首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultivating algae on nitrogen (N) and phosphorus (P) in animal manure effluents presents an alternative to the current practice of land application. The objective of this study was to determine how algal productivity, nutrient removal efficiency, and elemental composition of turf algae change in response to different loading rates of raw swine manure effluent. Algal biomass was harvested weekly from laboratory scale algal turf scrubber units using four manure effluent loading rates (0.24, 0.40, 0.62 and 1.2 L m−2 d−1) corresponding to daily loading rates of 0.3–1.4 g total N and 0.08–0.42 g total P. Mean algal productivity values increased from 7.1 g DW m−2 d−1 at the lowest loading rate (0.24 L m−2 d−1) to 9.4 g DW m−2 d−1 at the second loading rate (0.40 L m−2 d−1). At these loading rates, algal N and P accounted for> 90% of input N and 68–76% of input P, respectively. However, at higher loading rates algal productivity did not increase and was unstable at the highest loading rate. Mean N and P contents in the dried biomass increased 1.5 to 2.0-fold with increasing loading rate up to maximums of 5.7% N and 1.8% P at 1.2 L m−2 d−1. Biomass concentrations of Al, Ca, Cd, Fe, K, Mg, Mn, Mo, Si, and Zn increased 1.2 to 2.6-fold over the 5-fold range of loading rate. Biomass concentrations of Cd, K, Pb, and Si did not increase significantly with loading rate. At the loading rate of 0.40 L m−2 d−1 (corresponding to peak productivity) the mean concentrations of individual components in the algal biomass were (in mg kg−1): 250 (Al), 4900 (Ca), 0.30 (Cd), 1050 (Fe), 3.4 (Pb), 2500 (Mg), 105 (Mn), 6.0 (Mo), 7,500 (K), and 510 (Zn). At these concentrations, heavy metals in the algal biomass would not be expected to reduce its value as a soil or feed amendment.  相似文献   

2.
In the low salinity region of the Elbe estuary in March–April 1992 the turbidity zone was characterized by high loads of suspended matter, 7% of which was organic material (750 μM C) at the surface. Particulate nitrogen, phosphorus and carbohydrates concentrations reached 55 μM N, 10 μM P and more than 15 μM glc. eq., corresponding to 13% of total C, at the surface and increasing threefold near the bottom. In spite of the peaking of particulate organic material levels in the maximum turbidity zone, there were only consistent qualitative changes in total particulate C, N, P, and carbohydrates along the Elbe estuary. Downstream, both the percentage of particulate organic material and the turbidity: organic material ratio decreased, indicating decomposition in the upper estuary and dilution with inorganic suspended matter from the lower estuary. Diatoms, the dominant phytoplankton group, decreased from the upper reaches towards the turbidity zone by 0.3 (surface) and 1.5 mg C l−1 (bottom). This corresponded to 12 and 60% of the decrease in total particulate carbon. Estimated local input of organic carbon by primary production (21 μg Cl−1d−1) was almost compensated by calculated minimum grazing (14 μg C l−1d−1). Considering net primary production and grazing, the dissimilation by zooplankton (5 μg C l−1d−1) and heterotrophic bacterial decomposition (48 μg C l−1d−1), when summed over the estimated flushing time (12 days) represented a loss of suspended organic matter of 0.6 mg Cl−1. Since this was only 20% of the observed decrease in particulate carbon, significant dilution processes must be assumed. Dissolved organic nitrogen decreased from 35 to 10 μM N and dissolvd organic phosphorus from 0.6 to 0.1 μM P towards the sea, mainly due to dilution. The distribution of phosphate, with highest loads in the turbidity maximum of 2.4 μM, suggested an interaction with the accumulated load of particulate material.  相似文献   

