首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Transformation of potato (Solanum tuberosum L.) with cysteine proteinase inhibitor (PI) genes represents a potential way of controlling the major insect pest Colorado potato beetle (CPB; Leptinotarsa decemlineata Say). The present study describes the Agrobacterium-mediated transformation of potato (cv. Kennebec) with an oryzacystatin I (OCI) cDNA clone linked to a CaMV 35S promoter. The transgenic plants accumulated active OCI in potato leaves, as demonstrated by the papain-inhibitory activity of transgenic plant leaf extracts. In addition to their anti-papain activity, the extracts also caused a partial but significant inhibition of CPB digestive proteinases, similar to that observed with pure inhibitors. Recombinant OCI did not alter the activity of the major potato leaf endogenous proteinases, which seemed to be of the serine-type. Therefore we suggest that the OCI cDNA can be used for the production of CPB-resistant transgenic potato plants without interfering with endogenous proteinases of these plants.Abbreviations CPB Colorado potato beetle - E-64 trans-epoxy-succinyl-L-leucylamido (4-guanidino) butane - OCI oryzacystatin I - PI proteinase inhibitor - PMSF phenylmethylsulfonyl fluoride  相似文献   

2.
The resistance of a transgenic line of oilseed rape expressing constitutively the cysteine proteinase inhibitor oryzacystatin I (OCI) was assessed against Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae). The levels of OCI expression in the transformed line averaged 0.2% and 0.05% of total soluble protein in leaves and petioles respectively. In vitro analyses showed that P. chrysocephala larvae use both cysteine and serine proteinases for protein digestion, and that all the cysteine proteolytic activity is OCI-sensitive. However, bioassays showed that adults fed identically on leaf discs from control or transformed plants. When larvae were reared on transgenic plants expressing OCI, they showed an increase in weight gain compared to those reared on control plants. Furthermore, those larvae from transgenic plants exhibited a 2-fold increase in both cysteine and serine proteolytic activity as a reponse to the presence of OCI. The plasticity of insect digestive physiology and feeding behaviour are discussed, as well as the relevance of engineering a genotype expressing both types of proteinase inhibitors.  相似文献   

3.
Transgenic white poplar (Populus alba L.) plants expressing a novel Arabidopsis thaliana cysteine proteinase inhibitor (Atcys) gene have been produced using Agrobacterium tumefaciens-mediated gene transfer. Internodal stem segments of cv. Villafranca were co-cultivated with the EHA105 pBI-Atcys A. tumefaciens strain. Sixteen putative transgenic plant lines were regenerated from different calli with a transformation efficiency of 11%. The integration and expression of the cysteine proteinase inhibitor (Atcys) gene into the plant genome was confirmed by Southern and northern blot analyses. Papain inhibitory activity was detected in poplar transgenic tissues by means of a specific in vitro assay. Such activity was sufficient to inhibit most of the digestive proteinase activity of chrysomelid beetle (Chrysomela populi L.) and confer resistance to C. populi larvae on selected transgenic plants. A close correspondence between the inhibition of papain and resistance to poplar leaf beetle was observed in all tested transgenic lines. Our results indicate that Atcys could be succesfully employed in breeding programmes aimed at the selection of new poplar genotypes resistant to major insect pests.  相似文献   

