共查询到20条相似文献,搜索用时 0 毫秒
1.
The anaerobic biodegradation of carbon tetrachloride (CT) was investigated during the granulation process by reducing the hydraulic retention time, increasing the chemical oxygen demand (COD) and CT loadings in a 2l laboratory-scale upflow anaerobic sludge blanket (UASB) reactor. Anaerobic unacclimated sludge and glucose were used as seed and primary substrate, respectively. Granules were developed 4 weeks after start-up, which grew at an accelerated rate for 8 months, and then became fully grown. The effect of operational parameters such as influent CT concentrations, COD, CT loading, food to biomass ratio and specific methanogenic activity (SMA) were also considered during granulation. The granular sludge cultivated had a maximum diameter of 2.1 mm and SMA of 1.6 g COD/g total suspended solid (TSS) day. COD and CT removal efficiencies of 92 and 88% were achieved when the reactor was firstly operating at CT and COD loading rates of 17.5 mg/l day and 12.5 g/l day, respectively. This corresponds to hydraulic retention time of 0.28 day and food to biomass ratio of 0.5 g COD/g TSS day. Kinetic coefficients of maximum specific substrate utilization rate, half velocity coefficient, growth yield coefficient and decay coefficient were determined to be 2.4 × 10–3 mg CT/TSS day–1, 1.37 mg CT/l, 0.69 mg TSS/mg CT and 0.046 day–1, respectively for CT biotransformation during granulation. 相似文献
2.
The state of the art for upflow anaerobic sludge blanket (UASB) reactors is discussed, focusing on the microbiology of immobilized anaerobic bacteria and the mechanism of granule formation. The development of granular sludge is the key factor for successful operation of the UASB reactors. Criteria for determining if granular sludge has developed in a UASB reactor is given based on the densities and diameters of the granular sludge. The shape and composition of granular sludge can vary significantly. Granules typically have a spherical form with a diameter from 0.14 to 5 mm. The inorganic mineral content varies from 10 to 90% of the dry weight of the granules, depending on the wastewater composition etc. The main components of the ash are calcium, potassium, and iron. The extracellular polymers in the granular sludge are important for the structure and maintenance of granules, while the inorganic composition seems to be of less importance. The extracellular polymer content varies between 0.6 and 20% of the volatile suspended solids and consists mainly of protein and polysaccharides. Both Methanosaeta spp. (formerly Methanothrix) and Methanosarcina spp. have been identified as important aceticlastic methanogens for the initial granulation and development of granular sludge. Immunological methods have been used to identify other methanogens in the granules. The results have showed that, besides the aceticlastic methanogens Methanosaeta spp. and Methanosarcina spp., hydrogen and formate utilizing bacteria are also present, e.g., Methanobacterium formicicum, Methanobacterium thermoautotrophicum, and Methanobrevibacter spp. Microcolonies of syntrophic bacteria are often observed in the granules, and the significant electron transfer in these microcolonies occurs through interspecies hydrogen transfer. The internal organization of the various groups of bacteria in the granules depends on the wastewater composition and the dominating metabolic pathways in the granules. Internal organization is observed in granules where such an arrangement is beneficial for an optimal degradation of the wastewater. A four-step model is given for the initial development of granular sludge. (c) 1996 John Wiley & Sons, Inc. 相似文献
3.
The state of the art for thermophilic UASB reactors is discussed focusing on the start-up of UASB reactors, the influence of the waste water composition and temperature on the development and maintenance of thermophilic granules, and the microbial composition and structure of thermophilic granules. 相似文献
4.
Tran-Hung?Thuan Deok-Jin?Jahng Jin-Young?Jung Dong-Jin?Kim Won-Kyoung?Kim Young-Joo?Park Ji-Eun?Kim Dae-Hee?Ahn
We investigated the anaerobic ammonium oxidation (anammox) reaction in a labscale upflow anaerobic sludge blanket (UASB) reactor.