3.
Nitrogen and phosphorous exchange at the water–sediment interface is controlled both by complex physico-chemical factors and biological processes. Zoobenthos excretion is one of the most important processes in the mineralization of sedimented organic mater. In polluted freshwaters, tubificid worms are among the dominant components of the benthic community. Rates of ammonium and inorganic phosphate excretion by tubificids were experimentally assessed. They were related to the tubificid abundance in a stream ecosystem polluted with municipal and industrial wastewater. The relationship between these rates and temperature were investigated within the range of 4–23 °C. Relatively constant excretion rates were obtained for both nutrients in the first 8 h of excretion, ranging between 0.076 and 0.226 μg N mg d.w.−1 h−1 and 0.0065–0.01 μg P mg d.w.−1 h−1, respectively. Q10 values of 2.52 for ammonium and 1.31 for phosphate were calculated. If we presume that all excreta eventually enters the water column, then we can calculate that these invertebrates potentially add 39.17 mg N m−2 day−1 and 0.49 mg P m−2 day−1. These values accounts for 17.16 and 7.56% of the nutrient load in the river water, respectively.  相似文献   

4.
Benthic nutrient fluxes in a eutrophic,polymictic lake   总被引:2,自引:0,他引:2  
Sediment release rates of soluble reactive phosphorus (SRP) and ammonium (NH4) were determined seasonally at three sites (water depth 7, 14 and 20 m) in Lake Rotorua using in situ benthic chamber incubations. Rates of release of SRP ranged from 2.2 to 85.6 mg P m−2 d−1 and were largely independent of dissolved oxygen (DO) concentration. Two phases of NH4 release were observed in the chamber incubations; high initial rates of up to 2,200 mg N m−2 d−1 in the first 12 h of deployment followed by lower rates of up to 270 mg N m−2 d−1 in the remaining 36 h of deployment. Releases of SRP and NH4 were highest in summer and at the deepest of the three sites. High organic matter supply rates to the sediments may be important for sustaining high rates of sediment nutrient release. A nutrient budget of Lake Rotorua indicates that internal nutrient sources derived from benthic fluxes are more important than external nutrient sources to the lake.  相似文献   

5.
This paper is an overview of Russian literature dealing with the accumulation, the transformations and the release of phosphate and nitrogen compounds in a great number of Russian lakes and reservoirs. A considerable data bank has been analysed. Special attention is given to the relations of N- and P-accumulation with the input and transformation of organic carbon, as well as to the release mechanisms, often in relation to eutrophication of the lakes and reservoirs. It is shown that the major input of organic matter into the sediments comes from autochthonous material, and is usually > 70 %. The relative importance of phytoplankton and macrophytes as sources of organic matter is discussed; it appears that trophic state, depth and other factors may have a large influence on this ratio. In shallow eutrophic lakes macrophytes may be the source of organic matter, which source can amount to 1.5–2.5 times that of phytoplankton. It is also shown that the C/N ratio is not a good indicator of the source of the organic matter, because their C/N ratios often are not very different. The decomposition rate of organic matter was analysed; it depends on trophic state and other factors. Sediment N accumulation is mostly (> 90%) in organic form, and depends on nitrogen and organic matter inputs coming from phytoplankton or macrophytes. A correlation coefficient of 0.9–0.95 was found in 176 lakes. In 113 lakes the N accumulation was 0.11 x C accumulation, with C/N ratios between 7.4 and 12.9. Ammonification was rather constant in different groups of lakes; values were often about 20–25 mg m−2 d−1. The presence of the different forms of nitrogen in interstitial water and in adsorbed forms is discussed. The N in interstitial water is usually in the form of NH3. Sediment P-accumulation is usually in inorganic form and is related to primary production. Three different groups of sediments could be distinguished with C/P ratios of 31–100, of 101–350 and > 350. In hard water lakes P sedimentation was found to be 0.3–0.5 times that in soft water lakes with comparable primary production. The relative occurrence of apatite, non-apatite and residual P in sediments was calculated. In the interstitial water the P concentration appeared to be controlled by the input and decomposition of organic matter. The concentration of phosphate dissolved in the interstitial water of the top 2 cm layer is often 10–100 times lower than that of the dissolved N. The concentrations of interstitial phosphate are from a few μgl−1 up to 15 mgl−1, but the higher concentrations occur only rarely. Different types of vertical profiles of P compounds in the sediments were shown to be related with the presence of an oxidised zone, the presence of clay etc. Autochthonous apatite and non-apatite phosphates are more mobile than the allochthonous ones and are in equilibrium with interstitial phosphate. Accumulation of autochthonous apatite in sediments is controlled by decomposition of organic matter and accumulation of carbonates.  相似文献   