4.
The effects of the cystatins, human stefin A (HSA) and oryzacystatin I (OCI) on digestive cysteine proteinases of the Colorado potato beetle (CPB), Leptinotarsa decemlineata, and the black vine weevil (BVW), Otiorynchus sulcatus, were assessed using complementary inhibition assays, cystatin-affinity chromatography, and recombinant forms of the two inhibitors. For both insects, either HSA and OCI used in excess (10 or 20 μM) caused partial and stable inhibition of total proteolytic (azocaseinase) activity, but unlike for OCI the HSA-mediated inhibitions were significantly increased when the inhibitor was used in large excess (100 μM). As demonstrated by complementary inhibition assays, this two-step inhibition of the insect proteases by HSA was due to the differential inactivation of two distinct cysteine proteinase populations in either insect extracts, the rapidly (strongly) inhibited population corresponding to the OCI-sensitive fraction. After removing the cystatin-sensitive proteinases from CPB and BVW midgut extracts using OCI- (or HSA-) affinity chromatography, the effects of the insect “non-target” proteases on the structural integrity of the two cystatins were assessed. While OCI remained essentially stable, HSA was subjected to hydrolysis without the accumulation of detectable stable intermediates, suggesting the presence of multiple exposed cleavage sites sensitive to the action of the insect proteases on this cystatin. This apparent susceptibility of HSA to proteolytic cleavage may partially explain its low efficiency to inactivate the insect OCI-insensitive cysteine proteinases when not used in large excess. It could also have major implications when planning the use of cystatin-expressing transgenic plants for the control of coleopteran pests. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Hybrid poplars (Populus tremula ×Populus tremuloides) have been genetically engineered viaAgrobacterium tumefaciens, to express a syntheticcry3Aa gene derived from the native Bacillusthuringiensis subsp. tenebrionis cry3Aa gene.The presence and the expression of the transgene have been verified in fourtransgenic poplar lines, using Southern, northern and western analyses. Thetransgenic poplar's toxicity towards the phytophagous beetleChrysomela tremulae (Coleoptera, Chrysomelidae) has beenassessed on six month-old greenhouse-grown selected plants in laboratoryconditions. Laboratory experiments consisted of feeding tests of fresh detachedleaves on C. tremulae at all developmental stages. Ourresults indicate that the transgenic poplar leaves, expressing a Cry3Aa proteinamount in a range of 0.05–0.0025% of total soluble protein, weredefinitely deleterious for C. tremulae, regardless of thedevelopmental stage.  相似文献   

6.
Larvae of Baris coerulescens Scop. (Coleoptera: Curculionidæ) exhibit a complex array of gut proteinase activities comprising cysteine and serine proteinases. The major cysteine proteinase activity, showing an optimum at pH 6.0, corresponds to at least 4 different proteinases. On the contrary, the minor serine proteinase activity, with an optimum at pH 9.0, seems to be due essentially to a single proteinase. The cysteine proteinase inhibitor oryzacystatin I (OC-I) inhibits completely the cysteine proteinase activity in vitro. However, larval growth and survival were not significantly different on control and transgenic oilseed rape plants expressing high levels of active OC-I. In larvae grown on transgenic plants, cysteine proteinase activity was dramatically decreased, whereas serine proteinase activity was increased by more than 2-fold, when compared to larvae raised on control plants. For both activities, no new proteinase was detected in insects fed plants expressing OC-I. These results suggest that partial compensation of the inhibition of cysteine proteinase activity by the increase in serine proteinase activity allowed the larvae to overcome the effects of OC-I consumption. This case illustrates problems that could arise when trying to achieve high levels of protection for plants against Coleopteran pests possessing a complex digestive proteinase pool.  相似文献   

7.
The aim of this study was to assess the potential effect of a transgenic line of oilseed rape expressing oryzacystatin I (OCI) on two strains of cabbage seed weevil. The level of OCI expression in seeds was approximately 0.05% of total soluble proteins. The insects were field-collected in two different locations, and their progeny was analyzed after a 3 week-development in pods. Both strains showed a similar pattern of proteolytic activity, and similar levels of OCI-sensitive proteinase activity in vitro. However, the larvae showed differential susceptibility to the transgenic plants. Despite inhibition of digestive proteinases in vitro by OCI in both strains, one strain showed an increased growth rate when fed the transgenic seeds, while the other strain remained unaffected. While suggesting the importance of studying individuals from different populations when assessing the effect of proteinase inhibitor-expressing plants on insect growth, our results also point out the necessity of studying the biochemical interactions taking place in vivo between the recombinant inhibitors and their target proteinases.  相似文献   

