首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Cell elongation is a developmental process that is regulated by light and phytohormones and is of critical importance for plant growth. Mutants defective in their response to light and various hormones are often dwarfs. The dwarfed phenotype results because of a failure in normal cell elongation. Little is known, however, about the basis of dwarfism as a common element in these diverse signaling pathways and the nature of the cellular functions responsible for cell elongation. Here, we describe an Arabidopsis mutant, dwarf4 (dwf4), whose phenotype can be rescued with exogenously supplied brassinolide. dwf4 mutants display features of light-regulatory mutants, but the dwarfed phenotype is entirely and specifically brassinosteroid dependent; no other hormone can rescue dwf4 to a wild-type phenotype. Therefore, an intact brassinosteroid system is an absolute requirement for cell elongation.  相似文献   

2.
Although cell elongation is a basic function of plant morphogenesis, many of the molecular events involved in this process are still unknown. In this work an extremely dwarf mutant, originally named bul, was used to study one of the main processes of plant development, cell elongation. Genetic analyses revealed that the BUL locus was linked to the nga172 marker on chromosome 3. Recently, after mapping the new dwf7 mutation of Arabidopsis, which is allelic to ste1, it was reported that dwf7 is also linked to the same marker. Sterol analyses of the bul1-1 mutant indicated that bul1-1 is defective in the Δ7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Considering these findings, we designated our bul mutant as bul1-1/dwf7-3/ste1-4. The bul1-1 mutant was characterized by a very dwarf phenotype, with delayed development and reduced fertility. The mutant leaves had a dark-green colour, which was probably due to continuous stomatal closure. The bul1-1 mutant showed a partially de-etiolated phenotype in the dark. Cellular characterization and rescue experiments with brassinosteroids demonstrated the involvement of the BUL1-1 protein in brassinosteroid-dependent plant growth processes. Received: 28 April 2000 / Accepted: 6 October 2000  相似文献   

3.
Plant growth-stimulating hormones brassinosteroids (BRs) function via interactions with other hormones. However, the mechanism of these interactions remains to be elucidated. The unique phenotypes of brassinosteroid insensitive2/dwarf12-D (bin2/dwf12-D) mutants, such as twisted inflorescences and leaves, suggested that BIN2, a negative regulator of BR signaling, may be involved in auxin signaling. Furthermore, previously, we showed that auxin stimulates DWF4 expression. To determine the possible role of BIN2/DWF12 in Auxin signaling, we measured DWARF4pro:GUS activity through both GUS histochemical staining and in vivo GUS assay. We found that the GUS activity in the bin2/dwarf12-1D background dramatically increased relative to control. In addition, the number of lateral roots (LR) in bin2/dwf12-1D was greater than wild type, and the optimal concentration for auxin-mediated lateral root induction was lower in bin2/dwf12-1D; these findings suggest that BIN2 plays a positive role in auxin signaling. In contrast, ABA repressed both DWF4pro:GUS expression and lateral root development. However, the degree of repression was lower in bin2/dwf12-1D background, suggesting that BIN2 plays a role in ABA-mediated DWF4pro:GUS expression and subsequently in lateral root development, too. Therefore, it is likely that BIN2 plays a role of signal integrator for multiple hormones, such as BRs, auxin, and ABA.  相似文献   

4.
Brassinosteroids promote root growth in Arabidopsis   总被引:10,自引:0,他引:10  
Müssig C  Shin GH  Altmann T 《Plant physiology》2003,133(3):1261-1271
Although brassinosteroids (BRs) are known to regulate shoot growth, their role in the regulation of root growth is less clear. We show that low concentrations of BRs such as 24-epicastasterone and 24-epibrassinolide promote root elongation in Arabidopsis wild-type plants up to 50% and in BR-deficient mutants such as dwf1-6 (cbb1) and cbb3 (which is allelic to cpd) up to 150%. The growth-stimulating effect of exogenous BRs is not reduced by the auxin transport inhibitor 2,3,5-triidobenzoic acid. BR-deficient mutants show normal gravitropism, and 2,3,5-triidobenzoic acid or higher concentrations of 2,4-dichlorophenoxyacetic acid and naphtaleneacetic acid inhibit root growth in the mutants to the same extent as in wild-type plants. Simultaneous administration of 24-epibrassinolide and 2,4-dichlorophenoxyacetic acid results in largely additive effects. Exogenous gibberellins do not promote root elongation in the BR-deficient mutants, and the sensitivity to the ethylene precursor 1-aminocyclopropane-1-carboxylic acid is not altered. Thus, the root growth-stimulating effect of BRs appears to be largely independent of auxin and gibberellin action. Furthermore, we analyzed BR interactions with other phytohormones on the gene expression level. Only a limited set of auxin- and ethylene-related genes showed altered expression levels. Genes related to other phytohormones barely showed changes, providing further evidence for an autonomous stimulatory effect of BR on root growth.  相似文献   