6.
High-rate biological conversion of sulfide and nitrate in synthetic wastewater to, respectively, elemental sulfur (S0) and nitrogen-containing gas (such as N2) was achieved in an expanded granular sludge bed (EGSB) reactor. A novel strategy was adopted to first cultivate mature granules using anaerobic sludge as seed sludge in sulfate-laden medium. The cultivated granules were then incubated in sulfide-laden medium to acclimate autotrophic denitrifiers. The incubated granules converted sulfide, nitrate, and acetate simultaneously in the same EGSB reactor to S0, N-containing gases and CO2 at loading rates of 3.0 kg S m−3 d−1, 1.45 kg N m−3 d−1, and 2.77 kg Ac m−1 d−1, respectively, and was not inhibited by sulfide concentrations up to 800 mg l−1. Effects of the C/N ratio on granule performance were identified. The granules cultivated in the sulfide-laden medium have Pseudomonas spp. and Azoarcus sp. presenting the heterotrophs and autotrophs that co-work in the high-rate EGSB-SDD (simultaneous desulfurization and denitrification) reactor.  相似文献   

7.
Spatial variability in hydrological flowpaths and nitrate-removal processes complicates the overall assessment of riparian buffer zone functioning in terms of water quality improvement as well as enhancement of the greenhouse effect by N2O emissions. In this study, we evaluated denitrification and nitrous oxide emission in winter and summer along two groundwater flowpaths in a nitrate-loaded forested riparian buffer zone and related the variability in these processes to controlling soil factors. Denitrification and emissions of N2O were measured using flux chambers and incubation experiments. In winter, N2O emissions were significantly higher (12.4 mg N m−2 d−1) along the flowpath with high nitrate removal compared with the flowpath with low nitrate removal (2.58 mg N m−2 d−1). In summer a reverse pattern was observed, with higher N2O emissions (13.6 mg N m−2 d−1) from the flowpath with low nitrate-removal efficiencies. Distinct spatial patterns of denitrification and N2O emission were observed along the high nitrate-removal transect compared to no clear pattern along the low nitrate-removal transect, where denitrification activity was very low. Results from this study indicate that spots with high nitrate-removal efficiency also contribute significantly to an increased N2O emission from riparian zones. Furthermore, we conclude that high variability in N2O:N2 ratio and weak relationships with environmental conditions limit the value of this ratio as a proxy to evaluate the environmental consequences of riparian buffer zones.  相似文献   

8.
The macrotidal estuary of Penzé (Brittany, Western part of the Channel, France) has been subjected to recurrent annual toxic blooms of Alexandrium minutum since 1988. This study aims to specify the phosphorus dynamics and bioavailability in sediments in order to improve our understanding of Alexandrium occurrences. Sediment-P pools and diffusive phosphate fluxes were studied under similar hydrodynamic conditions, in the intermediate estuary in May, June and July 2003 and along the salinity gradient from August 2004 to June 2005. The results highlight a decrease in bioavailable phosphorus (iron and organic bound) from the inner part of the estuary seaward. The ratio of iron-bound phosphorus to iron-oxyhydroxides is lower in the inner and intermediate estuaries (5–8) than in the outer site (15), suggesting a saturation of sorption sites and greater phosphorus bioavailability in this area. Pools of bioavailable phosphorus in surficial sediments are about eight times higher than the annual net-export of P (7 ton year−1). Phosphate releases from sediments are always lower than 5 μmol m−2 d−1 in March. The highest supplies occur in June and August in the intermediate area (up to 400 μmol m−2 d−1) where they represent up to 50% of river loadings. These results further suggest that phosphate pulses coincide with occurrences of Alexandrium reported in June.  相似文献   