Our aim was to detect and enrich the organisms responsible for the anammox reaction using a synthetic medium that contained
low concentrations of substrates (ammonium and nitrite). The reactor was inoculated with granular sludge collected from a
full-scale anaerobic digestor used for treating brewery wastewater. The experiment was performed during 260 days under conditions
of constant ammonium concentration (50 mg NH4/+-N/L) and different nitrite concentrations (50∼150 mg NO2-N/L). After 200 days, anammox activity was observed in the system. The microorganisms involved in this anammox reaction were
identified as CandidatusB. Anammoxidans andK. Stuttgartiensis using fluorescencein situ hybridization (FISH) method. 相似文献
5.
6.
Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors 总被引:18,自引:0,他引:18
Thermal extraction was used to quantify extracellular polymers (ECP) in granules from anaerobic upflow reactors. The optimal time for extraction was determined as the time needed before the intracellular material gives a significant contribution to the extracted extracellular material due to cell lysis. ECP contents of 41 to 92 mg · g–1 volatile suspended solids of granules were found depending on the type of granular sludge examined. The content of polysaccharides, protein and lipids in the extracted ECP was quantified. Furthermore, the different methyl esters of the lipids were determined and quantified. Lower amounts of polysaccharides and proteins were found in the extracellular material from granules grown on methanogenic and acetogenic substrates compared to granules grown on more complex substrates. In contrast, the lipid content was lower on complex substrates. Changing the feed of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore, the amount of protein and polysaccharides in the ECP found under mesophilic conditions was significantly higher than under thermophilic conditions, while the lipid content was lower. 相似文献
7.
Summary The efficient operation of UASB reactors treating complex soluble wastewater containing high protein and lipid content was attempted by mixing in different modes. Higher superficial flow rate increased COD removal efficiency, sludge retainment, and methane content in biogas not only in the start-up period but also at high volumetric loading rates. However, formation of sludge particles in larger size was hindered by increased upflow liquid velocity. 相似文献
8.
Susana Sevilla-Espinosa Maricela Solórzano-Campo Ricardo Bello-Mendoza 《Biodegradation》2010,21(5):737-751
The use of anaerobic processes to treat low-strength wastewater has been increasing in recent years due to their favourable
performance-costs balance. For optimal results, it is necessary to identify reactor configurations that are best suited for
this kind of application. This paper reports on the comparative study carried out with two high-rate anaerobic reactor systems
with the objective of evaluating their performances when used for the treatment of low-strength, complex wastewater. One of
the systems is the commonly used up-flow anaerobic sludge blanket (UASB) reactor. The other is the up-flow staged sludge bed
(USSB) system in which the reactor was divided longitudinally into 3, 5 and 7 compartments by the use of baffles. The reactors
(9 l) were fed with a synthetic, soluble and colloidal waste (chemical oxygen demand (COD) < 1000 mg/l) and operated at 28°C
and 24 h hydraulic retention time. Intermediate flow hydraulics, between plug-flow and completely-mixed, in the UASB and 7
stages USSB reactors allowed efficient degradation of substrates with minimum effluent concentrations. Low number of compartments
in the USSB reactors increased the levels of short-circuiting thus reducing substrate removal efficiencies. All reactors showed
high COD removal efficiencies (93–98%) and thus can be regarded as suitable for the treatment of low strength, complex wastewater.
Staged anaerobic reactors can be a good alternative for this kind of application provided they are fitted with a large enough
(≥7) number of compartments to fully take advantage of their strengths. Scale factors seem to have influenced importantly
on the comparison between one and multi staged sludge-bed reactors and, therefore, observations made here could change at
larger reactor volumes. 相似文献
9.
