首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Heat-inactivated serum is cytotoxic to granulosa cells from preantral follicles but not to cells from preovulatory follicles. A dominant feature of the granulosa cells of preovulatory follicles is the presence of luteinizing hormone (LH) receptors on the surface of the cells. In the present study, we have examined the relationship between the process of LH receptor induction and the acquisition of serum tolerance in granulosa cells in vitro. Granulosa cells from the ovaries of immature rats primed with diethylstilbestrol (DES) were cultured in a 1:1 mixture of Ham's F-12 and Dulbecco's modified Eagle's medium containing 30 ng of ovine follicle-stimulating hormone (oFSH; NIH-15). At either 0, 24, or 48 h of culture, heat-inactivated fetal bovine serum (FBS) was added (10% by volume) to separate groups of culture tubes. All cells were cultured for a total of 72 h, at which time the cultures were assessed for LH receptor (specific 125I-human chorionic gonadotropin [hCG] binding) and DNA content. LH receptors were induced in all FSH-containing serum-free cultures by 48 h. Receptors were not induced, however, when serum was added after either 0 or 24 h of culture. Furthermore, serum addition at these times resulted in a cell loss (assessed by DNA) of 40-60%. Serum addition at 48 h to FSH-containing cultures resulted in an inability to detect LH receptors at 72 h and with no significant effect on the culture DNA content. Addition of a protein extract of FBS at the initiation of cell culture prevented FSH-stimulated LH receptor induction and was cytotoxic. A lipid extract of FSH did not interfere with receptor induction and was not cytotoxic.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In the mammalian ovary, the microvasculature in the thecal layer of follicles is associated with follicular development. Apelin and its receptor, APJ, are expressed in the tissues and organs which include the vasculature. The aims of the present study were to examine the mRNA expression of apelin and the APJ receptor in granulosa cells and theca tissue of bovine follicles and the effects of steroid hormone and gonadotrophins on the expression of these genes in cultured granulosa cells and theca cells. The expression of apelin mRNA was not found in the granulosa cells of bovine follicles. The expression of the APJ gene was increased in granulosa cells of estrogen-inactive dominant follicles. The expression of apelin mRNA increased in theca tissues of estrogen-inactive dominant follicles. APJ expression in theca tissues increased with follicle growth. Progesterone stimulated the expression of APJ mRNA in the cultured granulosa cells. FSH stimulated the expression of APJ mRNA in the cultured granulosa cells. LH induced the expression of apelin and APJ receptor mRNAs in cultured theca cells. Taken together, our data indicate that the APJ receptor in granulosa cells and both apelin and the APJ receptor in theca tissues are expressed in bovine ovary, that APJ in granulosa cells may be involved in the appearance of the cell apoptosis, and that LH stimulates the expression of apelin and APJ genes in theca cells.  相似文献   

4.
5.
6.
The effects of estrogens on gonadotropin-stimulated luteinizing hormone (LH) receptor formation were examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of follicle-stimulating hormone (FSH) in the presence or absence of native and synthetic estrogens. Follicle-stimulating hormone stimulated LH receptor formation in a dose-dependent fashion, and estrogens enhanced the FSH-stimulated LH receptor content by decreasing the apparent ED50 of FSH. At 6.25 ng/ml FSH, the enhancement in LH receptor was estrogen dose dependent, with an ED50 value of about 3 X 10(-9) M for 17 beta-estradiol. The increased LH receptor content seen in cells treated with FSH and estrogen was correlated with increased cAMP production by these cells in response to LH stimulation. Time course studies revealed enhancement of FSH-stimulated LH receptor induction at 48 and 72 h of culture. Granulosa cells were also cultured with FSH for 2 days to induce functional LH receptors, then further cultured for 3 days with LH in the presence or absence of estrogens. At 30 ng/ml LH, increasing concentrations of estrogens maintained LH receptor content in a dose-dependent fashion, with their relative estrogenic potencies in keeping with reported binding affinities to estrogen receptors. An autocrine role of estrogens on LH receptor formation was further tested in granulosa cells treated with FSH and an aromatase substrate (androstenedione) to increase estrogen biosynthesis. Cotreatment with semipurified estrogen antibodies partially blocked the FSH stimulation of LH receptors, whereas nonimmune serum was ineffective. Also, inclusion of diethylstilbestrol prevented the inhibitory effect of the estrogen antibodies. Thus, local estrogens in ovarian follicles may play an autocrine role in granulosa cells to enhance LH receptor formation and to increase granulosa cell responsiveness to the LH surge, with subsequent ovulation and adequate corpus luteum formation.  相似文献   

