首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method was developed for measuring in vivo DNA synthesis after exposure to epidermal growth factor (EGF) or fibroblast growth factor (FGF) in a local area of mouse skin using ring-shaped forceps in combination with autoradiography. The technique should be useful for analysing the effects of growth factors on individual cells of the skin in vivo. EGF induced semisynchronized DNA synthesis in basal cells of the epidermis dose-dependently, but FGF did not. Time course study showed that EGF-induced DNA synthesis in basal cells increased with time for 24 h, and then decreased rapidly. EGF-induced DNA synthesis in basal cells was proportional to the time exposed to EGF (0-60 min). FGF and EGF both had little effect on dermal fibroblastic cells. The discrepancy between in vivo observations and those with cultured mammalian cells is discussed.  相似文献   

2.
The number of epidermal growth factor receptors (EGFRs) and their ligands are highly expressed in malignant tumor cells. The EGF signaling pathway is also activated in up to one-third of patients with breast cancer. In this study, we investigated the novel function of the JAK3 inhibitor, WHI-P131, on EGF-induced MMP-9 expression and the regulatory mechanism of EGF-induced MMP-9 expression in SKBR3 cells. We observed that EGF increased MMP-9 mRNA and protein expression in a dose-dependent manner. EGF also induced the phosphorylation of EGFR, ERK, and STAT-3, and these effects were inhibited by the EGFR inhibitor, AG1478. To investigate the involvement of the STAT-3 pathway on EGF-induced MMP-9 expression, we pretreated SKBR3 cells with JAK1, JAK2, and JAK3 inhibitors prior to EGF treatment. The results showed that the JAK3 inhibitor, WHI-P131, as well as JAK3 siRNA transfection, but not the JAK1 and JAK2 inhibitors, significantly decreased EGF-induced MMP-9 expression. In addition, EGF-induced STAT-3 phosphorylation was only inhibited by WHI-P131. We then transfected cells with adenoviral STAT-3 (Ad-STAT-3), followed by treatment with EGF. Interestingly, EGF-induced MMP-9 expression was decreased by Ad-STAT-3 overexpression in a dose-dependent manner, while it was significantly increased by STAT-3 siRNA transfection. Our results also showed that basal levels of MMP-9 expression were significantly increased by constitutive active-MEK (CA-MEK) overexpression. EGF-induced ERK phosphorylation was prevented by WHI-P131, but not by JAK1 and JAK2 inhibitors. On the other hand, EGF-induced MMP-9 expression was decreased by the MEK1/2 inhibitor, UO126. Therefore, for the first time, we suggest that the JAK3 inhibitor, WHI-P131, inhibits EGF-induced STAT-3 phosphorylation as well as ERK phosphorylation. The JAK3/ERK pathway may play an important role in EGF-induced MMP-9 expression in SKBR3 cells.  相似文献   

3.
Epithelial-to-mesenchymal transition (EMT), important cellular process in metastasis of primary tumors, is characterized by loss of their cell polarity, disruption of cell-cell adhesion, and gain certain properties of mesenchymal phenotype that enable migration and invasion. Delphinidin is a member of anthocyanidin belong to flavonoid groups, known as having pharmacological and physiological effects including anti-tumorigenic, antioxidative, anti-inflammatory, and antiangiogenic effects. However, the effects of delphinidin on EMT is rarely investigated. Epidermal growth factor (EGF) is known as a crucial inducer of EMT in various cancer including hepatocellular carcinoma (HCC). To determine whether delphinidin inhibits EGF-induced EMT in HCC cells, antiproliferative effect of delphinidin on Huh7 and PLC/PRF/5 cells were measured by Cell Counting Kit-8 assay. As a result, delphinidin inhibited cell proliferation in a dose-dependent manner. Based on the result of proliferation, to measure the effects of delphinidin on EGF-induced EMT, we designated a proper concentration of delphinidin, which is not affected to cell proliferation. We found that delphinidin inhibits morphological changes from epithelial to mesenchymal phenotype by EGF. Moreover, delphinidin increased the messenger RNA and protein expression of E-cadherin and decreased those of Vimentin and Snail in EGF-induced HCC cells. Also, delphinidin prevented motility and invasiveness of EGF-induced HCC cells through suppressing activation of matrix metalloproteinase 2, EGF receptor (EGFR), AKT, and extracellular signal-regulated kinase (ERK). Taken together, our findings demonstrate that delphinidin inhibits EGF-induced EMT by inhibiting EGFR/AKT/ERK signaling pathway in HCC cells.  相似文献   

