首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The intracellular accumulation of small organic solutes was described in the marine bacterium Rhodopirellula baltica, which belongs to the globally distributed phylum Planctomycetes whose members exhibit an intriguing lifestyle and cell morphology. Sucrose, α-glutamate, trehalose and mannosylglucosylglycerate (MGG) are the main solutes involved in the osmoadaptation of R. baltica. The ratio and total intracellular organic solutes varied significantly in response to an increase in salinity, temperature and nitrogen content. R. baltica displayed an initial response to both osmotic and thermal stresses that includes α-glutamate accumulation. This trend was followed by a rather unique and complex osmoadaptation mechanism characterized by a dual response to sub-optimal and supra-optimal salinities. A reduction in the salinity to sub-optimal conditions led primarily to the accumulation of trehalose. In contrast, R. baltica responded to salt stress mostly by increasing the intracellular levels of sucrose. The switch between the accumulation of trehalose and sucrose was by far the most significant effect caused by increasing the salt levels of the medium. Additionally, MGG accumulation was found to be salt- as well as nitrogen-dependent. MGG accumulation was regulated by nitrogen levels replacing α-glutamate as a K+ counterion in nitrogen-poor environments. This is the first report of the accumulation of compatible solutes in the phylum Planctomycetes and of the MGG accumulation in a mesophilic organism.  相似文献   

2.
Dimethyl sulfide(DMS) is the most abundant form of volatile sulfur in Earth's oceans, and is mainly produced by the enzymatic clevage of dimethylsulfoniopropionate(DMSP). DMS and DMSP play important roles in driving the global sulfur cycle and may affect climate. DMSP is proposed to serve as an osmolyte, a grazing deterrent, a signaling molecule, an antioxidant, a cryoprotectant and/or as a sink for excess sulfur. It was long believed that only marine eukaryotes such as phytoplankton produce DMSP. However, we recently discovered that marine heterotrophic bacteria can also produce DMSP, making them a potentially important source of DMSP. At present, one prokaryotic and two eukaryotic DMSP synthesis enzymes have been identified.Marine heterotrophic bacteria are likely the major degraders of DMSP, using two known pathways: demethylation and cleavage.Many phytoplankton and some fungi can also cleave DMSP. So far seven different prokaryotic and one eukaryotic DMSP lyases have been identified. This review describes the global distribution pattern of DMSP and DMS, the known genes for biosynthesis and cleavage of DMSP, and the physiological and ecological functions of these important organosulfur molecules, which will improve understanding of the mechanisms of DMSP and DMS production and their roles in the environment.  相似文献   

3.
Several bloom‐forming marine algae produce concentrated intracellular dimethylsulfoniopropionate (DMSP) and display high DMSP cleavage activity in vitro and during lysis after grazing or viral attack. Here we show evidence for cleavage of DMSP in response to environmental cues among different strains of the haptophyte Emiliania huxleyi (Lohmann) Hay et Mohler and the dinoflagellate Alexandrium spp. (Halim). Sparging or shaking live cells of either taxon increased dimethyl sulfide (DMS), especially in dinoflagellates, known to be very sensitive to shear stresses. Additions of polyamines, known triggers of exocytosis in some protists, also stimulated DMSP cleavage in a dose‐responsive manner. We observed DMS production by some algae after shifts in light regime. When most exponential‐phase E. huxleyi were transferred to continuous darkness, cells decreased in volume and DMSP content within 24 h; DMSP content per unit cell volume remained relatively steady. DMS accumulated as long as cells remained in the dark, but on returning to a light:dark cycle DMS accumulation ceased within 24 h. However, E. huxleyi strain CCMP 373, containing highly active in vitro DMSP lyase, produced only transient accumulations of DMS in the dark. This was apparently due to production and concomitant oxidation or uptake of DMS, because cells of this strain rapidly removed DMS added to cultures. Three strains of the dinoflagellate Alexandrium tamarense containing high in vitro DMSP lyase activity showed no DMS production in the dark, and all appeared to remove additions of DMS. Alexandrium tamarense strain CCMP 1771 also removed dimethyl disulfide, an inhibitor of bacterial DMS consumption. These data suggest that physical or chemical cues can trigger algal DMSP cleavage, but DMS production may be masked by subsequent oxidation and/or uptake.  相似文献   