9.
Two variants of open photobioreactors were operated at surface-to-volume ratios up to 170 m−1. The mean values for July and September obtained for photobioreactor PB-1 of 224 m2 culture area (length 28 m, inclination 1.7%, thickness of algal culture layer 6 mm), operated in Třeboň (49N), Czech Republic, were: net areal productivity, P net = 23.5 and 11.1 g dry weight (DW) m−2 d−1; net photosynthetic efficiency (based on PAR – Photosynthetic Active Radiation), η = 6.48 and 5.98%. For photobioreactor PB-2 of 100 m2 culture area (length 100 m, inclination 1.6%, thickness of algal culture layer 8 mm) operated in Southern Greece (Kalamata, 37N) the mean values for July and October were: P net = 32.2 and 18.1 g DW m−2 d−1, η = 5.42 and 6.07%. The growth rate of the alga was practically linear during the fed-batch cultivation regime up to high biomass densities of about 40 g DW L−1, corresponding to an areal density of 240 g DW m−2 in PB-1 and 320 g DW m−2 in PB-2. Night biomass loss (% of the daylight productivity, P L) caused by respiration of algal cells were: 9–14% in PB-1; 6.6–10.8% in PB-2. About 70% of supplied CO2 was utilized by the algae for photosynthesis. The concentration of dissolved oxygen (DO) increased from about 12 mg L−1 at the beginning to about 35 mg L−1 at the end of the 100 m long path of suspension flow in PB-2 at noon on clear summer days. Dissipation of hydraulic energy and some parameters of turbulence in algal suspension on culture area were estimated quantitatively.  相似文献   

10.
Drainage of peatlands for forestry starts a succession of ground vegetation in which mire species are gradually replaced by forest species. Some mire plant communities vanish quickly following the water-level drawdown; some may prevail longer in the moister patches of peatland. Drainage ditches, as a new kind of surface, introduce another component of spatial variation in drained peatlands. These variations were hypothesized to affect methane (CH4) fluxes from drained peatlands. Methane fluxes from different plant communities and unvegetated surfaces, including ditches, were measured at the drained part of Lakkasuo mire, Central Finland. The fluxes were found to be related to peatland site type, plant community, water-table position and soil temperature. At nutrient-rich fen sites fluxes between plant communities differed only a little: almost all plots acted as CH4 sinks (−0.9 to −0.4 mg CH4 m−2 d−1), with the exception of Eriophorum angustifolium Honck. communities, which emitted 0.9 g CH4 m−2 d−1. At nutrient-poor bog site the differences between plant communities were clearer. The highest emissions were measured from Eriophorum vaginatum L. communities (29.7 mg CH4 m−2 d−1), with a decreasing trend to Sphagna (10.0 mg CH4 m−2 d−1) and forest moss communities (2.6 mg CH4 m−2 d−1). CH4 emissions from different kinds of ditches were highly variable, and extremely high emissions (summertime averages 182–600 mg CH4 m−2 d−1) were measured from continuously water-covered ditches at the drained fen. Variability in the emissions was caused by differences in the origin and movement of water in the ditches, as well as differences in vegetation communities in the ditches. While drainage on average greatly decreases CH4 emissions from peatlands, a great spatial variability in fluxes is emerged. Emissions from ditches constantly covered with water, may in some cases have a great impact on the overall CH4 emissions from drained peatlands.  相似文献   

11.
The deposition and cycling of carbon and nitrogen in carbonate sediments located between coral reefs on the northern and central sections of the Great Barrier Reef were examined. Rates of mass sediment accumulation ranged from 1.9 kg m−2 year−1 (inshore reefs) to 2.1–4.9 kg m−2 year−1 (between mid-shelf reefs); sedimentation was minimal off outer-shelf reefs. Rates of total organic carbon decomposition ranged from 1.7 to 11.4 mol C m−2 year−1 and total nitrogen mineralization ranged from 77 to 438 mmol N m−2 year−1, declining significantly with distance from land. Sediment organic matter was highly reactive, with mineralization efficiencies ranging from 81 to 99% for organic carbon and 64–100% for nitrogen, with little C and N burial. There was no evidence of carbonate dissolution/precipitation in short-term incubation experiments. Rates of sulfate reduction (range 0–3.4 mmol S m−2 day−1) and methane release (range 0–12.8 μmol CH4 m−2 day−1) were minor or modest pathways of carbon decomposition. Aerobic respiration, estimated by difference between total O2 consumption and the sum of the other pathways, accounted for 55–98% of total carbon mineralization. Rates of ammonification ranged from 150 to 1,725 μmol NH4 m−2 day−1, sufficient to support high rates of denitrification (range 30–2,235 μmol N2 m−2 day−1). N2O release was not detected and rates of NH4 + and NO2 + NO3 efflux were low, indicating that most mineralized N was denitrified. The percentage of total N input removed via denitrification averaged ≈75% (range 28–100%) with little regenerated N available for primary producers. Inter-reef environments are therefore significant sites of energy and nutrient flow, especially in spatially complex reef matrices such as the Great Barrier Reef.  相似文献   