8.
Phytocystatins are plant cysteine proteinase inhibitors that regulate endogenous and heterologous cysteine proteinases of the papain family. A cDNA encoding the phytocystatin BrCYS1 (Brassica rapa cysteine proteinase inhibitor 1 ) has been isolated from Chinese cabbage (B. rapa subsp.pekinensis) flower buds. In order to explore the role of this inhibitory enzyme, tobacco plants (Nicotiana tabacum L. cv. Samson) containing altered amounts of phytocystatin were generated by over-expressingBrCYS1 cDNA in either the sense or the antisense configuration. The resulting plants hadin vitro enzyme inhibitory activities that were over 10% of those detected in wild type plants. The transgenic plants exhibited retarded seed germination and seedling growth and a reduced seed yield, whereas these properties were enhanced in antisense plants. These data suggest that BrCYS1 participates in the control of seed germination, post-germination and plant growth by regulating cysteine peptidase activity.  相似文献   

9.
Colorado potato beetle (CPB; Leptinotarsa decemlineata Say, Coleoptera: Chrysomelidae) has shown a remarkable adaptability to a variety of control measures. Although oryzacystatin I and II (OCI and OCII) have potential in controlling pests that use cysteine proteinases for food digestion, expression of a single OC gene in potato exhibited a minimal or no effect on CPB fitness traits. The aim of this study was to examine the effect of coexpressed OCI and OCII in potato (Solanum tuberosum L.) cultivars Desiree, Draga?evka and Jelica on CPB larvae. Growth parameters, consumption rates and food utilization, as well as activity of proteases of CPB larvae were assayed. Second and third instar larvae fed on transformed leaves molted earlier and had higher relative growth and consumption rates than larvae fed on nontransformed leaves, while efficiency of food utilization was unaffected. In contrast, fourth instar maximum weight gain and amount of leaves consumed were about 20% lower for the larvae fed on transgenic potato. Analysis of total protease activity of third instar larvae revealed reduction in overall proteolytic activity measured by azocasein hydrolysis, accompanied with inhibition of cysteine proteinase activity 24 h after ingestion of potato leaves expressing OCI and OCII. However, after long‐term feeding on transformed leaves proteolytic activities of larvae became similar to the controls. Although feeding on OCI/OCII leaves did not affect larval survival, coexpression of OC genes reduced the development time and thus significantly decreased plant damage caused by CPB larvae.  相似文献   

10.
We observed recently that the rice cysteine proteinase inhibitor, oryzacystatin I (OCI) expressed in transgenic potato does not affect growth and development of the two-spotted stinkbug predator (Perillus bioculatus) via its herbivorous prey feeding on the plant. Here we monitored the inhibitory activity of recombinant OCI along this potato --> herbivore --> predator continuum, to determine if the absence of effect was associated with a digestive compensatory response of the predator following inhibition of its proteinases by the recombinant cystatin. After confirming that OCI is present in the plant, and ingested in an active form by potato beetle larvae, quantitative and electrophoretic assays allowed us to determine that the recombinant cystatin (representing about 0.8% of total soluble proteins in leaves) was entirely bound to a approximately 30-kDa target proteinase in the prey's midgut, forming a sodium dodecyl sulphate (SDS)-stable complex detected on immunoblots with an anti-OCI polyclonal antibody. Despite the apparent absence of free, residual OCI in the beetle's midgut, digestive protease activity in the predator, known to include OCI-sensitive activity, was altered negatively when the prey was fed the modified plant. This inhibitory process at the third trophic level was accompanied by a compensatory response in the predator, by which serine-type proteinases were synthesized de novo. Overall, our data suggest that the affinity between OCI and the predator's OCI-sensitive proteinases is: (i) as strong as (or stronger than) the affinity between OCI and the potato beetle 30-kDa-sensitive proteinase; and (ii) stronger than the affinity between these enzymes and the plant endogenous homologue of OCI, potato multicystatin, induced in the plant by potato beetle feeding. Our results also show that predatory organisms can adapt their digestive metabolism to the presence of plant antidigestive proteins ingested by their herbivorous preys. In a broader context, this study stresses the need to monitor the inhibitory effects of PI-expressing plants not only on the herbivorous insects targeted, but also on the organisms likely to consume these pests in the environment.  相似文献   