7.
Follicle-stimulating hormone, activin A, and transforming growth factor (TGF) alpha are important regulators of chicken granulosa cell (cGC) function. Hence, we aimed to test whether these growth factors are useful for establishing a suitable in vitro cell culture model system of primary cGC. Although cGC are easily isolated from distinct follicular stages, a long-term cGC culture system for in vitro studies has been unavailable. Here, we report a novel, long-term cell culture system that allows for cGC proliferation in vitro while maintaining the epithelial phenotype that granulosa cells exhibit in vivo. The cGC rapidly lose their epithelial morphology and acquire a mesenchymal or fibroblastoid phenotype when cultured in the absence of activin A. This process is strongly enhanced by TGFalpha, a well-known granulosa cell mitogen. However, FSH stimulates cGC proliferation without enhancing morphological changes and dedifferentiation. Interestingly, a combination of both activin A and FSH stimulates cGC proliferation and supports maintenance of differentiated epithelial morphology. Furthermore, activin A and FSH synergistically induce granulosa cell-specific differentiation markers such as inhibin alpha and chicken zona pellucida protein C, suggesting that cultured cGC resemble functionally differentiated granulosa cells. Our data demonstrate that activin signaling is necessary to sustain a morphologically differentiated phenotype of cGC in vitro. The results also suggest a pivotal importance of activin signaling for granulosa cell function in vivo.  相似文献   

8.
Activin A regulation of the expression of mRNA for the LH receptor, FSH receptor, and the inhibin alpha subunit as well as the effect of activin A on the secretion of progesterone were investigated in chicken granulosa cell cultures. Granulosa layers were isolated from the F(1) and F(3) + F(4) follicles from five hens, pooled according to size, dispersed, and cultured for 48 h. In experiment 1 (n = 3 replications), granulosa cells were cultured with or without highly purified ovine (o) FSH at 50 ng/ml and in the presence of 0, 10, or 50 ng/ml of recombinant chicken activin A. Experiment 2 (n = 4 replications) followed the same protocol as experiment 1, except that oFSH was replaced with oLH. Results from these experiments showed that addition of activin A to the granulosa cell cultures had no effect on the expression of mRNA for the inhibin alpha subunit or the FSH receptor, but it did affect the expression of mRNA for the LH receptor. Treatment of F(3) + F(4) granulosa cells with LH stimulated the expression of mRNA for the LH receptor; however, when LH was combined with either dose of activin A, this induction was prevented. The highest dose of activin A with or without LH resulted in decreased expression of the LH receptor compared to the untreated controls in the F(3) + F(4) cell cultures. Progesterone secretion by the granulosa cells from both follicle sizes was not altered by activin A. In experiment 3 (n = 3 replications), the effect of activin A on the growth of granulosa cells was examined with the following treatments: 0, 10, or 50 ng/ml of activin A; 50 ng/ml of either oLH or oFSH; and oLH or oFSH combined with 10 ng/ml of activin A. The highest dose of activin reduced the rate of granulosa cell proliferation in both follicle types. Growth of F(1) and F(3) + F(4) granulosa cells was stimulated by the addition of either gonadotropin, and the presence of 10 ng/ml of activin A with either gonadotropin did not alter this proliferation, except for the LH-treated F(3) + F(4) granulosa cells, in which the increase in proliferation was prevented. The results suggest that activin A could act as a local factor that regulates follicular maturation by preventing excessive or untimely LH receptor expression.  相似文献   

