首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
生境破碎化对动物种群存活的影响   总被引:51,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

2.
Habitat thresholds are usually defined as “points of abrupt change” in the species–habitat relationships. Habitat thresholds can be a key tool for understanding species requirements, and provide an objective definition of conservation targets, by identifying when habitat loss leads to a rapid loss of species, and the minimum amount of habitat necessary for species persistence. However, a large variety of statistical methods have been used to analyse them. In this context, we reviewed these methods and, using simulated data sets, we tested the main models to compare their performance on the identification of thresholds. We show that researchers use very different analytical tools, corresponding to different operational definitions of habitat thresholds, which can considerably affect their detection. Piecewise regression and generalized additive models allow both the distinction between linear and nonlinear dynamics, and the correct identification of break point position. In contrast, other methods such as logistic regression fail because they may incorrectly detect thresholds in gradual patterns, or they may over or underestimate the threshold position. In conservation or habitat modelling, it is important to focus efforts efficiently and the inappropriate choice of statistical methods may have detrimental consequences.  相似文献   

3.
4.
Biodiversity extinction thresholds are abrupt declines in biological diversity that occur with habitat loss, associated with a decline in habitat connectivity. Matrix quality should influence the location of thresholds along habitat loss gradients through its effects on connectivity; however these relationships have seldom been explored empirically. Using field data from 23 independent 1254 ha landscapes in the Brazilian Atlantic Forest, we evaluated how tropical avian biodiversity responds to native forest loss within habitat patches embedded either in homogeneous pasture matrix context (with a high proportion of cattle pastures), and heterogeneous coffee matrix context (with high abundance of sun coffee plantations). We considered taxonomic, functional, and phylogenetic diversity, and tested if matrix type and choice of diversity metric influenced the location of biodiversity thresholds along the forest cover gradient. We found that matrix type postponed the abrupt loss of taxonomic diversity, from a threshold of 35% of forest cover in homogeneous pasture matrix to 19% in heterogeneous coffee matrix. Phylogenetic diversity responded similarly, with thresholds at 30 and 24% in homogeneous‐pasture and heterogeneous‐coffee matrices, respectively, but no relationship with forest cover was detected when corrected for richness correlation. Despite the absence of a threshold for functional diversity in either matrix types, a strong decline below 20% of habitat amount was detected. Finally, below 20% native habitat loss, all diversity indices demonstrated abrupt declines, indicating that even higher‐quality matrices cannot postpone diversity loss below this critical threshold. These results highlight that taxonomic diversity is a more sensitive index of biodiversity loss in fragmented landscapes, which may be used as a benchmark to prevent subsequent functional and phylogenetic losses. Furthermore, increasing matrix quality appears an efficient conservation strategy to maintain higher biodiversity levels in fragmented landscapes over a larger range of habitat loss.  相似文献   

5.
Quantifying the effects of landscape change on population connectivity is compounded by uncertainties about population size and distribution and a limited understanding of dispersal ability for most species. In addition, the effects of anthropogenic landscape change and sensitivity to regional climatic conditions interact to strongly affect habitat fragmentation and loss. To further develop conservation theory and to understand the interplay between all of these factors, we simulated habitat fragmentation and loss across the Western United States for several hypothetical species associated with four biome types, and a range of habitat requirements and dispersal abilities. We found dispersal ability and population size of the focal species to be equally sensitive to habitat extent, while dispersal ability is more sensitive to habitat fragmentation. There were also strong critical threshold effects where habitat connectivity decreased disproportionately to decreases in life-history traits making these species near these thresholds more sensitive to changes in habitat loss and fragmentation. Overall, grassland and forest associated species are also most at risk from habitat loss and fragmentation driven by human related land-use. These two largest biome types were most sensitive at large contiguous patch sizes which is often considered most important for metapopulation viability and biodiversity conservation. Hypothetical simulation studies such as this can be of great value to scientists in further conceptualizing and developing conservation theory, and evaluating spatially-explicit scenarios of habitat connectivity. Our results are available for download in a web-based interactive mapping prototype useful for accessing the results of this study.  相似文献   

