首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.

Background

The suprachiasmatic nucleus (SCN), the master circadian clock, is a heterogeneous oscillator network, yet displays a robust synchronization dynamics. Recent single-cell bioluminescent imaging revealed temporal gradients in circadian clock gene expression in the SCN ex vivo. However, due to technical difficulty in biological approaches to elucidate the entire network structure of the SCN, characteristics of the gradient, which we refer to as phase wave, remain unknown.

Methodology/Principal Findings

We implemented new approaches, i.e., quantitative analysis and model simulation to characterize the phase waves in Per2::Luciferase clock reporter gene expression of the rat SCN slice. Our quantitative study demonstrated not only a high degree of synchronization between the neurons and regular occurrence of the phase wave propagation, but also a significant amount of phase fluctuations contained in the wave. In addition, our simulations based on local coupling model suggest that the intercellular coupling strength estimated by the model simulations is significantly higher than the critical value for generating the phase waves. Model simulations also suggest that heterogeneity of the SCN neurons is one of the main factors causing the phase wave fluctuations. Furthermore, robustness of the SCN network against dynamical noise and variation of the natural frequencies inherent in these neurons was quantitatively assessed.

Conclusions/Significance

To our knowledge, this is the first quantitative evaluation of the phase wave and further characterization of the SCN neuronal network features generating the wave i.e., intercellular synchrony, phase fluctuation, strong local coupling, heterogeneous periodicity and robustness. Our present study provides an approach, which will lead to a comprehensive understanding of mechanistic and/or biological significance of the phase wave in the central circadian oscillatory system.  相似文献   

5.
6.
7.
The mechanisms of circadian clock function in Arabidopsis rely on the complex relationships among core clock components. The current model of the Arabidopsis oscillator comprises a myriad of repressors but the mechanisms responsible for activation remain largely unknown. In our recent studies, we have demonstrated that the rhythms in H3 acetylation (H3ac) and H3K4 trimethylation (H3K4me3) are a key mechanism at the positive arm of the oscillator. H3K4me3 rhythmic accumulation is delayed compared to that of H3ac, which opens the possibility for separate roles for each mark. Indeed, the use of inhibitors that block H3K4me3 accumulation was concomitant with increased clock repressor binding, suggesting that H3K4me3 might control the timing from activation to repression. Plants mis-expressing the histone methyltransferase SET DOMAIN GROUP 2 (SDG2/ATXR3) displayed altered H3K4me3 accumulation, oscillator gene expression and clock repressor binding, suggesting that SDG2/ATXR3 is a key component contributing to proper circadian expression.  相似文献   

8.
9.
Processes that repeat in time, such as the cell cycle, the circadian rhythm, and seasonal variations, are prevalent in biology. Mathematical models can represent our knowledge of the underlying mechanisms, and numerical methods can then facilitate analysis, which forms the foundation for a more integrated understanding as well as for design and intervention. Here, the intracellular molecular network responsible for the mammalian circadian clock system was studied. A new formulation of detailed sensitivity analysis is introduced and applied to elucidate the influence of individual rate processes, represented through their parameters, on network functional characteristics. One of four negative feedback loops in the model, the Per2 loop, was uniquely identified as most responsible for setting the period of oscillation; none of the other feedback loops were found to play as substantial a role. The analysis further suggested that the activity of the kinases CK1δ and CK1 were well placed within the network such that they could be instrumental in implementing short-term adjustments to the period in the circadian clock system. The numerical results reported here are supported by previously published experimental data.  相似文献   

10.
11.
12.
Despite recent advances in circadian biology, detailed understanding of how a biological pacemaker system is assembled, maintained, and regulated continues to be a significant challenge. We have assembled and characterized a first-generation, regulatable, self-sustained clock-like expression system based on key components of the mammalian circadian clock. The molecular setup of the clock-like oscillator was reduced to the core set of positive and negative elements common to all known circadian pacemakers. Sophisticated tetracycline-responsive multi-cistronic expression integrated with forefront lentiviral transduction tools enabled autoregulated reporter transgene expression in a human cell line. We characterized transgene expression kinetics of an artificial oscillator and showed that its expression profiles could be modulated by a serum shock and administration of regulating tetracycline antibiotics. Design of a generic mammalian clock-like expression system will offer novel opportunities to study circadian biology and may provide a unique tool for rhythmic expression of desired transgenes fostering advances in biopharmaceutical manufacturing, gene therapy, and tissue engineering.  相似文献   

13.
14.
15.
The field of systems biology studies how the interactions among individual components (e.g. genes and proteins) yield interesting and complex behavior. The circadian (daily) timekeeping system in mammals is an ideal system to study complexity because of its many biological scales (from genes to animal behavior). A wealth of data at each of these scales has recently been discovered. Within each scale, modeling can advance our understanding of challenging problems that arise in studying mammalian timekeeping. However, future work must focus on bridging the multiple spatial and temporal scales in the modeling of SCN network. Here we review recent advances, and then delve into a few areas that are promising research directions. We also discuss the flavor of modeling needed (simple or detailed) as well as new techniques that are needed to meet the challenges in modeling data across scales.  相似文献   

16.
17.
Androgen regulates the proper development and physiological function of the prostate. Here, we investigated the modulation of androgen and androgen receptor (AR) antagonist on circadian oscillations of a clock core gene Period 2 (Per2) in rat prostate mesenchymal cells (PMCs). Circadian oscillations were analyzed with the real-time monitoring system of gene expression using transgenic rats introduced with mouse Per2 promoter fused to a destabilized luciferase (Per2-dLuc) reporter gene. Analyses of circadian oscillations, immunofluorescence, and androgen response element (ARE)-luciferase reporter assay revealed that circadian clocks are operative and the AR protein is functional in PMCs in vitro. Androgen such as testosterone (T) and dihydrotestosterone (DHT) did not cause any changes in circadian Per2-dLuc oscillations of confluent cells. Conversely, flutamide (FL) up-regulated the amplitude of circadian Per2-dLuc oscillations in a dose-dependent manner, whereas T antagonized the action of FL. The PER2 protein was markedly accumulated by FL treatment and localized in both the nucleus and cytoplasm during the first peak period of circadian Per2-dLuc oscillations. Simultaneously, FL treatment increased apoptotic cell death. Collectively, the present study demonstrates that a clock gene Per2 is up-regulated in PMCs during FL-induced apoptotic cell death. Thus, circadian oscillations of Per2 gene expression may be closely linked to the cellular states of PMCs such as apoptotic cell death.  相似文献   

18.
Orchestration of gene expression and physiology by the circadian clock   总被引:1,自引:0,他引:1  
Urs Albrecht   《Journal of Physiology》2006,100(5-6):243-251
  相似文献   

19.
20.
Posttranslational mechanisms regulate the mammalian circadian clock.   总被引:36,自引:0,他引:36  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号