4.
Phosphorylation of the RAF-1 protooncogene product and activation of its associated serine/threonine kinase are common features of the response of cells to peptide growth factors. We have used wild-type and mutant epidermal growth factor (EGF) receptors to investigate mechanisms of RAF-1 phosphorylation. In vivo EGF treatment rapidly stimulated phosphorylation of RAF-1 exclusively on serine residues. Stimulation of RAF-1 phosphorylation occurred at 37 degrees C but not at 4 degrees C and persisted after dissociation of EGF from its receptor. EGF-induced RAF-1 serine phosphorylation required the intrinsic tyrosine kinase activity of the EGF receptor but was independent of EGF receptor self-phosphorylation and of ligand-induced receptor internalization. Down-regulation of protein kinase C did not affect the EGF-induced increase in RAF-1 phosphorylation. These data suggest that the activated tyrosine kinase activity of the EGF receptor enhances serine phosphorylation of RAF-1 via an intermediary molecule(s).  相似文献   

5.
Summary Exposure of squamous carcinoma cell (SCC) lines, exhibiting high levels of epidermal growth factor (EGF) receptors, to EGF for 6 d caused a dose-dependent inhibition of cell proliferation. This EGF-induced inhibition of cell proliferation occurred under both low (0.06 mM) and normal (1.6 mM) Ca2+ concentrations. Furthermore, the extent of EGF-induced inhibition of cell proliferation seemed to be independent of the number of EGF-receptors. This conclusion is based on the notion that the various SCC lines exhibited an increasing number of EGF receptors accompanied by a decreasing ability to differentiate, whereas no relationship was observed with the EGF-induced inhibition of cell proliferation in these cell lines. Retinoids caused also a dose-dependent inhibition of cell proliferation. The effects of EGF and retinoids were additive, indicating that different regulatory mechanisms are involved. On the other hand, hydrocortisone caused a stimulation of SCC-proliferation, also independent of EGF. In contrast to SCC cells, EGF did not affect significantly the rate of proliferation of normal keratinocytes. However, the simultaneous addition of EGF and hydrocortisone resulted in a significant increase in the rate of keratinocyte proliferation only in cells grown under normal calcium conditions. Differentiation capacity of normal keratinocytes and SCC lines was not affected by EGF. Furthermore, the retinoid-induced decrease and hydrocortisone-induced increase of competence of cells to form cornified envelopes was not affected by EGF. These observations suggest that the action of retinoids and hydrocortisone on both cell proliferation and cell differentiation occurs independently of EGF receptors. This work was partly supported by The Netherlands Cancer Foundation (Koningin Wilhelmina Fonds), grant IKW 85–71.  相似文献   