6.
In landscape ecology, substantial theoretical progress has been made in understanding how critical threshold levels of habitat loss may result in sudden changes in landscape connectivity to animal movement. Empirical evidence for such thresholds in real systems, however, remains scarce. Streambed landscapes provide a strong testing ground for studying critical thresholds because organisms are faced with substantial environmental heterogeneity while attempting to overcome the physical force of water. In this study, I report on the results from a series of experiments investigating the influence of habitat abundance and current velocity on the movement dynamics of two stream herbivores (caddisfly larva Agapetus boulderensis and snail Physa sp.) that differ substantially in how they perceive landscape structure. Specifically, I ask whether critical thresholds to herbivore movement exist in streambed landscapes. By exploiting the pattern recognition capabilities of artificial neural networks, I found that the rate, sinuosity and directionality of movement by Agapetus and Physa varied nonlinearly according to the abundance of habitat patches, current velocity and habitat-current interaction. Both the study organisms exhibited threshold responses to habitat abundance, yet the location and slope of these thresholds differed between species and with respect to different current velocities. These results suggest that a critical threshold in functional connectivity (i.e. the connection of habitat patches by dispersal) is not an inherent property of the landscape, but in fact emerges from the interplay of species' interactions with landscape structure. Moreover, current velocity interacted with habitat abundance to elicit strong upstream-oriented movement for both the species. This suggests that dispersing individuals may be polarized in the upstream direction and therefore functional connectivity is not equal in all directions. Such results highlight the need for future research addressing the sources of variability of critical threshold effects in ecological phenomena.  相似文献   

7.
8.
Conserving species-at-risk requires quantifiable knowledge of the key drivers of population change. Non-linear demographic responses to habitat loss have been documented for many species and may serve to establish quantitative habitat thresholds for management purposes. In Canada, boreal populations of woodland caribou are considered threatened; Environment Canada’s empirical model of calf recruitment–range disturbance suggests that at least 65% undisturbed habitat is required to ensure viability. We tested the relationship upon which this conservation guideline is based by pairing demographic estimates with range conditions over a 10-year period for three boreal caribou populations. Our objectives were (1) to evaluate evidence of intra-population demographic responses to fluctuations in range quality over time; (2) to evaluate inter-population differences in demographic responses to cumulative range disturbances; and (3) to evaluate the sensitivity of disturbance tolerance thresholds to variation in local population demography. We found strong evidence in support of the disturbance–recruitment relationship for within-population responses over time (R2 = 0.77). Mixed effects logistic regression modeling revealed variations in local population responses to cumulative habitat depletion. Range-specific disturbance thresholds derived from Monte Carlo simulations were highly elastic in response to observed variation in local population demography, suggesting that 65% undisturbed habitat is insufficient when adult female survival and/or sex ratio is suboptimal. Study populations were determined to be not self-sustaining (Pr(λ ≥ 0.99) = 37–47%). Adult survival was comparable to estimates reported elsewhere despite Aboriginal harvesting for subsistence purposes. Results underscored potential trade-offs between forest harvesting and wildlife habitat conservation. Protection and restoration of sufficient quantities of undisturbed habitat, particularly via road reclamation, is essential for caribou population recovery.  相似文献   

9.
The concept of threshold can potentially be applied to conservation planning of species, habitats, and ecosystems. It also has significance in managing social–ecological systems for resilience. However, our understanding and use of threshold has been scattered among various disciplines, and the link to conservation planning and social–ecological system management has not been strongly established. The review of the use of threshold in various disciplines reveals that the term is used in a similar manner in both natural and social sciences: a threshold is a point or a zone on an independent variable, and if it is crossed, a sudden, large change in the state of a dependent variable occurs. Even a small change in the independent variable brings this drastic change; nonlinear relationship characterizes the threshold response. Thresholds also separate alternative regimes in a social–ecological system. The discussion of the application of threshold concept to watershed planning concludes that although using one threshold value of impervious surfaces in a watershed to regulate new developments and retrofit old ones is a cost-effective method, a more integrated approach is needed. The use of habitat amount threshold to conserve species promotes proactive planning that would prioritize areas for protection before the threshold is reached and would restore habitat based on the threshold target. However, species-specific data to decide on the threshold is often lacking, and the identification of thresholds is not straightforward. Nonetheless, the concept of threshold is appealing for proactive planning and significant in managing social–ecological systems for resilience.  相似文献   

