首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以轻质芳烃苯、甲苯、二甲苯以及萘(BTXN)为目的产物,采用双颗粒流化床对松木进行了催化热分解实验。讨论了催化剂CoMo-B加氢催化作用下,静止床高、流化气速、床层压降的相互关系,得到了一个合适的操作条件,为热分解实验提供了必要的基础实验数据。在热分解实验中,调查了操作气速、床层高度以及热解温度对产物收率和分布的影响,得到了中间产物苯、甲苯、二甲苯和萘等轻质芳烃化合物最高收率为6.3%下的最佳操作条件:催化剂为CoMo-B,气速2.0cm/s,床层高度为0.08m,热解温度863K。  相似文献   

2.
甜菜碱(Betaine)是生物体内氨基酸代谢的中间产物[1],可作为甲基供体,参与“一碳单位”的活化的甲基循环[2]。许多生物,特别是依赖环境条件而代谢类型多样化的植物、细菌和水生低等生物,在干旱、盐渍、深冻等低水势的逆境中,为了维持细胞的渗透势,合成和积累有机小分子,如脯氨酸[3]、甜菜碱[4]等氨基酸类,岩藻糖[5]、甘露醇[6]等单糖、双糖、三糖及糖醇类物质。LeRudalier[1]等(1984)法国和美国科学家合作,用150种代谢中间产物作体外渗透胁迫实验,发现只有甘氨酸甜菜碱和脯氨酸甜菜碱能有效地促进细胞生长,…  相似文献   

3.
微生物在次级代谢过程中通常会产生结构复杂、活性多样的天然产物。这些天然产物是新药发展的基础,亦可作为先导化合物或重要的药效基团用于药物研发。结构多样的氨基酸单元是参与合成复杂多样天然产物的重要前体。天然产物中的β-甲基氨基酸单元不仅可以赋予其生物活性,还能增强其生物稳定性而不被肽酶水解。本文综述了含有β-甲基氨基酸单元的天然产物,尤其对含有β-甲基色氨酸单元的天然产物生物合成途径进行了阐释。对β-甲基色氨酸单元生物合成途径的理解结合基因组数据有助于进行新结构天然产物的挖掘,并为运用代谢科学理念和合成生物学技术开发含有该单元的新化合物提供理论基础和可操作遗传元件。  相似文献   

4.
微生物在次级代谢过程中通常会产生结构复杂、活性多样的天然产物。这些天然产物是新药发展的基础,亦可作为先导化合物或重要的药效基团用于药物研发。结构多样的氨基酸单元是参与合成复杂多样天然产物的重要前体。天然产物中的β-甲基氨基酸单元不仅可以赋予其生物活性,还能增强其生物稳定性而不被肽酶水解。本文综述了含有β-甲基氨基酸单元的天然产物,尤其对含有β-甲基色氨酸单元的天然产物生物合成途径进行了阐释。对β-甲基色氨酸单元生物合成途径的理解结合基因组数据有助于进行新结构天然产物的挖掘,并为运用代谢科学理念和合成生物学技术开发含有该单元的新化合物提供理论基础和可操作遗传元件。  相似文献   

5.
徐飞  邓子新  林双君 《微生物学通报》2013,40(10):1796-1809
氨基酸作为生物体内组成生命物质的小分子化合物, 在天然产物生物合成中扮演了非常重要的作用。色氨酸含有一个独特的吲哚环, 相对复杂的吲哚环平面结构使得色氨酸相比其他氨基酸具有更多的修饰空间。在微生物天然产物生物合成研究中, 色氨酸及其衍生物经常作为组成模块参与到天然产物的生物合成中, 本文概述了色氨酸几种不同的生物修饰方式, 包括烷基化修饰、卤化修饰、羟基化修饰、以及吲哚环的开环重排反应等。分析并总结色氨酸在天然产物生物合成中的作用可以增加我们对天然产物结构多样性的认识和推动天然产物生物合成机制的研究。  相似文献   

6.
<正> 氨基酸的酯化在肽合成上是非常重要的。在大多数情况下,酯能由酸催化而制备,但是,氨基酸,如色氨酸对酸的敏感性是难以在强酸介质中和高温下进行酯化。 1963年Wilchek等人将色氨酸和光气作用经由N-羧基酸酐中间物再和苄醇作用而合成了色氨酸苄基酯。近来,Williams等人报道,由N-保护的色氨酸苄基二甲基苯胺盐的热分解制备色氨酸苄基酯。但是这种方法直接用于氨基酸是不成功的。况  相似文献   

7.
黑色素(melanin)是一类化学结构极其复杂、非均质的酚类或吲哚类物质聚合体,是自然界中最为丰富的天然色素,广泛存在于各种动物、植物和微生物中。根据合成途径和中间代谢产物的不同,黑色素主要可分为为真黑素(eumelanin)、棕黑素(pheomelanin)、异黑色素(allomelanin)三大类。其中异黑色素又包括脓黑素(pyomelanin)、1,8-二羟基萘(dihydroxynaphalene, DHN)黑色素等。基于黑色素的生化功能,它们在工业、医药、农业中都有广泛用途,是重要的生物资源。本文主要介绍天然黑色素在动植物和微生物中的合成途径、生物学功能以及有潜力的获取方法和应用前景。  相似文献   