6.
Growth hormone (GH) has previously been reported to influence the adipose conversion of 3T3-F442A murine fibroblasts, partly by causing these cells to exit the cell cycle and to become unresponsive to serum-stimulated mitogenesis. To better understand this process, quiescent fibroblasts were treated with fully stimulatory doses (50 nM) of epidermal growth factor (EGF) in the presence or absence of pituitary human GH (hGH) or the phorbol ester phorbol 12-myristate 13-acetate (PMA), which is known to down-regulate EGF receptor activity. EGF-induced DNA synthesis was attenuated by hGH in a dose-dependent manner with an ED50 of approximately 0.1 nM and a maximally effective dose of 10–30 nM. This effect appeared to be the result of inhibition of DNA synthesis and exclusive of a time shift in the initiation of the S phase of the cell cycle. Additionally, insulin-like growth factor-1 (IGF-1), which can act as an important in vivo mediator of GH, failed to mimic the anti-mitogenic effects of GH. The ability of hGH to antagonize EGF-stimulated mitogenesis did not appear to be due to the down-regulation of EGF receptor mass or to pronounced changes in EGF-induced tyrosine kinase activity. Furthermore, when GH was administered at various times after EGF addition, GH continued to be effective at inhibiting EGF-induced DNA synthesis for up to 9 hr after EGF treatment. Modulation of EGF-induced cell cycle progression was further evidenced by the ability of GH to promote a marked decrease in the EGF-induced expression of D cyclins. In comparison, PMA inhibited EGF-induced DNA synthesis for up to 18 hr after EGF addition and also down-regulated EGF receptor mass and activity; these observations suggest that the mechanism of GH action is largely distinct from that of PMA. We conclude that GH can selectively and dose-dependently modulate EGF receptor-mediated DNA synthesis exclusive of any rapid or extensive effects on EGF receptor mass or tyrosine kinase activity. Furthermore, the capacity of GH to attenuate EGF-induced mitogenesis, even when administered 9 hr after EGF addition, and the GH modulation of EGF-induced expression of D cyclins, suggest that there are GH-induced effects on systems involved in the transition of these fibroblasts through the G1 phase of the cell cycle. In sum, these data support a specific interaction of this somatotropic hormone/cytokine with EGF in the control of cell cycle progression in 3T3-F442A fibroblasts. J. Cell. Physiol. 173:44–53, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Recent evidence has implicated cytokines and growth factors in the initiation of parturition in women. In the present study, the amnion-derived cell line WISH was used to determine whether proinflammatory cytokines (interleukins 1 beta, 6, and 8, tumor necrosis factor-alpha, and granulocyte/macrophage colony stimulating factor) could amplify epidermal growth factor-induced prostaglandin E2 production. WISH cells were preincubated with cytokines (0.0001-10 ng/ml) for 60 min and then challenged with EGF (10 ng/ml) for 4 hrs after which PGE2 production was measured by radioimmunoassay. EGF, IL-1 beta and TNF-alpha alone caused a dose-dependent increase in PGE2 production, while IL-6, IL-8 and GM-CSF were ineffective over the dose range tested. When cells were preincubated with IL-1 beta or TNF-alpha, there was a dose-dependent potentiation of EGF-induced PGE2 production that was greater than the sum of EGF alone and IL-1 beta or TNF-alpha alone. In each case, the minimum dose of IL-1 beta or TNF-alpha which amplified EGF-induced PGE2 production was 0.1 ng/ml (p less than 0.05, Student's t-test). These data show that low concentrations of IL-1 beta or TNF-alpha may serve to amplify EGF-mediated PGE2 biosynthesis in amnion-derived cells and suggest that cytokines may modulate EGF function in responsive cells.  相似文献   

8.
Epidermal growth factor (EGF) receptor (EGFR) is involved in various basic biochemical pathways and is thus thought to play an important role in cell migration. We examined the effect of EGF on motility, migration, and morphology of a human adenocarcinoma cell line CAC-1. EGF treatment increased the motility of cervical adenocarcinoma cells and promoted migration of the cells on fibronectin and type IV collagen. EGF induced morphological changes with lamellipodia during EGFR-mediated motility. The results of an immunoprecipitation study showed that EGF up-regulated the expression of alpha2beta1-integrin in a dose-dependent manner. EGF-induced cell migration was blocked by alpha2beta1-integrin antibody. Our results also showed that EGF treatment stimulated the level of tyrosine dephosphorylation of FAK, which is required for EGF-induced changes in motility, migration, and cell morphology. A tyrosine kinase inhibitor (ZD1839) blocked EGF-induced changes in cervical adenocarcinoma cells. The results suggest that EGF promotes cell motility and migration and increases the expression of alpha2beta1-integrin, possibly by decreasing FAK phosphorylation.  相似文献   