5.
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.  相似文献   

6.
Mutants defective in the biosynthesis or signaling of brassinosteroids (BRs), plant steroid hormones, display dwarfism. Loss-of-function mutants for the gene encoding the plasma membrane-located BR receptor BRI1 are resistant to exogenous application of BRs, and characterization of this protein has contributed significantly to the understanding of BR signaling. We have isolated two new BR-insensitive mutants (dwarf12-1D and dwf12-2D) after screening Arabidopsis ethyl methanesulfonate mutant populations. dwf12 mutants displayed the characteristic morphology of previously reported BR dwarfs including short stature, short round leaves, infertility, and abnormal de-etiolation. In addition, dwf12 mutants exhibited several unique phenotypes, including severe downward curling of the leaves. Genetic analysis indicates that the two mutations are semidominant in that heterozygous plants show a semidwarf phenotype whose height is intermediate between wild-type and homozygous mutant plants. Unlike BR biosynthetic mutants, dwf12 plants were not rescued by high doses of exogenously applied BRs. Like bri1 mutants, dwf12 plants accumulated castasterone and brassinolide, 43- and 15-fold higher, respectively, providing further evidence that DWF12 is a component of the BR signaling pathway that includes BRI1. Map-based cloning of the DWF12 gene revealed that DWF12 belongs to a member of the glycogen synthase kinase 3beta family. Unlike human glycogen synthase kinase 3beta, DWF12 lacks the conserved serine-9 residue in the auto-inhibitory N terminus. In addition, dwf12-1D and dwf12-2D encode changes in consecutive glutamate residues in a highly conserved TREE domain. Together with previous reports that both bin2 and ucu1 mutants contain mutations in this TREE domain, this provides evidence that the TREE domain is of critical importance for proper function of DWF12/BIN2/UCU1 in BR signal transduction pathways.  相似文献   

7.
Brassinosteroid-regulated gene expression   总被引:21,自引:0,他引:21  
  相似文献   

8.
The brassinosteroid (BR) biosynthetic pathway, and the sterol pathway which is prerequisite to the BR pathway, are rapidly being characterized because of the availability of a large number of characteristic dwarf mutants in Arabidopsis. Here we show that the Arabidopsis dwarf5 mutants are disrupted in a sterol Delta7 reduction step. dwf5 plants display the characteristic dwarf phenotype typical of other BR mutants. This phenotype includes small, round, dark-green leaves, and short stems, pedicels, and petioles. Metabolite tracing with 13C-labeled precursors in dwf5 verified a deficiency in a sterol Delta7 reductase activity. All six independent alleles contain loss-of-function mutations in the sterol Delta7 reductase gene. These include a putative mRNA instability mutation in dwf5-1, 3' and 5' splice-site mutations in dwf5-2 and dwf5-6, respectively, premature stop codons in dwf5-3 (R400Z) and dwf5-5 (R409Z), and a mis-sense mutation in dwf5-4 (D257N). The dwf5 plant could be restored to wild type by ectopic overexpression of the wild-type copy of the gene. Both the Arabidopsis dwf5 phenotype and the human Smith-Lemli-Opitz syndrome are caused by loss-of-function mutations in a sterol Delta7 reductase gene, indicating that it is required for the proper growth and development of these two organisms.  相似文献   