4.
The aim of this study was to identify the compatible solutes accumulated by Pseudomonas putida S12 subjected to osmotic stress. In response to reduced water activity, P. putida S12 accumulated Nalpha-acetylglutaminylglutamine amide (NAGGN) simultaneously with a novel compatible solute identified as mannitol (using 13C- and 1H-nuclear magnetic resonance, liquid chromatography-mass spectroscopy and high-performance liquid chromatography methods) to maximum concentrations of 74 and 258 micromol g (dry weight) of cells(-1), respectively. The intracellular amounts of each solute varied with both the type and amount of osmolyte applied to induce osmotic stress in the medium. Both solutes were synthesized de novo. Addition of betaine to the medium resulted in accumulation of this compound and depletion of both NAGGN and mannitol. Mannitol and NAGGN were accumulated when sucrose instead of salts was used to reduce the medium water activity. Furthermore, both compatible solutes were accumulated when glucose was substituted by other carbon sources. However, the intracellular quantities of mannitol decreased when fructose, succinate, or lactate were applied as a carbon source. Mannitol was also raised to high intracellular concentrations by other salt-stressed Pseudomonas putida strains. This is the first study demonstrating a principal role for the de novo-synthesized polyol mannitol in osmoadaptation of a heterotrophic eubacterium.  相似文献   

5.
Recent studies have established that aqueous phase concentrations of dimethylsulfoxide (DMSO) often exceed those of dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS). Yet, in comparison to DMSP and DMS, DMSO remains a poorly understood component of the marine sulfur cycle. Much of what is known about the mechanisms for the formation and loss for DMSO is inferred from laboratory experiments, and no explanation exists to rationalize how a large pool of DMSO is maintained. One formation pathway that, until very recently, has been ignored involves the direct synthesis of DMSO by marine phytoplankton. This review examines some of the circumstantial evidence for DMSO in marine particulate material and recent reports containing preliminary data for particulate DMSO (DMSOp) in the marine environment. Drawing on literature from a range of scientific disciplines, speculations on the possible origins and biological functions of intracellular DMSO are also made. On the basis of its physicochemical properties, intracellular DMSO could have a potential role as a cryoprotectant, a specialist cryo-osmoregulator in extreme environments, an intracellular electrolyte modifier, and a free-radical scavenger. The review also assesses the impact of DMSOp at both the organism and the global level. Consideration is given to the marine biogeochemical cycling of sulfur and potential links to climate control.  相似文献   

6.
This study reviews the addition of compatible solutes to biological systems as a strategy to counteract osmolarity and other environmental stresses. At high osmolarity many microorganisms accumulate organic solutes called “compatible solutes” in order to balance osmotic pressure between the cytoplasm and the environment. These organic compounds are called compatible solutes because they can function inside the cell without the need for special adaptation of the intracellular enzymes, and also serve as protein stabilizers in the presence of high ionic strength. Moreover, the compatible solutes strategy is regularly being employed by the cell, not only under osmotic stress at high salinity, but also under other extreme environmental conditions such as low temperature, freezing, heat, starvation, dryness, recalcitrant compounds and solvent stresses. The accumulation of these solutes from the environment has energetically a lower cost than de novo synthesis. Based on this cell mechanism several studies in the field of environmental biotechnology (most of them on biological wastewater treatment) employed this strategy by exogenously adding compatible solutes to the wastewater or medium in order to alleviate environmental stress. This current paper critically reviews and evaluates these studies, and examines the future potential of this approach. In addition to this, a strategy for the successful implementation of compatible solutes in biological systems is proposed.  相似文献   

7.
8.
脯氨酸在植物生长和非生物胁迫耐受中的作用   总被引:22,自引:0,他引:22  
脯氨酸是生物界分布最广的渗透保护物质之一,干旱、高盐、高温及重金属等非生物胁迫条件都会导致植物体内脯氨酸含量的增加,其作用是防止渗透胁迫对植物造成的伤害、清除自由基,还可以作为氮、碳以及NADPH的重要来源。近年来,在转化脯氨酸代谢相关基因提高植物胁迫抗性方面也取得了很大进展。本文概要介绍了脯氨酸在植物生长和耐受非生物胁迫中的作用、与植物脯氨酸累积有关的信号转导、胁迫条件下脯氨酸的吸收和器官间的运输途径,以及通过转基因技术过量表达脯氨酸提高植物胁迫耐性的代谢工程的进展。  相似文献   