9.
The purpose of the present studies was to investigate the role of epidermal growth factor (EGF) in the acquisition of estrogen (E) and progestin (P) responsiveness in the mouse mammary gland in vivo. Using the Elvax 40P implant technique to introduce bioactive molecules directly into the mammary gland to produce a localized effect, we have made the novel observation that EGF implanted into glands of pubertal mice followed by E treatment resulted in the precocious acquisition of E-inducible progesterone receptors (PR). In sexually mature mice, EGF implants alone were able to increase PR. A neutralizing antibody specific for EGF blocked E-dependent stimulation of end-bud development and PR induction. Furthermore, the antiestrogen ICI 182,780 blocked the EGF-induced stimulation end-buds and PR induction, indicating that these EGF effects are mediated via estrogen receptors (ER). Immunohistochemical analysis showed that the endogenous EGF content of mammary glands of mature mice was higher than pubertal mice, that E implants caused a localized increase in mammary gland EGF content in both pubertal and mature mice, and that in mature mice E caused an increase in stromal cell EGF content. We have previously shown that the acquisition of E-inducible PR can be modulated by mammary stroma, and the present results indicate that mammary stroma could modulate hormonal responsiveness through control of local growth factor concentration. Taken together, these results provide evidence that E-dependent responses of mouse mammary gland in vivo, such as end-bud proliferation and PR regulation, may be mediated by EGF through an ER-dependent mechanism. J. Cell. Physiol. 174:251–260, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
This report describes the effects of epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGF-beta 1) on the anchorage-dependent and -independent growth of rat heart endothelial cells (RHE-1A). When RHE-1A cells were grown in monolayer culture with medium containing 10% fetal bovine serum (FBS) supplemented with epidermal growth factor (0.1-100 ng/ml), growth was stimulated fivefold when compared to that of cells grown in medium containing 10% FBS alone. The stimulatory effect of EGF on RHE-1A cell monolayer growth was dose-dependent and half-maximal at 5 ng/ml. The addition of TGF-beta 1 in the range 0.1-10 ng/ml had no effect on RHE-1A cell monolayer growth when added to medium containing 10% FBS alone or 10% FBS supplemented with EGF (50 ng/ml). RHE-1A cells failed to grow under anchorage-independent conditions in 0.3% agar medium containing 10% FBS. In the presence of EGF, however, colony formation increased dramatically. The stimulatory effect of EGF was dose-dependent in the range 0.1-100 ng/ml and was half-maximal at 5 ng/ml. In contrast to its effects under anchorage-dependent conditions, TGF-beta 1 (0.1-10 ng/ml) antagonized the stimulatory effects of EGF on RHE-1A cell anchorage-independent growth. The inhibitory effect of TGF-beta 1 was dose-dependent and half-maximal at 0.1 ng/ml. EGF-induced RHE-1A soft agar colonies were isolated and reinitiated in monolayer culture. They retained the cobblestone morphology and contact-inhibition characteristic of normal vascular endothelial cells. Each of the clones continued to express Factor VIII antigen. These findings suggest that TGF-beta may influence not only endothelial cell proliferation but also anchorage dependence. These effects may in turn be of relevance to endothelial cell growth and angiogenesis in vivo.  相似文献   

11.
We have isolated and partially purified an intracellular vesicle fraction from A-431 cells that contains both epidermal growth factor (EGF) and enzymatically active EGF:receptor/kinase. Exposure of intact A-431 cells to EGF leads to an accumulation of both EGF and kinase activity in this vesicle fraction. The accumulation is time- and temperature-dependent and is blocked by inhibitors of energy production. The EGF receptor in internalized vesicles is capable of autophosphorylation and, in the presence of Ca2+, of phosphorylation of the previously isolated 35-kDa protein (Fava, R. A., and Cohen, S. (1984) J. Biol. Chem. 259, 2636-2645). The demonstration of an EGF-induced increase in kinase activity of an internalized vesicle fraction lends credence to the hypothesis that EGF-induced endocytosis of the receptor is of physiological significance in the response of cells to this ligand. In addition, these results are consistent with the suggestion that the phosphorylation of the 35-kDa protein is associated with internalization of the EGF:receptor/kinase complex.  相似文献   