12.
Enhanced nitrogen (N) deposition at high latitudes is a circumpolar phenomenon. Low soil phosphorus (P), however, may limit vegetation responses to increased N inputs. From 2000 to 2002, the effects of N at 0, 0.5 (a rate occurring in Greenland and Iceland) and 5 (equivalent to deposition in areas of Europe) g N m−2 a−1 and P (0.1 g m−2 a−1) treatments on plant species’ cover and diversity were determined at a polar semidesert site (ambient deposition c 0.1 g N m−2 a−1) in Svalbard (79°N). The largest response was to combined 5 g N plus 1 g P m−2 a−1, where cover of Saxifraga oppositifolia increased c fourfold, density of Salix polaris leaves c ninefold, seedlings of several ‘new’ species (Draba oxycarpa, Saxifraga caespitosa, Sagina nivalis) were established and ‘immigration’ of Bryum arcticum and ‘extinction’ of Schistidium apocarpum were observed. There were fewer, less pronounced, effects on the plant community at 0.5 g N m−2 a−1. Low P availability did indeed appear to restrict vegetation response to N. There was a trend for plant species’ richness and diversity to increase with 1 g P m−2 a−1 at 0 and 0.5 g N m−2 a−1, but not at 5 g N m−2. Plant species showed individualistic responses so that generalisation by functional type was not possible. Such increased colonisation by moss species of bare soil, and greater densities of previously unrecorded angiosperm seedlings, are not usually observed in more closed (subarctic) tundra as a response to N and P additions. These changes are likely to influence significantly nutrient cycles, whole system carbon budgets and surface energy and water balances. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

13.
The biogeochemical balance of phosphate was studied in Al Massira reservoir (Morocco) from February 1991 to end January 1992. The study concerned P-supplies and losses by the Oum errbia river, sedimentation rate and water-sediment exchange.Supply and loss of phosphate were calculated from samples collected every 48 hours. Phosphate sedimentation rate was measured with sediment traps. The assessment of phosphate release at the water-sediment interface during either low oxic or anoxic conditions was made in situ with a benthic chamber.The results showed that phosphate input was higher than phosphate output resulting in a progressive increase of the internal phosphorus stock. The sedimentation flux ranged between 9 and 19 mg m–2 d–1 of P. Release of phosphate depended on the oxygen concentrations in the water.We suggest that a drastic control of phosphate input into the water must be achieved through a programme of dephosphorylation of the tributaries to avoid accumulation of calcium-bound phosphate which may become a source of upward release of bioavailable phosphate.Further investigations of this flux should be carried out to check the quantitative influence on phytoplankton community dynamics.  相似文献   

14.
This investigation represents the first integrated study of primary production, nutrient dynamics and mineralisation in a northeastern fjord of Greenland. The data presented represent conditions and activities during the early summer thaw (first 2 weeks of July). Primary production (5.3 mmol C m−2 d−2) and chlorophylla (4.1 μg 1−1) values were found to be comparable with measurements from other Arctic regions. Water column N-fixation rates were low (<0.02 μmol N m−1 d−1), but comparable with other estuarine systems. Despite a constant low temperature in the bottom waters (-1.0 to -1.8°C), a high sedimentary O2 uptake (740 μmol m−2 h−2) was observed and was primarily caused by the presence of benthic infauna. Bioturbation by benthic infauna was reflected in both homogeneous210Pb and137Cs profiles in the upper 4 cm of the sediment. Permanent accumulation within Young Sound was measured to 0.12 cm/year corresponding to 153 mmol C m−2 year−1 and 15 mmol N m−2 year−1. Rates of nitrification (22 μmol m−2 h−1) and denitrification (9 μmol m−2 h−1) were comparable with rates reported for other sediments with much higher environmental temperatures. Suphate reduction rates integrated over the upper 12 cm of the sediment were calculated to be 44 μmol m−2h−1.  相似文献   