9.
Formation of a theca cell (TC) layer is an important physiologic event that occurs during early follicular development. Nevertheless, little is known concerning the nature and regulation of the formation of the TC layer during follicular growth. Using an established coculture system in this study, we examined the hypothesis that stromal cells differentiate into TCs during early follicular development and that this process involves interaction with granulosa cells (GCs). Ovarian stromal cells from the bovine ovarian cortex (S(C)) and medulla (S(M)) were cultured with or without GCs from small antral follicles. The presence of GCs increased the number of lipid droplets and mitochondria, and it stimulated androstenedione production in S(C) and S(M). However, luteinizing hormone/choriogonadotropin receptor (LHCGR) mRNA abundance and hCG-induced cAMP and androstenedione production were increased in S(C) but not in S(M) by the presence of GCs. The present results indicate that GCs are involved in the functional differentiation and the acquisition of LH responsiveness in stromal cells of the ovarian cortex. We suggest that GC-S(C) interaction is important in the formation of the TC layer during early follicular development, although the nature of this interaction remains to be determined.  相似文献   

10.
Role of the epidermal growth factor network in ovarian follicles   总被引:7,自引:0,他引:7  
The LH surge causes major remodeling of the ovarian follicle in preparation for the ovulatory process. These changes include reprogramming of granulosa cells to differentiate into luteal cells, changes in cumulus cell secretory properties, and oocyte maturation. This review summarizes published data in support of the concept that LH stimulation of ovarian follicles involves activation of a local epidermal growth factor (EGF) network. A model describing this property of LH signaling and its branching to other signaling modules is discussed. According to this model, LH activation of mural granulosa cells stimulates cAMP signaling, which, in turn, induces the expression of the EGF-like growth factors epiregulin, amphiregulin, and betacellulin. These growth factors function by activating EGF receptors in either an autocrine/juxtacrine fashion within the mural layer, or they diffuse to act on cumulus cells. Activation of EGF receptor signaling in cumulus cells, together with cAMP priming, triggers oocyte nuclear maturation and acquisition of developmental competence as well as cumulus expansion. This model has important implications for ovarian physiology and for the development of new strategies for the pharmacological control of ovulation and for gamete maturation in vitro.  相似文献   

11.
The regulation of ovarian granulosa cell angiotensin II (Ang-II) receptor formation and progesterone secretion by follicle-stimulating hormone (FSH) and Ang-II was studied in cultured cells prepared from hypophysectomized, diethylstilbestrol-treated immature rats. Ang-II receptors (estimated by the specific cell binding of the Ang-II receptor antagonist 125I-[Sar1,Ile8]Ang-II) were present on freshly prepared granulosa cells and increased by over 2-fold (to 2150 binding sites/cell; KD = 0.5 nM) when cultured in serum-free medium for 48 h. FSH prevented the normal increase in Ang-II receptor expression. Maximal FSH-dependent decrease in Ang-II receptors and increase in progesterone secretion occurred at 100 ng/ml FSH. The inhibitory effect of FSH on granulosa cell Ang-II receptor content was partially mimicked by the cAMP analogue 8-bromo-cAMP, since 8-bromo-cAMP suppressed (by 96%) Ang-II receptor content to a greater extent than FSH (by 60%). Granulosa cell Ang-II receptor content was not modified by progesterone or 17 beta-estradiol, but was decreased by testosterone (by 35%). Ang-II also produced a decrease in granulosa cell Ang-II receptor content, but did not modify progesterone secretion or aromatase activity. The effect of Ang-II on granulosa cell Ang-II receptor content was mimicked by the Ca2+ ionophore A23187, but not by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, suggesting that an elevation of cytosolic Ca2+ may be important for the homologous down-regulation of the Ang-II receptor. These data show homologous and heterologous down-regulation of granulosa cell Ang-II receptors. If these regulatory mechanisms exist in the FSH-sensitive healthy follicle, our findings suggest that in the process of maturation, healthy and dominant follicles may become decoupled from angiotensinergic influences.  相似文献   