12.
13.
FUTAO  YONGHUAXU 《Cell research》1994,4(2):145-153
Epidermal growth factor(EGF) induced intracellular free calcium ([Ca^2 ]i) response was studied in fura-2- or fluo-3-loaded human hepatoma cells of BEL-7404 cell line.Single cell[Ca^2 ]i analysis and [Ca^2 ]i measurement in cell populations revealed that EGF triggered a rapid[Ca^2 ]i increase in the dose-dependent and time-dependent manner.Pretreatment of cells with an endoplasmic reticulum(ER) Ca^2 -ATPase inhibitor,thapsigargin(TG) at 100nM concentration for 20 min,completely abolished EGF-induced [Ca^2 ]i increase,and chelating extracellular calcium by excess EGTA partially inhibited the increase.Furthermore,the expression of antisense EGF receptor sequence in BEL-7404 cells suppressed the [Ca^2 ]i response to EGF.The results suggest that EGF receptor-mediated [Ca^2 ]i increase in the human hepatoma cells is essentially dependent on the Ca^2 storage in ER.  相似文献   

14.
Epidermal growth factor (EGF) is a peptide shown to effect precocious incisor tooth eruption in rat pups. Binding sites for EGF were visualized in the continuously erupting adult rat incisor by light and electron microscope radioautography after in vivo injection of 125I-EGF. These binding sites represented EGF receptors because of (i) competition between 125I-EGF binding at 2 min after injection and a coinjected excess of unlabeled EGF; (ii) the receptor-mediated endocytosis of 125I-EGF at 15 and 30 min after injection; and (iii) the demonstration of EGF receptor kinase activation in vivo. The stem and the mitotic cells in the epithelial odontogenic organ at the growing end of the tooth develop into two nondividing layers of the enamel organ: (i) ameloblasts which secrete enamel and are subsequently involved in the enamel maturation process, and (ii) papillary layer cells situated between the blood supply and the ameloblasts. Although few EGF receptors were present at the mitotic end, receptor density was highest at the mature end of the enamel organ. High levels of 125I-EGF binding were found on papillary layer cells and ruffle-ended, but not smooth-ended, ameloblasts. This implies a cyclical exteriorization and internalization of receptors during modulations between the two cell types. These data suggest that the EGF receptor mediates a major function of the enamel organ in the formation of enamel.  相似文献   

15.
Epidermal growth factor (EGF) may either stimulate or inhibit cell growth. To elucidate the mechanism of these varied effects, we compared EGF action in parental A431 cells in which cell growth is inhibited, and clone 15, a mutant of these cells resistant to EGF growth inhibition. In both lines, EGF receptor was present in similar concentrations and underwent tyrosine phosphorylation to the same extent. Likewise, in both lines, acute exposure to EGF stimulated an increase in free cytoplasmic [Ca2+], as well as a similar increase in phosphorylation of lipocortin 1, a major substrate for the EGF receptor kinase whose phosphorylation is calcium-dependent. On the other hand, pretreatment of clone 15 cells with EGF for 72 h abolished EGF-induced phosphorylation of lipocortin 1 and led to a loss of the increase in cytoplasmic free [Ca2+], whereas no such desensitization was seen in the parental A431 cells. These data indicate a link between EGF-induced increase in cytoplasmic calcium, lipocortin phosphorylation, and cell growth and suggest that differences in mechanisms of desensitization to these immediate actions of EGF may lead to altered growth response to this hormone.  相似文献   