15.
Microphytobenthos production in the Gulf of Fos, French Mediterranean coast   总被引:1,自引:1,他引:0  
Microphytobenthic oxygen production was studied in the Gulf of Fos (French Mediterranean coast) during 1991/1992 using transparent and dark benthic chambers. Nine stations were chosen in depths ranging from 0.5 to 13 m, which represents more than 60% of bottoms in the Gulf. Positive net microphytobenthic oxygen production was seasonally detected down to 13 m; the maximum value attained was 60 mg O2 m−2 h−1 (0.7–0.8 g O2 m−2 d−1) in sediments at 0.5 m depth during spring and winter. Respiration rates were maximum in the sediments located at the mussel farm (5 m), in the center of the Gulf, with 135 mg O2 m−2 h−1 in spring (3.2 g O2 m−2 d−1); in the other locations, it ranged from 3.3 to 58.2 mg O2 m−2 h−1 (0.08–1.4 g O2 m−2 d−1). Compared to phytoplankton, microphytobenthos production was higher only in the bottoms < 1 m depth. In deeper bottom waters, phytoplankton production could be absent due to light limitation, while microphytobenthos was still productive. Phytoplankton production m−2 was generally higher than microphytobenthic production. Microphytobenthic biomass, higher than phytoplanktonic, varied from 27 to 379 mg Chl a m−2, the maximum in the mussel farm sediments, with the minimum in sandy shallow bottoms. Pigment analysis showed that microphytobenthos consisted mainly of diatoms (Chl c and fucoxanthin) but other algal groups containing Chl b could become seasonally important. A Principal Component Analysis suggested that the main statistical factors explaining the distribution of our observations may be interpreted in terms of enrichment in phaeopigments and light; the role of Chl a appearing paradoxically as secondary in benthic production rates. Phaeopigments are mainly constituted by phaeophorbides, which indicate grazing processes. The influence of the mussel farm on the oxygen balance is noticeable in the whole Gulf.  相似文献   

16.
Sulfate reduction rates and biogeochemical parameters of fish farm sediments across the Mediterranean were investigated in the order to evaluate the potential effects of organic matter inputs on habitat quality for the common seagrass Posidonia oceanica. Four study sites were selected in Spain, Italy, Greece and Cyprus to represent the Mediterranean basin. P. oceanica was found in immediate vicinity of all the farms, which were located at physically exposed sites about 1 km from the shore lines. Organic matter accumulation, sulfate reduction rates and sulfur pools were measured in depth profiles along transects from the farms in both bare and vegetated sediments. Results show that although the organic matter accumulation was minor at the sites (POC < 2.8% DW), the sulfate reduction rates were high, in particular at the largest farm in Italy (up to 212 mmol m−2 d−1), similar to rates found at shallower, temperate fish farm sites, where higher sedimentation rates can be expected. Sulfate reducing bacteria in these low-organic, carbonate-rich Mediterranean sediments respond strongly to organic matter loadings and cause habitat degradation. Sulfate reduction rates measured in the P. oceanica sediments were among the highest recorded (7.8–42.0 mmol m−2 d−1) similar to rates found in degrading meadows impacted by organic matter loadings. As sulfate reduction rates were correlated with the sedimentation rates along the transects rather than organic matter pools this suggests mineralization processes were controlled by organic matter loading in fish farm sediments. The vegetated sediments near the net cages were more reduced due to accumulation of sulfides compared to control sites, which is a possible contributing factor to the observed seagrass decline in the farm surroundings. It is recommended that Mediterranean fish farms are placed in areas with rapid dispersal of particulate waste products to minimize organic matter loading of the sediments and thereby preserve habitat quality for benthic fauna and flora.  相似文献   

