of chemotype 1A were found among 9 of the 15 pathovars. A possible role for the LPS of P. syringae and related pseudomonads as a phylogenetic marker is discussed.  相似文献   

20.
Monoclonal antibodies were raised against rhamnogalacturonan I backbone, a pectin domain, using Arabidopsis thaliana seed mucilage-derived rhamnogalacturonan I oligosaccharides—BSA conjugates. Two monoclonal antibodies, designated INRA-RU1 and INRA-RU2, selected for further characterization, were specific for the backbone of rhamnogalacturonan I, displaying no binding activity against the other pectin domains i.e. homogalacturonans, galactans or arabinans. A range of oligosaccharides was prepared by enzymatic digestion of rhamnogalacturonan I isolated from Arabidopsis thaliana seed mucilage and from sugar beet pectin, purified by low-pressure chromatography and characterized by high-performance anion-exchange chromatography and mass spectrometry. These rhamnogalacturonan I oligomers were used to characterize the binding site of the two monoclonal antibodies by competitive inhibition. Both INRA-RU1 and INRA-RU2 showed maximal binding to the [→2)-α-l-rhamnosep-(1→4)-α-d-galacturonic acid p-(1→]7 structural motif but differed in their minimum binding requirement. INRA-RU2 required at least two disaccharide (rhamnose–galacturonic acid) repeats for the antibody to bind, while INRA-RU1 required a minimum of six disaccharide repeats. Furthermore, the binding capacity of INRA-RU1 decreased steeply as the number of disaccharide repeats go beyond seven. Each of these antibodies reacted with hairy regions isolated from sugar beet pectin. Immunofluorescence microscopy indicated that both antibodies can be readily used to detect rhamnogalacturonan I epitopes in various cell wall samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号