11.
Transgenic poplar (Populus nigra, cv. Jean Pourtet) plants were recovered as a result of Agrobacterium tumefaciens-mediated transformation performed with EHA105 pBI-KUN strain. Plasmid pBI-KUN contains a 650 bp insert derived from the soybean (Glycine max L.) KTi3, gene, coding for a Kunitz trypsin proteinase inhibitor. A total of 58 independent transgenic lines were obtained from 200 co-cultivated leaf explants. Southern blot hybridization analysis demonstrated the presence of KTi3 gene in the poplar genome. Northern blot analysis of different kanamycin-resistant plantlets confirmed the accumulation of KTi3 mRNA and revealed different levels of expression. The trypsin inhibitory activity was determined in poplar transgenic tissues by means of specific assay. Moreover, the trypsin-like digestive proteinases of the polyphagous moth Lymantria dispar (Lepidoptera, Lymantriidae) and Clostera anastomosis (Lepidoptera, Notodontidae) were detected and inhibited in vitro by Kunitz proteinase inhibitor from selected transgenic plants. Two insect bioassays were performed on P. nigra transgenic plant lines, using larvae of the above mentioned insects. In both cases larval mortality and growth as well as pupal weight were not significantly affected when the insects were fed on transgenic leaves and control leaves, respectively.  相似文献   

12.
Plant resistance to insect pests based on recombinant proteinase inhibitors (Pis) could interfere with natural enemies of target pests, as their own proteolytic systems may also be sensitive to large spectrum PIs. Oryzacystatin I (OCI) is a potential insect pest resistance factor currently engineered into a variety of crop plants, including potato Solanum tuberosum. Potential for OCI interfering with female reproduction in Perillus bioculatus, a stinkbug predator of Colorado potato beetle, Leptinotarsa decemlineata, was studied by chronic feeding for 18 days on prey loaded with 1–16 μg OCI/day. Mortality of treated females was negligible, but fertility was reduced by up to 50%. Additional dose-dependent effects in reproducing females included delayed oviposition, reduced fecundity, lower egg mass size, and reduced egg eclosion incidence. Females fed for 18 days on OCI at ≤4 μg/day returned to normal oviposition when switched to prey without OCI after 18 days of treatment, but negative effects persisted for at least 10 days at higher doses. Affected reproduction in P. bioculatus is consistent with the use of OCI-sensitive digestive proteinases by this stinkbug. However, azocaseinase activity in whole body extracts of OCI-fed females increased about twofold indicating compensation, and OCI-sensitive proteinases were still present in extracts. When timed for delay to trigger attack on Colorado potato beetle larvae under controlled conditions, stinkbugs feeding on OCI appeared consistently hungrier than controls fed at similar rate, suggesting that predation by stinkbugs exposed to OCI-recombinant foliage would be higher than normal. Arch. Insect Biochem. Physiol. 38:74–83, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Phytocystatins are cysteine proteinase inhibitors in plants that are implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cDNA encoding a phytocystatin called AtCYS6 (Arabidopsis thaliana phytocystatin6) has been isolated. We show that AtCYS6 is highly expressed in dry seeds and seedlings and that it also accumulates in flowers. The persistence of AtCYS6 protein expression in seedlings was promoted by abscisic acid (ABA), a seed germination and post-germination inhibitory phytohormone. This finding was made in transgenic plants bearing an AtCYS6 promoter–β-glucuronidase (GUS) reporter construct, where we found that expression from the AtCYS6 promoter persisted after ABA treatment but was reduced under control conditions and by gibberellin4+7 (GA4+7) treatment during the germination and post-germinative periods. In addition, constitutive over-expression of AtCYS6 retarded germination and seedling growth, whereas these were enhanced in an AtCYS6 knock-out mutant (cys6-2). Additionally, cysteine proteinase activities stored in seeds were inhibited by AtCYS6 in transgenic Arabidopsis. From these data, we propose that AtCYS6 expression is enhanced by the germination inhibitory phytohormone ABA and that it participates in the control of germination rate and seedling growth by inhibiting the activity of stored cysteine proteinases.  相似文献   