9.
The growth of leaves in the model plant, Arabidopsis thaliana (L.) Heynh., is determined by the extent of expansion of individual cells and by cell proliferation. Mutants of A. thaliana with known defects in the biosynthesis or perception of brassinosteroids develop small leaves. When the leaves of brassinosteroid-related mutants, det2 (de-etiolated2 = cro1) and dwf1 (dwarf1 = cro2) were compared to wild-type plants, an earlier cessation of leaf expansion was observed; a detailed anatomical analysis further revealed that the mutants had fewer cells per leaf blade. Treatment of the det2 mutants with the brassinosteroid, brassinolide, reversed the mutation and restored the potential for growth to that of the wild type. Restoration of leaf size could not be explained solely on the basis of an increase in individual cell volume, thus suggesting that brassinosteroids play a dual role in regulating cell expansion and proliferation.  相似文献   

10.
Brassinosteroids (BRs) are essential regulators of growth and development. BR‐deficient mutants such as cpd/cbb3 and dwf4 display extreme dwarfism due to a failure in cell elongation. To avoid the severe pleiotropic effects caused by the extreme growth defect, transgenic Arabidopsis lines carrying a construct for antisense inhibition of CPD gene expression were established and subjected to physiological analysis. The CPD‐antisense (αCPD) lines display characteristic phenotypic alterations of BR‐deficient plants such as reduced stem and petiole growth, smaller leaves, and a slightly delayed development. The observed changes are intermediate between the corresponding loss‐of‐function mutant (cbb3) and wild‐type plants. In the present study, the primary carbon metabolism of the transgenic lines as well as the BR‐deficient cbb1 (dwf1‐6/dim) mutant was analysed. Gas exchange measurements indicated a reduced assimilatory capacity of the αCPD plants. Soil‐grown αCPD as well as cbb1 (dwf1‐6) mutant plants show a clear reduction in starch content. The metabolic alterations are accompanied by altered enzyme activities such as reduced invertase and cytosolic β‐amylase activity, and altered expression patterns of genes such as Atbfruct1, Asus1, and ct‐Bmy (encoding a cell wall invertase, sucrose synthase, and plastidic β‐amylase, respectively). The impaired carbon assimilation, as well as the altered enzyme activities and gene expression patterns in the αCPD and cbb1 (dwf1‐6) plants, demonstrate the necessity of normal CPD and DIM expression for proper carbon uptake and metabolism and may point to an essential function of BRs. The impaired growth of BR‐deficient plants may be (at least in part) due to reduced photosynthesis.  相似文献   

11.
A dwarf mutant of broad bean ( Vicia faba L.), the variety Rinrei, has been created by γ -ray irradiation. Rinrei is characterized by dark green leaves and by reduced plant length, internode and petiole length, shoot weight, and number of branches. Genetic analysis of hybrids between Rinrei and two wild-type lines indicated that these characteristics are controlled by a single recessive gene. The phenotype of Rinrei was restored to that of the wild type by application of brassinolide, but not by GA3. Qualitative and quantitative analysis by gas chromatography–mass spectrometry indicated that 24-methylenecholesterol and isofucosterol accumulated in Rinrei to levels more than 30 times higher than in the wild type. In contrast, Rinrei had lower than wild-type levels of campesterol, sitosterol and brassinosteroids. Therefore, Rinrei is a brassinosteroid-deficient mutant defective in sterol C-24 reduction. The gene was tentatively designated as brassinosteroid deficient dwarf 1 , bdd1 , which seems to be a homologue of Arabidopsis dwf1 ( dim , cbb1 ) and pea lkb .  相似文献   

12.
13.
In order to elucidate the involvement of brassinosteroids in the cell elongation process leading to normal plant morphology, indirect immunofluorescence and molecular techniques were use to study the expression of tubulin genes in the bul1-1 dwarf mutant of Arabidopsis thaliana (L.) Heynh., the characteristics of which are reported in this issue (M. Catterou et al., 2001). Microtubules were studied specifically in the regions of the mutant plant where the elongation zone is suppressed (hypocotyls and petioles), making the reduction in cell elongation evident. Indirect immunofluorescence of α-tubulin revealed that very few microtubules were present in mutant cells, resulting in the total lack of the parallel microtubule organization that is typical of elongating cells in the wild type. After brassinosteroid treatment, microtubules reorganized and became correctly oriented, suggesting the involvement of brassinosteroids in microtubule organization. Molecular analyses showed that the microtubule reorganization observed in brassinosteroid-treated bul1-1 plants did not result either from an activation of tubulin gene expression, or from an increase in tubulin content, suggesting that a brassinosteroid-responsive pathway exists which allows microtubule nucleation/organization and cell elongation without activation of tubulin gene expression. Received: 28 April 2000 / Accepted: 6 October 2000  相似文献   

14.
15.