10.
《Ecological Complexity》2005,2(4):357-394
Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate can lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.  相似文献   

11.
Ecological theory predicts that fragmentation aggravates the effects of habitat loss, yet empirical results show mixed evidences, which fail to support the theory instead reinforcing the primary importance of habitat loss. Fragmentation hypotheses have received much attention due to their potential implications for biodiversity conservation, however, animal studies have traditionally been their main focus. Here we assess variation in species sensitivity to forest amount and fragmentation and evaluate if fragmentation is related to extinction thresholds in forest understory herbs and ferns. Our expectation was that forest herbs would be more sensitive to fragmentation than ferns due to their lower dispersal capabilities. Using forest cover percentage and the proportion of this percentage occurring in the largest patch within UTM cells of 10-km resolution covering Peninsular Spain, we partitioned the effects of forest amount versus fragmentation and applied logistic regression to model occurrences of 16 species. For nine models showing robustness according to a set of quality criteria we subsequently defined two empirical fragmentation scenarios, minimum and maximum, and quantified species’ sensitivity to forest contraction with no fragmentation, and to fragmentation under constant forest cover. We finally assessed how the extinction threshold of each species (the habitat amount below which it cannot persist) varies under no and maximum fragmentation. Consistent with their preference for forest habitats probability occurrences of all species decreased as forest cover contracted. On average, herbs did not show significant sensitivity to fragmentation whereas ferns were favored. In line with theory, fragmentation yielded higher extinction thresholds for two species. For the remaining species, fragmentation had either positive or non-significant effects. We interpret these differences as reflecting species-specific traits and conclude that although forest amount is of primary importance for the persistence of understory plants, to neglect the impact of fragmentation for some species can lead them to local extinction.  相似文献   

12.
《植物生态学报》2015,39(9):932
The concept of ecological thresholds was raised in the 1970s. However, it was subsequently given different definitions and interpretations depending on research fields or disciplines. For most scientists, ecological thresholds refer to the points or zones that link abrupt changes between alternative stable states of an ecosystem. The measurement and quantification of ecological thresholds have great theoretical and practical significance in ecological research for clarifying the structure and function of ecosystems, for planning sustainable development modes, and for delimiting ecological red lines in managing the ecosystems of a region. By reviewing the existing concepts and classifications of ecological thresholds, we propose a new concept and definition at two different levels: the ecological threshold points, i.e. the turning points of quantitative changes to qualitative changes, which can be considered as ecological red lines; the ecological threshold zones, i.e. the regime shifts of the quantitative changes among different stable states, which can be considered as the yellow and/or orange warning boundaries of the gradual ecological changes. The yellow thresholds mean that an ecosystem can return to a stable state by its self-adjustment, the orange thresholds indicate that the ecosystem will stay in the equilibrium state after interference factors being removed, whereas the red thresholds, as the critical threshold points, indicate that the ecosystem will undergo irreversible degradation or even collapse beyond those points. We also summarizes two types of popular Methods in determining ecological thresholds: statistical analysis and modeling based on data of field observations. The applications of ecological thresholds in ecosystem service, biodiversity conservation and ecosystem management research are also reviewed. Future research on ecological thresholds should focus on the following aspects: (1) methodological development for measurement and quantification of ecological thresholds; (2) emphasizing the scaling effect of ecological thresholds and establishment of national-scale observation system and network; and (3) implementation of ecological thresholds as early warning tools in ecosystem management and delimiting ecological red lines.  相似文献   