17.
A novel alternative for wastewater effluent bioremediation was developed using constructed microbial mats on low-density polyester. This biotechnology showed high removal efficiencies for nitrogen and phosphorous in a short retention time (48 h): 94% for orthophosphate (7.78 g m3 d−1), 79% for ammonium (11.30 g m−3 d−1), 78% for nitrite (7.46 g m−3 d−1), and 83% for nitrate (8.55 g m−3 d−1). The microbial mats were dominated by Cyanobacteria genera such as Chroococcus sp., Lyngbya sp., and bacteria of the subclass Proteobacteria representative of the Eubacteria Domain. Nitzschia sp. was the dominant Eukaryote Domain. Various N and P substrates in the wastewater permit the growth of self-forming and self-sustaining bacterial, microalgal, and cyanobacterial communities on a polyester support. The result is the continuous, self-sufficient growth of microbial mats. This is an innovative, economical, and environmentally safe alternative for the treatment of wastewater effluents in coastal marine environments.  相似文献   

18.
A comparative study of primary production and pigments, conducted from April 1981 to April 1982, in a chain of three low alkalinity reservoirs situated in north of Portugal revealed significant lower values (159 mg C m−2 d−1 and 19.8 mg m−2 as chlorophyll a, growing season means) in the reservoir receiving wastes rich in copper from a tungsten copper pyrite mine. This contrasts specially with the situation observed in the upstream reservoir which presents the highest values (409 mg C m−2 d−1 and 55.2 mg m−2) recorded in the system. Eventual effects of the mine discharge on phytoplankton biomass and photosynthesis such as high turbidity and copper toxicity are discussed. Results point out to be the presence of copper responsible for the alterations in the phytoplankton community. The system exhibits similar photosynthetic capacity which indicates an adaption to the relatively high copper concentrations in water and sediments. Experiments carried out in the largest unpolluted reservoir show that the loss of carbon through respiration is of major importance and indicate the phosphorus to be one of the factors limiting phytoplankton productivity.  相似文献   

19.
The flux of CO2 and CH4 from lakes and rivers in arctic Alaska   总被引:5,自引:2,他引:3  
Partial pressures of CO2 and CH4 were measured directly or calculated from pH and alkalinity or DIC measurements for 25 lakes and 4 rivers on the North Slope of Alaska. Nearly all waters were super-saturated with respect to atmospheric pressures of CO2 and CH4. Gas fluxes to the atmosphere ranged from −6.5 to 59.8 mmol m−2 d−1 for CO2 and from 0.08 to 1.02 mmol m−2 d−1 for CH4, and were uncorrelated with latitude or lake morphology. Seasonal trends include a buildup of CO2 and CH4 under ice during winter, and often an increased CO2 flux rate in August due to partial lake turnover. Nutrient fertilization experiments resulted in decreased CO2 release from a lake due to photosynthetic uptake, but no change in CO2 release from a river due to the much faster water renewal time. In lakes and rivers the groundwater input of dissolved CO2 and CH4 is supplemented by in-lake respiration of dissolved and particulate carbon washed in from land. The release of carbon from aquatic systems to the atmosphere averaged 24 g C m−2 y−1, and in coastal areas where up to 50% of the surface area is water, this loss equals frac 1/5 to 1/2 of the net carbon accumulation rates estimated for tundra.  相似文献   

20.
Supplementary UV-B (12.2 kJ m−2 d−1 UV-BBE) provided to Vigna radiata for 2 h d−1 suppressed the length of root, shoot and whole plants, number of leaves, total leaf area, leaf area index, specific leaf mass, fresh and dry mass of leaves and shoot, relative growth rate and net productivity. In unstressed green gram plants (10 kJ m−2 d−1 UV-BBE), triadimefon (TRIAD) (20 mg dm−3) enhanced growth in all parameters over control. The growth promoting effect of TRIAD enabled the UV-B impacted plants to overcome the growth inhibitions to varying degrees indicating its protective potential against UV-B stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号