Ramasamy EV Gajalakshmi S Sanjeevi R Jithesh MN Abbasi SA 《Bioresource technology》2004,93(2):209-212
The feasibility of using upflow anaerobic sludge blanket (UASB) reactors for the treatment of dairy wastewaters was explored. Two types of UASBs were used--one operating on anaerobic sludge granules developed by us from digested cowdung slurry (DCDS) and the other on the granules obtained from the reactors of M/s EID Parry treating sugar industry wastewaters. The reactors were operated at HRT of 3 and 12 h and on COD loading rates ranging from 2.4 kg per m3 of digester volume, per day to 13.5 kg m(-3) d(-1). At the 3 h HRT, the maximum COD reduction in the DCDS-seeded and the industrial sludge-seeded reactors was 95.6% and 96.3%, respectively, better than at 12 h HRT (90% and 92%, respectively). In both the reactors, the maximum, the second best, and the third best COD reduction occurred at the loading rates of 10.8, 8.6 and 7.2 kg m3 d(-1), respectively. At loading rates higher than 10.8 kg, the reactor performance dropped precipitously. Whereas in the first few months the reactors operating on sludge from EID Parry achieved better biodegradation of the waste, compared to the reactors operated on DCDS, the performance of the latter gradually improved and matched with the performance of the former. 相似文献
10.
Treatment of catechol bearing wastewater in an upflow anaerobic sludge blanket (UASB) reactor: sludge characteristics 总被引:1,自引:0,他引:1
This paper deals with the characteristics of anaerobic microbial granules grown in an UASB reactor treating catechol bearing synthetic wastewater (SWW). The specific methanogenic activity of the sludge showed an increase in trend with an increase in the organic loading rate and the catechol concentration in the SWW. The settling velocity of individual granules in the size range of 0.5-2.5mm was found to be in the range of 30-75mh(-1). The ash content in the sludge was 11.7% with a sludge volume index of 18-20mlg(-1). The inorganic elemental distribution within the granules showed a decrease except that for phosphorous and cobalt, which increased by approximately 12% and 18%, respectively, after the treatment of SWW. Scanning electron microscopy (SEM) coupled with electron disperse X-ray analysis showed an increase in the sulphur content by approximately 300% after the treatment of SWW. Surface mineral composition of the granules determined by XRD analysis indicated the existence of vuagnatite (CaAlSiO(4)(OH)). SEM observation of the granules showed the predominance of Methanosaeta and Methanobacterium type of species on the surface along with a variety of other species. 相似文献
11.
The anaerobic biodegradation of Linear Alkylbenzene Sulfonate (LAS) was studied in Upflow Anaerobic Sludge Blanket Reactors (UASB). One reactor was fed with easily degradable substrates and commercial LAS solution during a period of 3 months (Reactor 1), meanwhile a second reactor was fed with a commercial LAS solution without co-substrate (Reactor 2) during 4 months. Both reactors were operated with an organic loading rate of 4–5 mg-LAS/l*day and a hydraulic retention time of one day.The LAS biodegradation was determined by full mass balance. LAS was analysed by HPLC in the liquid phase (influent and effluent streams of the reactors) as well as in the solid phase (granular sludge used as biomass). The results indicate a high level of removal (primary biodegradation: 64–85%). Biodegradation was higher in the absence of external co-substrates than in the presence of additional sources of carbon. This indicates that the surfactant can be partially used as carbon and energy source by anaerobic bacteria. Under the operating conditions used, inhibition of the methanogenic activity or any other negative effects on the biomass due to the presence of LAS were not observed. The methanogenic activity remained high and stable throughout the experiment. 相似文献
12.