12.
Using MA-10 Leydig tumor cells as a model system we have examined the possibility that the lutropin/choriogonadotropin (LH/CG)-induced down-regulation of the LH/CG receptor is accompanied by changes in LH/CG receptor mRNA. We show that LH or CG are indeed capable of reducing the levels of LH/CG receptor mRNA, but that the time course and magnitude of the reduction in receptor mRNA are such that this phenomenon cannot account entirely for the down-regulation of the receptor. In fact, we estimate that LH/CG can reduce the number of LH/CG receptors by at least 80% with little or no change in the levels of LH/CG receptor mRNA. These data are consistent with our previous hypothesis that the LH/CG-induced down-regulation of the LH/CG receptor is primarily due to an increase in the rate of degradation of the receptor that occurs as a result of the receptor-mediated endocytosis of LH/CG. Our studies also show that the LH/CG-induced down-regulation of the LH/CG receptor mRNA is mediated by cAMP. Thus, addition of 8-bromo-cAMP to MA-10 cells leads to a similar reduction in the levels of LH/CG receptor and receptor mRNA; while deglycosylated human CG, a hormone derivative that binds to the LH/CG receptor but has a reduced ability to stimulate cAMP synthesis, does not reduce the levels of LH/CG receptor mRNA. Last, human CG or 8-bromo-cAMP are unable to reduce LH/Cg receptor mRNA in a mutant MA-10 cell line that express a cAMP-resistant phenotype.  相似文献   

13.
Undifferentiated granulosa cells from prehierarchal (6- to 8-mm-diameter) hen follicles express very low to undetectable levels of LH receptor (LH-R) mRNA, P450 cholesterol side chain cleavage (P450scc) enzyme activity, and steroidogenic acute regulatory (StAR) protein, and produce negligible progesterone, in vitro, following an acute (3-h) challenge with either FSH or LH. It has previously been established that culturing such cells with FSH for 18-20 h induces LH-R, P450scc, and StAR expression, which enables the initiation of progesterone production. The present studies were conducted to characterize the ability of activin and transforming growth factor (TGF) beta, both alone and in combination with FSH, to promote hen granulosa cell differentiation, in vitro. A 20-h culture of prehierarchal follicle granulosa cells with activin A or transforming growth factor beta (TGFbeta)1 increased LH-R mRNA levels compared with control cultured cells. Activin A and TGFbeta1 also promoted FSH-receptor (FSH-R) mRNA expression when combined with FSH treatment. Neither activin A nor TGFbeta1 alone stimulated progesterone production after 20 h culture. However, preculture with either factor for 20 h (to induce gonadotropin receptor mRNA expression) followed by a 3-h challenge with FSH or LH potentiated StAR expression and progesterone production compared with cells challenged with gonadotropin in the absence of activin A or TGFbeta1 preculture. Significantly, activation of the mitogen-activated protein (MAP) kinase pathway with transforming growth factor alpha (TGFalpha) (monitored by Erk phosphorylation) blocked TGFbeta1-induced LH-R expression, and this effect was associated with the inhibition of Smad2 phosphorylation. We conclude that a primary differentiation-inducing action of activin A and TGFbeta1 on hen granulosa cells from prehierarchal follicles is directed toward LH-R expression. Enhanced LH-R levels subsequently sensitize granulosa cells to LH, which in turn promotes StAR plus P450scc expression and subsequently an increase in P4 production. Significantly, the finding that TGFbeta signaling is negatively regulated by MAP kinase signaling is proposed to represent a mechanism that prevents premature differentiation of granulosa cells.  相似文献   