9.
10.
Vibrio cholerae is a halophilic facultative human pathogen found in marine and estuarine environments. Accumulation of compatible solutes is important for growth of V. cholerae at NaCl concentrations greater than 250 mM. We have identified and characterized two compatible solute transporters, OpuD and PutP, that are involved in uptake of glycine betaine and proline by V. cholerae. V. cholerae does not, however, possess the bet genes, suggesting that it is unable to synthesize glycine betaine. In contrast, many Vibrio species are able to synthesize glycine betaine from choline. It has been shown that many bacteria not only synthesize but also secrete glycine betaine. We hypothesized that sharing of compatible solutes might be a mechanism for cooperativity in microbial communities. In fact, we have demonstrated that, in high-osmolarity medium, V. cholerae growth and biofilm development are enhanced by supplementation with either glycine betaine or spent media from other bacterial species. Thus, we propose that compatible solutes provided by other microorganisms may contribute to survival of V. cholerae in the marine environment through facilitation of osmoadaptation and biofilm development.  相似文献   

11.
Organic Lake is a shallow, marine-derived hypersaline lake in the Vestfold Hills, Antarctica that has the highest reported concentration of dimethylsulfide (DMS) in a natural body of water. To determine the composition and functional potential of the microbial community and learn about the unusual sulfur chemistry in Organic Lake, shotgun metagenomics was performed on size-fractionated samples collected along a depth profile. Eucaryal phytoflagellates were the main photosynthetic organisms. Bacteria were dominated by the globally distributed heterotrophic taxa Marinobacter, Roseovarius and Psychroflexus. The dominance of heterotrophic degradation, coupled with low fixation potential, indicates possible net carbon loss. However, abundant marker genes for aerobic anoxygenic phototrophy, sulfur oxidation, rhodopsins and CO oxidation were also linked to the dominant heterotrophic bacteria, and indicate the use of photo- and lithoheterotrophy as mechanisms for conserving organic carbon. Similarly, a high genetic potential for the recycling of nitrogen compounds likely functions to retain fixed nitrogen in the lake. Dimethylsulfoniopropionate (DMSP) lyase genes were abundant, indicating that DMSP is a significant carbon and energy source. Unlike marine environments, DMSP demethylases were less abundant, indicating that DMSP cleavage is the likely source of high DMS concentration. DMSP cleavage, carbon mixotrophy (photoheterotrophy and lithoheterotrophy) and nitrogen remineralization by dominant Organic Lake bacteria are potentially important adaptations to nutrient constraints. In particular, carbon mixotrophy relieves the extent of carbon oxidation for energy production, allowing more carbon to be used for biosynthetic processes. The study sheds light on how the microbial community has adapted to this unique Antarctic lake environment.  相似文献   

12.
The mechanism of osmoadaptation in a salt-tolerant (1.2 M NaCl) bacterial isolate identified as Pseudomonas mendocina (N. J. Palleroni, M. Doudoroff, R. Y. Stanier, R. E. Solanes, and R. Mandel, J. Gen. Microbiol. 60:215-231, 1970) was investigated. In response to osmotic stress, this species accumulated a number of compatible solutes, the intracellular levels of which depended on both the osmolarity and the ionic composition of the growth medium. Glucosylglycerol [alpha-D-glucopyranosyl-alpha-(1-->2)-glycerol], N-acetylglutaminylglutamine amide, and L-alpha-glutamate were the major compatible solutes accumulated via de novo biosynthesis. Trehalose was also accumulated, but only in cells grown in the presence of high concentrations of sulfate or phosphate ions. Glycine betaine was accumulated only when supplied exogenously to cells grown at high osmolarity, and its accumulation caused a significant depletion of the intracellular pools of glucosylglycerol and glutamate. Glucosylglycerol was also found to accumulate in the type strains of P. mendocina and P. pseudoalcaligenes. This is the first report demonstrating the pivotal role of glucosylglycerol in osmoadaptation in a nonphotosynthetic microorganism.  相似文献   