In order to understand the fate of PCP in upflow anaerobic sludge blanket reactor (UASB) more completely, the sorption and
biodegradation of pentachlorophenol (PCP) by anaerobic sludge granules were investigated. The anaerobic granular sludge degrading
PCP was formed in UASB reactor, which was seeded with anaerobic sludge acclimated by chlorophenols. At the hydraulic retention
time (HRT) of 20–22 h, and PCP loading rate of 200–220 mg l−1 d−1, UASB reactor exhibited good performance in treating wastewater which containing 170–180 mg l−1 PCP and the PCP removal rate of 99.5% was achieved. Sequential appearance of tetra-, tri-, di-, and mono-chlorophenol was
observed in the reactor effluent after 20 mg l−1 PCP introduction. Sorption and desorption of PCP on the anaerobic sludge granules were all fitted to the Freundlich isotherm
equation. Sorption of PCP was partly irreversible. The Freundlich equation could describe the behavior of PCP amount sorbed
by granular sludge in anaerobic reactor reasonably well. The results demonstrated that the main mechanism leading to removal
of PCP on anaerobic granular sludge was biodegradation, not sorption or volatization. 相似文献
13.
Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters 总被引:5,自引:0,他引:5
The application of the expanded granular sludge bed (EGSB) reactor for the anaerobic treatment of low-strength soluble wastewaters using ethanol as a model substrate was investigated in laboratory-scale reactors at 30oC. Chemical oxygen demand (COD) removal efficiency was above 80% at organic loading rates up to12 g COD/L . d with influent concentrations as low as 100 to 200 mg COD/L. These results demonstrate the suitability of the EGBS reactor for the anaerobic treatment of low-strength wastewaters. The high treatment performance can be attributed to the intense mixing regime obtained by high hydraulic and organic loads. Good mixing of the bulk liquid phase for the substrate-biomass contact and adequate expansion of the substrate-biomass contact and adequate expansion of the sludge bed for the degassing were obtained when the liquid upflow velocity (V(up)) was greater than 2.5 m/h. Under such conditions, an extremely low apparent K(s) value for acetoclastic methanogenesis of 9.8 mg COD/L was observed. The presence of dissolved oxygen in the wastewater had no detrimental effect on the treatment performance. Sludge piston flotation from pockets of biogas accumulating under the sludge bed occurred at V(up) lower than 2.5 m/h due to poor bed expansion. This problem is expected only in small diameter laboratory-scale reactors. A. more important restriction of the EGSB reactor was the sludge washout occurring at V(up) higher than 5.5 m/h and which was intensified at organic loads higher than 7 g COD/L. d due to buoyancy forces from the gas production. To achieve an equilibrium between the mixing intensity and the sludge hold-up, the operation should be limited to an organic loading rate of 7 g COD/L d. and to a liquid up-flow velocity between 2.5 and 5.5 m/h (c) 1994 John Wiley & Sons, Inc. 相似文献
14.
In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470 mL-CH4/gVS-added. Anaerobic digestion of potato-juice in an EGSB reactor could obtain a methane yield of 380 mL-CH4/gVS-added at the organic loading rate of 3.2 gCOD/(L-reactor.d). In a UASB reactor, higher organic loading rate of 5.1 gCOD/(L-reactor.d) could be tolerated, however, it resulted in a lower methane yield of 240 mL-CH4/gVS-added. The treatment of reactor effluent was also investigated. By acidification with sulfuric acid to pH lower than 5, almost 100% of the ammonia content in the effluent could be retained during the successive up-concentration process step. The reactor effluent could be up-concentrated by evaporation to minimize its volume, and later be utilized as fertilizer. 相似文献
15.
Mean settling velocity of granular sludge in full-scale UASB (upflow anaerobic sludge blanket) and EGSB (expanded granular sludge bed) reactors was evaluated by settling column tests, and a settling velocity model based on the experimental results and available literature data was developed. It is concluded that the settling velocity should be calculated by the Allen formula, because the settling process of the granules is in the category of intermediate flow regime rather than in the laminar flow one. The comparison between calculated and measured values of the settling velocity shows an excellent agreement, with an average relative error of 4.04%. A simple but reliable mathematical method to determine the settling velocity is therefore proposed. 相似文献
16.