13.
Habitat fragmentation and large-scale conservation: what do we know for sure?   总被引:36,自引:0,他引:36  
We review the ecological effects of habitat fragmentation, comparing the theoretical approaches that have been taken to understanding it with the existing evidence from empirical studies. Theory has emphasized the spatial aspects of fragmentation and the role of dispersal among patches, and has generated interesting predictions such as a nonlinear relationship between the amount of remaining habitat and the probability of species persistence. However, while the few available large-scale empirical studies of fragmentation all tend to show that it has major effects, these documented effects tend to be relatively simple ones such as the degradation of habitat quality within fragments. There is good reason to be cautious of any claim that corridors or the spatial configuration of remaining habitat can compensate for the overall loss of habitat.
This is an invited Minireview on the occasion of the 50th anniversary of the Nordic Ecological Society Oikos.  相似文献   

14.
The Madagascar plover Charadrius thoracicus is a shorebird endemic to western Madagascar, currently classified as globally vulnerable. It is restricted to specialized wetland habitats that are increasingly threatened by humans. To inform future conservation measures for this poorly known species, we develop a predictive habitat suitability map and use this map to estimate the size of the Madagascar plover population. We integrate spatially referenced presence-only observations of Madagascar plovers with Landsat data, elevation data and measures of distance to settlements and the coast to produce a habitat suitability model using ecological niche factor analysis. Validation of this model using a receiver operating characteristic plot suggests that it is at least 84% accurate in predicting suitable sites. We then use our estimate of total area of suitable habitat above a critical suitability threshold and data on Madagascar plover density in suitable sites to estimate the total population size to derive a total population estimate of 3100±396 standard error individuals. Finally, we explore the conservation applications of our model.  相似文献   

15.
Although both niche‐based and neutral processes are involved in community assembly, most models on the effects of habitat loss are stochastic, assuming neutral communities mainly affected by ecological drift and random extinction. Given that habitat loss is considered the most important driver of the current biodiversity crisis, unraveling the processes underlying the effects of habitat loss is critical from both a theoretical and an applied perspective. Here we unveil the importance of niche‐based and neutral processes to species extinction and community assembly across a gradient of habitat loss, challenging the predictions of neutral models. We draw on a large dataset containing the distribution of 3653 individuals of 42 species, representing 35% of the small mammal species of the Atlantic Forest hotspot, obtained in 68 sites across three continuously‐forested landscapes and three adjacent 10 000‐ha fragmented landscapes differing in the amount of remaining forest (50%, 30% and 10%). By applying a null‐model approach, we investigated β‐diversity patterns by detecting deviations of observed community similarity from the similarity between randomly assembled communities. Species extinction following habitat loss was decidedly non‐random, in contrast to the notion that fragmented communities are mainly driven by ecological drift. Instead, habitat loss led to a strong biotic homogenization. Moreover, species composition changed abruptly at the same level of landscape‐scale habitat loss that has already been associated with a drastic decline in species richness. Habitat loss, as other anthropogenic disturbances, can thus be seen as a strong ecological filter that increases (rather than decreases) the importance of deterministic processes in community assembly. As such, critical advances for the development of conservation science lie on the incorporation of the relevant niche traits associated with extinction proneness into models of habitat loss. The results also underscore the fundamental importance of pro‐active measures to prevent human‐modified landscapes surpassing critical ecological thresholds.  相似文献   

16.
Ecological and biological processes can change from one state to another once a threshold has been crossed in space or time. Threshold responses to incremental changes in underlying variables can characterize diverse processes from climate change to the desertification of arid lands from overgrazing. Simultaneously estimating the location of thresholds and associated ecological parameters can be difficult: ecological data are often 'noisy', which can make the identification of the locations of ecological thresholds challenging. We illustrate this problem using two ecological examples and apply a class of statistical models well-suited to addressing this problem. We first consider the case of estimating allometric relationships between tree diameter and height when the trees have distinctly different growth modes across life-history stages. We next estimate the effects of canopy gaps and dense understory vegetation on tree recruitment in transects that transverse both canopy and gap conditions. The Bayesian change-point models that we present estimate both threshold locations and the slope or level of ecological quantities of interest, while incorporating uncertainty in the change-point location into these estimates. This class of models is suitable for problems with multiple thresholds and can account for spatial or temporal autocorrelation.  相似文献   