16.
The polyphosphoinositides, PIP and PIP2, have been proposed to regulate actin polymerization in vivo because they dissociate actin/gelsolin complexes in vitro. We tested this hypothesis by comparing the ability of EGF and bradykinin to affect PI metabolism and the actin cytoskeleton in A431 cells. EGF, but not bradykinin, was found to induce ruffling and dissociation of actin/gelsolin complexes in these cells. However, both EGF and bradykinin stimulated the accumulation of inositol phosphates in [3H]inositol-labeled cells indicating that stimulation of PI turnover is not sufficient for the induction of changes in actin/gelsolin complex levels. EGF stimulated a twofold increase in the level of PIP in A431 cells. Other phosphoinositide levels were not markedly altered. Treatment of the cells with cholera toxin abrogated the EGF-induced rise in PIP levels without altering the dissociation of actin from gelsolin. These data indicate that increases in PIP and/or PIP2 are not necessary for dissociation of actin/gelsolin complexes. Overall, these experiments suggest that in A431 cells, the effects of EGF on the actin cytoskeleton are unlikely to be mediated through changes in PIP or PIP2 levels.  相似文献   

17.
The transferrin (Tf) receptor is a major transmembrane protein which provides iron for normal and malignant cell growth. Epidermal growth factor (EGF) has been reported to rapidly and transiently alter the number of surface Tf receptors in normal and transformed epithelial cells. To investigate mechanisms of EGF-induced changes in surface Tf display, EGF effects on surface Tf receptors were compared in two cell lines which differ in their number of EGF receptors and growth responses to EGF. In cloned A431 cells with high receptor numbers which are growth-inhibited by EGF, EGF caused a 50% decrease in Tf receptor expression after 30 min. In contrast, EGF induced a rapid, transitory increase (within 5 min) in the number of surface Tf receptors on KB carcinoma cells which returned to basal levels by 15 min. The observed changes in Tf receptor display were due to altered receptor distribution and not changes in ligand affinity or total cellular transferrin receptor pools. Anti-EGF receptor monoclonal antibody blocked effects of EGF on transferrin receptor expression. Since the antibody is internalized and causes EGF receptor down-regulation, effects on transferrin receptor expression were independent of these events. EGF-induced alterations in Tf receptor display occurred even when cells were pretreated with colchicine, suggesting that changes in surface Tf binding were not mediated by cytoskeletal components. Na orthovanadate, which mimics some early cellular effects of EGF, duplicated EGF's effects on A431 Tf receptors, but had no effect on KB cells, suggesting these responses occur by differing mechanisms. To determine whether EGF caused changes in Tf receptor phosphorylation, 32P-labelled Tf receptors were immunoprecipitated after EGF treatment. After exposure to EGF, A431 cells showed no change in Tf phosphorylation, but KB cells showed a transient, 6-fold increase in transferrin receptor phosphorylation on serine residues. In both A431 and KB cells, phorbol ester (PMA) also increased phosphorylation on transferrin receptors, but had little effect on surface Tf receptor expression. In malignant cell lines, EGE induces rapid, variable changes in transferrin receptor expression and phosphorylation which differ from the effects of PMA. These early responses to EGF appear to differ with the cell type and correlate poorly with alterations in Tf receptor phosphorylation. These results suggest Tf receptor phosphorylation does not regulate Tf receptor display in all cells.  相似文献   