Performance and granulation in an upflow anaerobic sludge blanket (UASB) reactor treating saline sulfate wastewater 总被引:1,自引:0,他引:1
An upflow anaerobic sludge blanket reactor was employed to treat saline sulfate wastewater. Mesophilic operation (35 ± 0.5 °C) was performed with hydraulic retention time fixed at 16 h. When the salinity was 28 g L?1, the chemical oxygen demand and sulfate removal efficiencies were 52 and 67 %, respectively. The salinity effect on sulfate removal was less than that on organics removal. The methane productions were 887 and 329 cm3 L?1 corresponding to the NaCl concentrations of 12 and 28 g L?1, respectively. High salinity could stimulate microbes to produce more extracellular polymeric substances (EPSs) and granulation could be performed better. Besides, with the high saline surroundings, a great deal of Na+ compressed the colloidal electrical double-layer, neutralized the negative charge of the sludge particles and decreased their electrostatic repulsion. The repulsion barrier disappeared and coagulation took place. The maximum size of granules was 5 mm, which resulted from the coupled triggering forces of high EPSs and Na+ contents. Sulfate-reducing bacteria (SRB) were dominant in the high saline surroundings while the methane-producing archaea dominated in the low saline surroundings. The SRB were affected least by the salinity. 相似文献
17.
Granulation of biomass in thermophilic upflow anaerobic sludge blanket reactors treating acidified wastewaters 总被引:1,自引:0,他引:1
The development of granular sludge in thermophilic (55 degrees C) upflow anaerobic sludge blanket reactors was investigated. Acetate and a mixture of acetate and butyrate were used as substrates, serving as models for acidified waste-waters. Granular sludge with either Methanothrix or Methanosarcina as the predominant acetate utilizing methanogen was cultivated by allowing the loading rate to increase whenever the acetate concentration in the effluent dropped below 200 and 700 mg COD/L, respectively. The highest methane generation rates, up to 162 kg CH(4)-COD/m(3) day, or 2.53 mole CH(4)/L day, were achieved at hydraulic retention times down to 21 min, with granules consisting of Methanothrix. The formation of Methanothrix granules did not depend on the type of seed material, nor on the addition of inert support particles. The growth of granules proceeded rapidly with adapted seed material, even when the reactors were inoculated with low concentrations. With mesophilic seed materials growth of granules took much longer. Thermophilic Methanothrix granules strongly resemble mesophilic granules of the "filamentous" type. Some factors governing the thermophilic granulation process are discussed. 相似文献
18.
19.
Takeno K Nakashimada Y Kakizono T Nishio N 《Applied microbiology and biotechnology》2001,56(1-2):280-285
The removal of organic matter from a coastal mud sediment was carried out by a methane fermentation process under anaerobic conditions. In a batch acidogenic fermentation, the addition of vitamins containing thiamine, nicotinic acid and biotin dramatically enhanced acetate production from the mud sediment (200 g wet wt l(-1) artificial sea water), yielding 77 mM acetate after 6 days, which corresponded to 77% of the organic matter in the mud sediment, measured on the basis of chemical oxygen demand. Thereafter, the two-fold diluted, post-acidogenic fermentation liquor (PAF liquor) was continuously treated at 2.4x original dilution rate day(-1) for 30 days, using an upflow anaerobic sludge blanket methanogenic reactor containing the acclimated methanogenic sludge from the mud sediment. Acetate, 42 mM in the PAF liquor, was converted to methane at a maximum methane production rate of 96 mmol l(-1) day(-1); and 87.5% of the acetate and 88.7% of the total organic carbon in the PAF liquor were removed. Moreover, an efficient treatment of the mud sediment was carried out by a semi-continuous, two-stage reactor system, where the culture broth was circulated between acidogenic and methanogenic reactors. This two-stage reactor system gave a stable operation at 4-day intervals for one treatment period, yielding 112 mmol methane from the wet mud in the PAF liquor (278 g l(-1)). 相似文献