14.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

15.
Recent studies have demonstrated the ability of somatomedin-C (Sm-C) to synergize with follicle-stimulating hormone (FSH) in the activation of cultured rat granulosa cell progesterone biosynthesis as well as the induction of luteinizing hormone (LH) receptors. Neither effect could be attributed to Sm-C-enhanced granulosa cell survival or replication, but could be accounted for, in part, by increased adenosine 3',5'-cyclic monophosphate (cAMP) generation. The present study was undertaken to determine if the synergistic property of Sm-C is FSH-selective and hence limited in relevance to follicular maturation, as well as to clarify further the role of cAMP in Sm-C-amplified agonist action. To this end, the ability of Sm-C to modulate the hormonal action of a series of physiologic as well as pharmacologic granulosa cell agonists was examined in vitro using cultured granulosa cells from immature, hypophysectomized, diethylstilbestrol-treated rats. Concurrent treatment with highly purified Sm-C (50 ng/ml) resulted in marked increases over controls in the LH-stimulated [1 ng human chorionic gonadotropin (hCG)]-and beta 2-adrenergic-stimulated (10(-6) M terbutaline) accumulation of cAMP (3.8- and 2.6-fold, respectively and progesterone (3.2- and 7.4-fold, respectively). Similarly, concurrent treatment with Sm-C also augmented the vasoactive intestinal peptidergic stimulation of granulosa cell cAMP generation (4.1-fold) and progesterone biosynthesis (2.1-fold). In contrast, Sm-C was incapable of enhancing progesterone accumulation in response to stimulation with rat prolactin, a cAMP-independent granulosa cell agonist.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Insulin and follicle-stimulating hormone (FSH) have been shown to facilitate granulosa cell differentiation in vitro. To gain insight into this process, we evaluated the effects of these hormones, alone and in combination, upon the biochemical parameters of luteinizing hormone/human chorionic gonadotropin (LH/hCG) receptor induction and progesterone secretion concomitantly with morphometric analysis of granulosa cell ultrastructure and LH/hCG receptor distribution by quantitative autoradiography under light microscopy. Granulosa cells isolated from small antral follicles (controls) cultured in the absence of exogenous hormones exhibited few microvilli and gap junctions; the mitochondria, endoplasmic reticulum, and Golgi complex were all poorly developed. Progesterone secretion was negligible and the cells bound little [125I]iodo-hCG. Insulin treatment increased gap junction formation, and the extent of smooth and rough endoplasmic reticulum and Golgi complex development (all p less than 0.05) but did not affect mitochondrial ultrastructure or volume. Insulin treatment modestly but significantly increased [125I]iodo-hCG binding and progesterone secretion relative to controls (p less than 0.001). FSH treatment had a similar effect to insulin on cell ultrastructure and additionally enhanced development of the mitochondria and smooth endoplasmic reticulum as well as formation of the microvilli (p less than 0.05). FSH significantly increased [125I]iodo-hCG binding and progesterone secretion relative to insulin-treated samples (p less than 0.001). Combined treatment with insulin and FSH markedly increased gap junction and microvilli formation and enhanced the development of the smooth endoplasmic reticulum and the Golgi complex relative to treatment with either hormone alone (p less than 0.05). Additionally, the combined treatment produced larger mitochondria with tubular christae. Consistent with the morphological development, the combined treatment of insulin and FSH significantly increased progesterone secretion and [125I]iodo-hCG binding (p less than 0.001). Autoradiographic analysis showed that aggregated cells in general exhibited higher LH/hCG receptor density than nonaggregated cells, and a significantly higher overall receptor density compared to nonaggregated cells or to cells treated either with insulin or FSH alone. Our results indicate that insulin and FSH facilitate morphological differentiation of the granulosa cell in a synergistic manner, stimulating gap junctions and microvilli formation and enhancing development of the mitochondria, endoplasmic reticulum, and Golgi complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F(2alpha) and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH + progesterone, or LH + antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.  相似文献   