18.
A method was developed to label epidermal growth factor (EGF) receptors with 125I-EGF in whole cells using chemical cross-linking reagents. Polyacrylamide gel electrophoresis resolved an Mr approximately 180,000 EGF-receptor complex and larger Mr greater than or equal to 360,000 aggregates. The formation of the larger complexes was time and temperature dependent and appeared to represent the initial events of EGF receptor clustering. Alteration of the ratio of 125I-EGF-labeled high- (Kd approximately 0.16 nM) and low- (Kd approximately 1.5 nM) affinity complexes by competition with unlabeled EGF or by induction of additional high-affinity sites with dexamethasone suggested that both sites were represented by the Mr approximately 180,000 125I-EGF-receptor complexes. Digestion of cells before cross-linking detected a small population of trypsin-resistant Mr approximately 180,000 receptors, which could represent previously described cryptic and/or high-affinity receptors. Few of the Mr approximately 360,000 receptors were trypsin resistant. Glucocorticoid induction of high-affinity EGF receptors failed to induce detectable changes in the microclustering of EGF receptors but did result in a 50% increase in EGF-induced receptor phosphorylation in HeLa S3 cell membranes at 4 degrees C. Thus, glucocorticoids increase high-affinity EGF binding sites, EGF-induced receptor phosphorylation, and cell growth.  相似文献   

19.
Epidermal growth factor (EGF) is a well known mitogen, but it paradoxically induces apoptosis in cells that overexpress its receptor. We demonstrate for the first time that the EGF-induced apoptosis is accelerated if NF-kappaB is inactivated. To inactivate NF-kappaB, human epidermoid carcinoma cells (A431) that overexpress EGF receptor were stably transfected with an IkappaB-alpha double mutant construct. Under the NF-kappaB-inactivated condition, A431 cells were more sensitive to EGF with decreased cell viability and increased externalization of phosphatidylserine on the cell surface, DNA fragmentation, and activation of caspases (3 and 8 but not 9), typical features of apoptosis. These results were further supported by the potentiation of the growth inhibitory effects of EGF by chemical inhibitors of NF-kappaB (curcumin and sodium salicylate) and the protective role of RelA evidenced by the resistance of A431-RelA cells (stably transfected with RelA) to EGF-induced apoptosis. EGF treatment or ectopic expression of RelA in A431 cells induced DNA binding activity of NF-kappaB (p50 and RelA) and the expression of c-IAP1, a downstream target of NF-kappaB. A431-RelA cells exhibited spontaneous phosphorylation of Akt (a downstream target of phosphatidylinositol 3-kinase and regulator of NF-kappaB) and EGF treatment stimulated it further. Blocking this basal Akt phosphorylation with LY294002, an inhibitor of phosphatidylinositol 3-kinase, did not affect their viability but blocking of EGF-induced phosphorylation of Akt sensitized the otherwise resistant A431-RelA cells to EGF-mediated growth inhibition. Our results favor an anti-apoptotic role for NF-kappaB in the regulation of EGF-induced apoptosis.  相似文献   

20.
PC12h-R cell, a subclone of PC12 cells, exhibited a neuron-like phenotype, including neurite outgrowth and increased acetylcholinesterase activity, in response to epidermal growth factor (EGF) as well as nerve growth factor (NGF). We examined the mechanism by which EGF induced the neuronal differentiation in PC12h-R cells. The EGF-induced neuronal differentiation of PC12h-R cells was not blocked by K252a, whereas that induced by NGF was. EGF induced sustained tyrosine phosphorylation of the EGF receptor in PC12h-R cells, but not in the parent PC12h cells, which do not show neuronal differentiation in response to EGF. In addition, the rate of EGF-induced down-regulation of the EGF receptor in PC12h-R cells was decreased compared with that in PC12h cells. Furthermore, we found that the duration of EGF-induced tyrosine phosphorylation of the EGF receptor in PC12h-R cells was similar to that of NGF-induced tyrosine phosphorylation of p140 trkA in PC12h cells. The EGF-induced phosphorylation of the EGF receptor in PC12h cells was less sustained than that of p140 trkA by NGF in PC12h cells. These findings suggested that the EGF-induced neuronal differentiation of PC12h-R cells is due to the sustained activation of the EGF receptor, resulting from the decreased down-regulation of the EGF receptor and that the duration of the receptor tyrosine kinase activity determines the cellular responses of PC12 cells. We concluded that sustained activation of the receptor tyrosine kinase induces neuronal differentiation, although transient activation promotes proliferation of PC12 cells. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号