Background and Aims

The number of nodules formed on a legume root system is under the strict genetic control of the autoregulation of nodulation (AON) pathway. Plant hormones are thought to play a role in AON; however, the involvement of two hormones recently described as having a largely positive role in nodulation, strigolactones and brassinosteroids, has not been examined in the AON process.

Methods

A genetic approach was used to examine if strigolactones or brassinosteroids interact with the AON system in pea (Pisum sativum). Double mutants between shoot-acting (Psclv2, Psnark) and root-acting (Psrdn1) mutants of the AON pathway and strigolactone-deficient (Psccd8) or brassinosteroid-deficient (lk) mutants were generated and assessed for various aspects of nodulation. Strigolactone production by AON mutant roots was also investigated.

Key Results

Supernodulation of the roots was observed in both brassinosteroid- and strigolactone-deficient AON double-mutant plants. This is despite the fact that the shoots of these plants displayed classic strigolactone-deficient (increased shoot branching) or brassinosteroid-deficient (extreme dwarf) phenotypes. No consistent effect of disruption of the AON pathway on strigolactone production was found, but root-acting Psrdn1 mutants did produce significantly more strigolactones.

Conclusions

No evidence was found that strigolactones or brassinosteroids act downstream of the AON genes examined. While in pea the AON mutants are epistatic to brassinosteroid and strigolactone synthesis genes, we argue that these hormones are likely to act independently of the AON system, having a role in the promotion of nodule formation.  相似文献   

16.
Compared with other organisms, plants have an extraordinary capacity for self-repair. Even if the entire tissues, including the stem cells, are resected, most plant species are able to completely regenerate whole tissues. However, the mechanism by which plants efficiently regenerate the stem cell niche during tissue reorganization is still largely unknown. Here, we found that the signaling mediated by plant steroid hormones brassinosteroids is activated during stem cell formation after root tip excision in Arabidopsis. Treatment with brassinazole, an inhibitor of brassinosteroid biosynthesis, delayed the recovery of stem cell niche after root tip excision. Regeneration of root tip after resection was also delayed in a brassinosteroid receptor mutant. Therefore, we propose that brassinosteroids participate in efficient root tip regeneration, thereby enabling efficient tissue regeneration to ensure continuous root growth after resection.  相似文献   

17.
Leaf veins have a complex network pattern. Formation of this vein pattern has been widely studied as a model of tissue pattern formation in plants. To understand the molecular mechanism governing the vascular patterning process, we isolated the rice mutant, commissural vein excessive1 (coe1). The coe1 mutants had short commissural vein (CV) intervals and produced clustered CVs. Application of 1‐N‐naphthylphthalamic acid and brefeldin A decreased CV intervals, and application of 1‐naphthaleneacetic acid increased CV intervals in wild‐type rice; however, coe1 mutants were insensitive to these chemicals. COE1 encodes a leucine‐rich repeat receptor‐like kinase, whose amino acid sequence is similar to that of brassinosteroid‐insensitive 1‐associated receptor kinase 1 (BAK1), and which is localized at the plasma membrane. Because of the sequence similarity of COE1 to BAK1, we also examined the involvement of brassinosteroids in CV formation. Brassinolide, an active brassinosteroid, decreased the CV intervals of wild‐type rice, and brassinazole, an inhibitor of brassinosteroid biosynthesis, increased the CV intervals of wild‐type rice, but coe1 mutants showed insensitivity to these chemicals. These results suggest that auxin and brassinosteroids regulate CV intervals in opposite directions, and COE1 may regulate CV intervals downstream of auxin and brassinosteroid signals.  相似文献   

18.
19.
20.
The assignment of the trivial name to new isolated or detected brassinosteroid is based on the trivial names of seven different brassinosteroids, with names assigned according to the plant source from which they were first isolated. To avoid some observed mistakes in assigning trivial names to these compounds and the impractical constant usage of their systematic names, we propose a semisystematic nomenclature of brassinosteroids, in which (22R,23R)-2,3,22,23-tetrahydroxy-5-campestane, the trivial name of which is 6-deoxocastasterone, is considered the functional parent compound and is named brassinostane or brassinane. A set of rules for naming the remaining natural brassinosteroids is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号