14.
The risk that insect-resistant transgenic plants may pose for solitary bees was assessed by determining longevity of adult Osmia bicornis (O. rufa) chronically exposed to transgenic oilseed rape expressing oryzacystatin-1 (OC-1) or to the purified insecticidal proteins recombinant rOC-1, Kunitz soybean trypsin inhibitor (SBTI), Galanthus nivalis agglutinin (GNA), or Bacillus thuringiensis toxin Cry1Ab dissolved in sugar solution (at 0.01 and 0.1%, w:v, Cry1Ab only at 0.01%). Compared to control bees, longevity was significantly reduced by SBTI and GNA at both concentrations and by rOC-1 at 0.1%, but not by Cry1Ab or rOC-1 at 0.01%. Longevity on the OC-1 oilseed rape was not significantly different from the control plants. The effects of SBTI and rOC-1 on longevity were investigated through characterization of the digestive proteinases of O. bicornis and analysis of the response in proteinase profiles to ingestion of these proteinase inhibitors. A relatively complex profile of at least four types of soluble proteolytic enzymes was identified. Serine proteinases were found to be predominant, with metallo and especially cysteine proteinases making a smaller albeit significant contribution. The compensatory response to in vivo enzyme inhibition was similar for SBTI and rOC-1 although less pronounced for rOC-1. It consisted of a non-specific overproduction of native proteinases, both sensitive and insensitive, and the induction of a novel aspartic proteinase.  相似文献   

15.
16.
As the processing mechanism of all known potyviruses involves the activity of cysteine proteinases, we asked whether constitutive expression of a rice cysteine proteinase inhibitor gene could induce resistance against two important potyviruses, tobacco etch virus (TEV) and potato virus Y (PVY), in transgenic tobacco plants. Tobacco lines expressing the foreign gene at varying levels were examined for resistance against TEV and PVY infection. There was a clear, direct correlation between the level of oryzacystatin message, inhibition of papain (a cysteine proteinase), and resistance to TEV and PVY in all lines tested. The inhibitor was ineffective against tobacco mosaic virus (TMV) infection because processing of this virus does not involve cysteine proteinases. These results show that plant cystatins can be used against different potyviruses and potentially also against other viruses, whose replication involves cysteine proteinase activity.  相似文献   

17.
The proteinases in the midguts of three scarab white grub species, Lepidiota noxia, L. negatoria, and Antitrogus consanguineus, were investigated to classify the proteinases present and to determine the most effective proteinase inhibitor for potential use as an insect control agent. pH activity profiles indicated the presence of serine proteinases and the absence of cysteine proteinases. This was confirmed by the lack of inhibition by specific cysteine proteinase inhibitors. Trypsin, chymotrypsin, elastase, and leucine aminopeptidase activities were detected by using specific synthetic substrates. A screen of 32 proteinase inhibitors produced 9 inhibitors of trypsin, chymotrypsin, and elastase which reduced proteolytic activity by greater than 75%. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Corn cystatin (CC), a phytocystatin, shows a wide inhibitory spectrum against various cysteine proteinases. We produced transgenic rice plants by introducing CC cDNA under CaMV 35S promoter as a first step to obtain a rice plant with insecticidal activity. This attempt was based on the observation that many insect pests, especially Coleoptera, have cysteine proteinases, probably digestive enzymes, and also that oryzacystatin, an intrinsic rice cystatin, shows a narrow inhibition spectrum and is present in ordinary rice seeds in insufficient amounts to inhibit the cysteine proteinases of rice insect pests. The transgenic rice plants generated contained high levels of CC mRNA and CC protein in both seeds and leaves, the CC protein content of the seed reaching ca. 2% of the total heat soluble protein. We also recovered CC activity from seeds and found that the CC fraction efficiently inhibited both papain and cathepsin H, whereas the corresponding fraction from non-transformed rice seeds showed much lower or undetectable inhibitory activities against these cysteine proteinases. Furthermore, CC prepared from transgenic rice plants showed potent inhibitory activity against proteinases that occur in the gut of the insect pest, Sitophilus zeamais.  相似文献   