17.
An ecological threshold is the point at which there is an abrupt change in an ecosystem quality, property or phenomenon, or where small changes in an environmental driver produce large responses in the ecosystem. Analysis of thresholds is complicated by nonlinear dynamics and by multiple factor controls that operate at diverse spatial and temporal scales. These complexities have challenged the use and utility of threshold concepts in environmental management despite great concern about preventing dramatic state changes in valued ecosystems, the need for determining critical pollutant loads and the ubiquity of other threshold-based environmental problems. In this paper we define the scope of the thresholds concept in ecological science and discuss methods for identifying and investigating thresholds using a variety of examples from terrestrial and aquatic environments, at ecosystem, landscape and regional scales. We end with a discussion of key research needs in this area.  相似文献   

18.
Understanding factors that ameliorate the impact of habitat loss is a major focus of conservation research. One key factor influencing species persistence and evolution is the ability to disperse across increasingly patchy landscapes. Here we ask whether interpatch distance (a proxy for habitat loss) and dispersal strategy can interact to form thresholds where connectivity breaks down. We assayed dispersal across a range of interpatch distances in fruit flies carrying allelic variants of a gene known to underlie differences in dispersal strategy. Dispersal‐limited flies experienced a distinct negative threshold in connectivity at greater interpatch distances, and this was not observed in more dispersive flies. Consequently, this differential response of dispersal‐limited and more dispersive flies to decreasing connectivity suggests that habitat loss could have important implications on the evolution and maintenance of genetic variation underlying dispersal strategy.  相似文献   

19.
The relationship between monthly climate predictors and radial growth of Engelmann spruce (Picea engelmanni Parry) and subalpine fir (Abies lasiocarpa (Hook.) Nutt) were explored using both a standard dendroclimatological approach and a multiple adaptive regressions splines (MARS) framework. Consistent with previous research, the radial growth of fir and spruce was related to temperature variables over the time period of the instrumental record. We identify important temporal instability in the statistical relationships between climate variables and the radial growth of both subalpine fir and Engelmann spruce. Using a 30-year running window, only four of the climate variables related to the radial growth of either spruce or fir did not show a switch in the sign of the correlation. A multiple adaptive regressions spline method was then used to gain insight into thresholds that may relate to radial growth–climate instabilities. Using MARS, we were able to identify knots and non-monotonic relationships between radial growth and climate predictors that may be indicators of ecological thresholds. This combination of dendroclimatic methods provides valuable insight into the complex nonlinear responses that both subalpine fir and Engelmann spruce have been growing under in the past centuries.  相似文献   

20.
生态阈值研究进展   总被引:19,自引:2,他引:17  
生态阈值是指生态系统从一种状态快速转变为另一种状态的某个点或一段区间,推动这种转变的动力来自某个或多个关键生态因子微弱的附加改变。生态阈值现象普遍存在于自然生态系统中。主要有两种类型:生态阈值点(ecological threshold point)和生态阈值带(ecological threshold zone)。在生态阈值点前后,生态系统的特性、功能或过程发生迅速的改变。生态阈值带暗含了生态系统从一种稳定状态到另一稳定状态逐渐转换的过程,而不像点型阈值那样发生突然的转变。后者在自然界中可能更为普遍。在自然资源保护和生态系统可持续管理中,生态阈值研究有着重要的理论和实践意义,受到生态学和相关学科的密切关注。其研究已经在森林、草原、湖泊、海洋等生态系统,从不同角度,针对不同生态因子广泛开展。由于生态因子相互作用的复杂性,有关生态阈值的性质及其在不同空间尺度上的联系仍然存在很大的不确定性。在未来的研究中必须加强综合和定量化研究,进一步提高应用生态阈值的能力。在全球变化和生态响应研究领域,生态阈值研究将会有更大的发展空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号