13.
Dimethylsulfoniopropionate (DMSP) is degraded to dimethylsulfide (DMS) and acrylate by the enzyme DMSP lyase. DMS or acrylate can serve as a carbon source for both free-living and endophytic bacteria in the marine environment. In this study, we report on the mechanism of DMSP-acrylate metabolism by Alcaligenes faecalis M3A. Suspensions of citrate-grown cells expressed a low level of DMSP lyase activity that could be induced to much higher levels in the presence of DMSP, acrylate, and its metabolic product, beta-hydroxypropionate. DMSP was degraded outside the cell, resulting in an extracellular accumulation of acrylate, which in suspensions of citrate-grown cells was then metabolized at a low endogenous rate. The inducible nature of acrylate metabolism was evidenced by both an increase in the rate of its degradation over time and the ability of acrylate-grown cells to metabolize this molecule at about an eight times higher rate than citrate-grown cells. Therefore, acrylate induces both its production (from DMSP) and its degradation by an acrylase enzyme. (1)H and (13)C nuclear magnetic resonance analyses were used to identify the products resulting from [1-(13)C]acrylate metabolism. The results indicated that A. faecalis first metabolized acrylate to beta-hydroxypropionate outside the cell, which was followed by its intracellular accumulation and subsequent induction of DMSP lyase activity. In summary, the mechanism of DMSP degradation to acrylate and the subsequent degradation of acrylate to beta-hydroxypropionate in the aerobic beta-Proteobacterium A. faecalis has been described.  相似文献   

14.
The α-proteobacterium Sulfitobacter EE-36 makes the gas dimethylsulfide (DMS) from dimethylsulfoniopropionate (DMSP), an abundant antistress molecule made by many marine phytoplankton. We screened a cosmid library of Sulfitobacter for clones that conferred to other bacteria the ability to make DMS. One gene, termed dddL , was sufficient for this phenotype when cloned in pET21a and introduced into Escherichia coli . Close DddL homologues exist in the marine α-proteobacteria Fulvimarina , Loktanella Oceanicola and Stappia , all of which made DMS when grown on DMSP. There was also a dddL homologue in Rhodobacter sphaeroides strain 2.4.1, but not in strain ATCC 17025; significantly, the former, but not the latter, emits DMS when grown with DMSP. Escherichia coli containing the cloned, overexpressed dddL genes of R. sphaeroides 2.4.1 and Sulfitobacter could convert DMSP to acrylate plus DMS. This is the first identification of such a 'DMSP lyase'. Thus, DMS can be made either by this DddL lyase or by a DMSP acyl CoA transferase, specified by dddD , a gene that we had identified in several other marine bacteria.  相似文献   

15.
16.
Both solar irradiance and primary production have been proposed as independent controls on seawater dimethyl sulphide (DMS) and dimethylsulphoniopropionate (DMSP) concentrations. However, irradiance also drives photosynthesis, and thus influences a complex set of inter-related processes that modulate marine DMS. We investigate the potential inter-relationships between the rate of primary production (carbon assimilation), water-attenuated irradiance and DMS/DMSP dynamics by applying correlation analysis to a high resolution, concurrently sampled in situ data set from a range of latitudes covering multiple biogeochemical provinces from 3 of the 4 Longhurst biogeochemical domains. The combination of primary production (PP) and underwater irradiance (Iz) within a multivariate regression model is able to explain 55% of the variance in DMS concentrations from all depths within the euphotic zone and 66% of the variance in surface DMS concentrations. Contrary to some previous studies we find a variable representing biological processes is necessary to better account for the variance in DMS. We find that the inclusion of Iz accounts for variance in DMS that is independent from the variance explained by PP. This suggests an important role for solar irradiance (beyond the influence of irradiance upon primary production) in mediating the relationship between the productivity of the ecosystem, DMS/DMSP production and ambient seawater DMS concentrations.  相似文献   