19.
Summary The possible involvement of vacuolar cysteine proteinases in degradation of ribulose-bisphosphate carboxylase (Rubisco) in senescing French bean leaves was studied by ultrastructural and immunocytochemical analyses with antibodies raised against the large subunit (LSU) of Rubisco and SH-EP, a cysteine proteinase fromVigna mungo that is immunologically identical to one of the major proteinases of French bean plants. Primary leaves of 10-day-old plants were detached and placed at 25 °C in darkness for 0, 4, and 8 days to allow their senescence to proceed. The leaves at each senescence stage were subjected to the conventional electron microscopic and immunocytochemical studies. The results indicated that the chloroplasts of senescing French bean leaves were separated from the cytoplasm of the cell periphery and taken into the central vacuole and that the Rubisco LSU in the chloroplasts was degraded by vacuolar enzymes such as an SH-EP-related cysteine proteinase that developed in senescing leaves. The present results together with the results of previous biochemical studies using vacuolar lysates support the view that Rubisco is degraded through the association of chloroplasts with the central vacuole during the senescence of leaves that were detached and placed in darkness.  相似文献   

20.
Proteinase and amylase activities in larval midguts of the bruchid beetle Zabrotes subfasciatus (Boh.) (Coleoptera: Bruchidae) reared on cowpea (Vigna unguiculata (L.) Walp.) seeds were investigated. We could detect and isolate a proteolytic activity with a pH optimum of 5.5 (on azo-casein as substrate) which was activated by thiol reagents and inhibited by several compounds reactive against-SH groups. None of the plant protein inhibitors of serine proteinases utilized were effective inhibitors of this activity. This activity has characteristics of a cysteine class proteinase. We could also detect and isolate a proteolytic activity with a pH optimum of 3.5 (on hemoglobin as substrate) which was not influenced by activators or inhibitors of cysteine, serine, or metalloproteinases. This activity was totally inhibited by pepstatin, a specific inhibitor of aspartic proteinases. We conclude that this activity is due to an aspartic class proteinase. We found also that the aspartic class proteolytic activity is higher than the cysteine class proteinase activity in the midguts of Z. subfasciatus. This seems to be contrary to what is found in Callosobruchus maculatus (F.) larvae midguts. An amylolytic activity with the charateristics of an -amylase was also detected and isolated.
Résumé Les activités protéinase et amylase ont été étudiées sur l'intestin moyen de larves de Zabrotes subfasciatus Boh. (Coléo, Bruchidae), élevées sur graines de Vigna unguiculata Walp. Nous avons pu déceler et isoler une activité protéolytique optimale à pH 5,5 (sur substrat d'azo-caséine) activée par des réactifs thiol et inhibée par plusieurs composés réagissant aux groupements SH. Aucun inhibiteur végétal des sérine-protéases utilisé n'a inibé efficacement cette activité qui présente les caractéristiques des protéines de la famille des cystéines. Nous avons pu déceler et isoler aussi une activité protéolytique optimale au pH 3,5 (sur hémoglobine comme substrat) qui n'était pas modifiée par les activateurs ou les inhibiteurs de cystéine, de sérine ou de métalloprotéinases. Cette activité était totalement inhibée par la pepstatine, inhibiteur spécifique des protéinases aspartiques. Nous en concluons que l'activité est due à une protéinase de la famille aspartique. Nous avons trouvé aussi que l'activité protéolytique de la famille aspartique était supérieure à l'activité protéinase de la famille cystéine dans l'intestin moyen de Z. subfasciatus. Ceci semble l'inverse de ce qui a été observé dans l'intestin moyen des larves de Callosobruchus maculatus F. (C.P. Silva & al, in litt.). Une activité amylolytique ayant les caractéristiques d'une -amylase a aussi été décelée.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号