18.
The intrafollicular content of LH receptor, alpha-inhibin, and aromatase are known good indicators of follicular status. We investigated the amounts of these proteins in granulosa and cumulus cells in relation to oocyte competence for in vitro maturation, follicular growth, and estrous cycle stage in the mare. Follicular punctures were performed 34 h after an injection of crude equine gonadotropins, either during the follicular phase, at the end of the follicular phase, or during the luteal phase. The cumulus-oocyte complex, granulosa cells, and follicular fluid of follicles larger than 5 mm were collected. The nuclear stage of the oocytes after in vitro culture was determined microscopically. Granulosa and cumulus cell amounts of LH receptor, alpha-inhibin, and aromatase were assessed by the semiquantitative Western blot method and image analysis. Follicular fluids were assayed for progesterone (P4) and estradiol-17beta (E2). The three factors were expressed in mural granulosa and cumulus cells from all follicles from the gonadotropin-independent growth period until the preovulatory stage. Considering all the follicles punctured, the amounts of LH receptor and alpha-inhibin in granulosa cells were not different for the three physiological stages studied. The amounts of aromatase in granulosa cells, as well as the E2:P4 ratios, were higher for follicles punctured during the follicular phase than for the two other groups (p < 0.05). Considering the data from the three groups, the E2:P4 ratio and the LH receptor and aromatase contents, but not alpha-inhibin, in granulosa cells increased with an increase in follicular diameter (p < 0.01). The E2:P4 ratios and the amounts of LH receptor, alpha-inhibin, and aromatase in granulosa cells were lower in follicles 5-9 mm in diameter than in larger ones (p < 0.05). In cumulus cells, the amounts of the three factors were different neither between the three groups nor between the follicular diameters. Although we could not establish any obvious relationship to oocyte competence for in vitro maturation, the influence of the follicle diameter on the content of LH receptors, alpha-inhibin, and aromatase in granulosa cells was similar to the influence of follicle diameter on oocyte competence. Therefore, one can hypothesize that, in the mare, there is a link between the acquisition of oocyte competence and the expression of these factors in the follicular cells.  相似文献   

19.
We investigated the effects of theca cells or FSH on granulosa cell differentiation and steroid production during bovine early follicular growth, using a co-culture system in which granulosa and theca cells were cultured on opposite sides of a collagen membrane. Follicular cells were isolated from early antral follicles (2-4 mm) that were assumed to be in gonadotropin-independent phase and just before recruitment into a follicular wave. Granulosa cells were cultured under serum-free conditions with and without theca cells or recombinant human FSH to test their effects on granulosa cell differentiation. Messenger RNA levels for P450 aromatase (aromatase), P450 cholesterol side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), LH receptor (LHr), and steroidogenic acute regulatory protein (StAR) in granulosa cells were measured by real-time quantitative RT-PCR analysis. FSH enhanced aromatase mRNA expression in granulosa cells, but did not alter estradiol production. FSH also enhanced mRNA expression for P450scc, LHr, and StAR in granulosa cells, resulting in an increase in progesterone production. In contrast, theca cells enhanced aromatase mRNA expression in granulosa cells resulting in an increase in estradiol production. Theca cells did not alter progesterone production and mRNA expression in granulosa cells for P450scc, 3beta-HSD, LHr, and StAR. The results of the present study indicate that theca cells are involved in both rate-limiting steps in estrogen production, i.e., androgen substrate production and aromatase regulation, and that theca cell-derived factors regulate estradiol and progesterone production in a way that reflects steroidogenesis during the follicular phase of the estrous cycle.  相似文献   

20.
Apoptosis occurs as a physiologic process in the ovarian life cycle. Staurosporine, a protein kinase inhibitor, is reported to induce apoptosis. Here, we hypothesize that staurosporine will induce apoptosis in human luteinized granulosa cells and that mitochondria and the caspase cascade participate in this process. Luteinized granulosa cells isolated from in vitro fertilization patients were treated with staurosporine. Microscopy revealed that staurosporine treatment resulted in cells exhibiting evidence of apoptosis, including cell detachment, loss of cell processes, membrane shrinkage, and formation of apoptotic bodies. In the staurosporine-treated cells, flow cytometry and confocal microscopy showed a decrease in the mitochondrial cardiolipin levels. Western analysis showed cleavage of caspase-9, an initiator caspase, of caspase-3, an executioner caspase, and of a caspase substrate, poly-(ADP-ribose)-polymerase (PARP) in staurosporine-treated cells. These data support our hypothesis and that this is the first demonstration of the involvement of mitochondria and of cleavage of caspases in human luteinized granulosa cell apoptosis. This may serve as a useful model to delineate the mechanism of apoptosis in the ovary, such as corpus luteum regression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号