17.
Microbial consumption is one of the main processes, along with photolysis and ventilation, that remove the biogenic trace gas dimethylsulfide (DMS) from the surface ocean. Although a few isolates of marine bacteria have been studied for their ability to utilize DMS, little is known about the characteristics or phylogenetic affiliation of DMS consumers in seawater. We enriched coastal and open-ocean waters with different carbon sources to stimulate different bacterial communities (glucose-consuming bacteria, methyl group-consuming bacteria and DMS consumers) in order to test how this affected DMS consumption and to examine which organisms might be involved. Dimethylsulfide consumption was greatly stimulated in the DMS addition treatments whereas there was no stimulation in the other treatments. Analysis of microbial DNA by two different techniques (sequenced bands from DGGE gels and clone libraries) showed that bacteria grown specifically with the presence of DMS were closely related to the genus Methylophaga. We also followed the fate of consumed DMS in some of the enrichments. Dimethylsulfide was converted mostly to DMSO in glucose or methanol enrichments, whereas it was converted mostly to sulfate in DMS enrichments, the latter suggesting use of DMS as a carbon and energy source. Our results indicate that unlike the biochemical precursor of DMS, dimethylsulfoniopropionate (DMSP), which is consumed by a broad spectrum of marine microorganisms, DMS seems to be utilized as a carbon and electron source by specialists. This is consistent with the usual observation that DMSP turns over at much higher rates than DMS.  相似文献   

18.
Dimethylsulfoniopropionate (DMSP) is mainly produced by marine phytoplankton but is released into the microbial food web and degraded by marine bacteria to dimethyl sulfide (DMS) and other products. To reveal the abundance and distribution of bacterial DMSP degradation genes and the corresponding bacterial communities in relation to DMS and DMSP concentrations in seawater, we collected surface seawater samples from DMS hot spot sites during a cruise across the Pacific Ocean. We analyzed the genes encoding DMSP lyase (dddP) and DMSP demethylase (dmdA), which are responsible for the transformation of DMSP to DMS and DMSP assimilation, respectively. The averaged abundance (±standard deviation) of these DMSP degradation genes relative to that of the 16S rRNA genes was 33% ± 12%. The abundances of these genes showed large spatial variations. dddP genes showed more variation in abundances than dmdA genes. Multidimensional analysis based on the abundances of DMSP degradation genes and environmental factors revealed that the distribution pattern of these genes was influenced by chlorophyll a concentrations and temperatures. dddP genes, dmdA subclade C/2 genes, and dmdA subclade D genes exhibited significant correlations with the marine Roseobacter clade, SAR11 subgroup Ib, and SAR11 subgroup Ia, respectively. SAR11 subgroups Ia and Ib, which possessed dmdA genes, were suggested to be the main potential DMSP consumers. The Roseobacter clade members possessing dddP genes in oligotrophic subtropical regions were possible DMS producers. These results suggest that DMSP degradation genes are abundant and widely distributed in the surface seawater and that the marine bacteria possessing these genes influence the degradation of DMSP and regulate the emissions of DMS in subtropical gyres of the Pacific Ocean.  相似文献   

19.
二甲基巯基丙酸内盐(dimethylsulfoniopropionate,DMSP)是全球硫循环和碳循环的重要载体物质。海洋浮游植物、大型藻类和临海被子植物是DMSP的主要生产者。每年DMSP的产量可以达到1×10~9吨。在北大西洋表面的某些区域,DMSP的产量可以达到碳固定总量的10%。微生物介导的DMSP的裂解是全球硫循环和碳循环的重要步骤。目前,8种参与裂解DMSP的DMSP裂解酶已被报道。在已发现的8种DMSP裂解酶中,3种DMSP裂解酶的催化机制得到了研究和阐明。本文根据国内外研究成果,主要对DMSP裂解过程的酶促催化机制的研究进展进行综述,认为在今后工作中需要继续发现新的DMSP裂解酶,并进一步揭示海洋微生物裂解DMSP的分子机制。  相似文献   

20.
Each year, several million tons of dimethylsulfoniopropionate (DMSP) are produced by marine phytoplankton and bacteria as an important osmolyte to regulate their cellular osmosis. Microbial breakdown of DMSP to the volatile gas dimethylsulfide (DMS) plays an important role in global biogeochemical cycles of the sulphur element between land and the sea. Understanding the enzymes involved in the transformation of DMSP and DMS holds the key to a better understanding of oceanic DMSP cycles. Recent work by Shao et al. (2019) has resolved the crystal structure of two important enzymes, DmdB and DmdC, involved in DMSP transformation through the demethylation pathway. Their work represents an important step towards a systematic understanding of the structure–function relationships of DMSP‐catabolizing enzymes in marine microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号