8.
张博  戈惠明 《微生物学通报》2021,48(7):2407-2419
微生物天然产物是天然药物的重要组成部分,而天然产物的良好生物活性很大程度上取决于发挥药效的结构基团。这些特殊药效基团的生物合成,通常是利用小分子羧酸、氨基酸等结构简单的初级代谢产物,经过复杂的生物化学过程,最终合成结构复杂活性多样的天然产物。戊二酰亚胺类天然产物是一类重要的细菌来源天然产物,它们具有良好的生物活性,是潜在的先导化合物,部分化合物已被开发成分子探针。本文综述了近年来微生物来源的戊二酰亚胺类天然产物及其生物合成研究,包括Iso-Migrastatin、Lactimidomyin、Cycloheximide、Streptimidone、Gladiostatin、Sesbanimide等,对戊二酰亚胺类天然产物的生物合成研究,将有效促进通过基因组挖掘策略寻找新型戊二酰亚胺类天然产物。  相似文献   

9.
天然产物在新农药研究与开发中发挥着重要作用,氨基酸是其中一类重要的天然活性物质。天然来源氨基酸广泛存在于植物和微生物中,其中一些氨基酸具有显著的农药活性,包括除草、植物生长调节、杀细菌、杀真菌、杀虫、杀螨及杀线虫。本文通过对近三十年国内外文献检索,对天然来源氨基酸的结构多样性及其农药活性进行了系统综述,为新农药的研究开发提供参考。  相似文献   

10.
垂体腺瘤是一种严重影响患者生活质量的良性肿瘤,从海洋天然产物筛选具有高效低毒的抗肿瘤药物是目前新药研究的趋势。本实验通过用大鼠垂体瘤GH3细胞系对中山大学化工学院提供的海洋化合物STb(我国南海红树林真菌代谢产物)进行抗垂体瘤活性的筛选,期望能够从海洋天然产物中寻找一种高效的抗垂体瘤药物。  相似文献   

11.
Carcass decomposition largely depends on vertebrate scavengers. However, how behavioral differences between vertebrate scavenger species, the dominance of certain species, and the diversity of the vertebrate scavenger community affect the speed of carcass decomposition is poorly understood. As scavenging is an overlooked trophic interaction, studying the different functional roles of vertebrate species in the scavenging process increases our understanding about the effect of the vertebrate scavenger community on carcass decomposition. We used motion‐triggered infrared camera trap footages to profile the behavior and activity of vertebrate scavengers visiting carcasses in Dutch nature areas. We grouped vertebrate scavengers with similar functional roles. We found a clear distinction between occasional scavengers and more specialized scavengers, and we found wild boar (Sus scrofa) to be the dominant scavenger species in our study system. We showed that these groups are functionally different within the scavenger community. We found that overall vertebrate scavenger diversity was positively correlated with carcass decomposition speed. With these findings, our study contributes to the understanding about the different functional roles scavengers can have in ecological communities.  相似文献   

12.
In many forest ecosystems, fine root litter comprises a large pool of organic carbon and nutrients. In temperate climates ectomycorrhizal fungi colonize the roots of many forest plant species. If ectomycorrhizal colonization influenced root decomposition, it could significantly influence carbon sequestration and nutrient cycling. Fungal tissues and fine roots may decompose at different rates and, therefore, ectomycorrhizal colonization may either hasten or retard root decomposition. Unfortunately, no comparisons of the decomposition of roots and ectomycorrhizal fungi have yet been made. Therefore, we compared decomposition of Pinus resinosa fine roots and ectomycorrhizal fungi from a Pinus resinosa plantation. We also compared the decomposition rates of nonmycorrhizal Pinus resinosa fine roots with roots colonized by nine species of ectomycorrhizal fungi. We found that the several tested isolates of ectomycorrhizal fungi decomposed far more rapidly than the fine roots and that ectomycorrhizal colonization either had no significant effect on root decomposition or significantly increased root decomposition depending on the isolate of fungus. We conclude that the composition of an ectomycorrhizal fungal community may affect carbon and nutrient cycling through its influence on root decomposition.  相似文献   

13.
Abstract: We tested the hypothesis that shrub canopies interact with monthly rain pulses to control litter decomposition in a sandy Monte desert, in Argentina. We assessed (i) the potential for litter decomposition of soils beneath the canopies of two dominant shrub species (Larrea divaricata and Bulnesia retama, Zygophyllaceae R. Br.) and from bare‐ground microsites or ‘openings’; (ii) litter decomposition at different spatial patches over the summer rainy season; and (iii) the interaction between vegetation patches and monthly rain pulses on short‐term litter decomposition, or decomposition pulses. In a greenhouse experiment, we found buried litter decomposition to be higher in soils from under the canopies of a dominant shrub species compared with soils from openings and sterilized controls. This, and higher nutrient concentration under shrub soils, suggest undercanopy soils may support a microbial community capable of decomposing litter at higher rates than soils in bare openings. However, ?eld trials showed that shrub patches did not affect leaf litter decomposition over the rainy season, at least for short periods. We found an interaction between shrub patches and incubation time at the end of the ?eld experiment, with higher litter decomposition rates under B. retama canopies. In a monthly ?eld experiment, we found monthly rain pulses signi?cantly explained decomposition pulses, irrespective of patch type. Our ?ndings support the hypothesis that shrub soils have a greater potential for litter decomposition, but this is not directly translated to the ?eld possibly due to interactions with abiotic factors. Rain pulses create conditions for decomposition pulses to occur at shorter time scales, whereas rainfall may interact with a dominant shrub undercanopy to control litter mass loss over longer time scales.  相似文献   

14.
Habitat size is known to affect community structure and ecosystem function, but few studies have examined the underlying mechanisms over sufficient size gradients or in enough geographic contexts to determine their generality. Our goal in this study was to determine if the relationship between habitat size and leaf decomposition varied across geographic sites, and which factors may be driving the differences. We conducted replicated observations in a coastal forest in Brazil, and in rainforests in Costa Rica and Puerto Rico. We used leaf litter decomposition and macroinvertebrate composition in bromeliad phytotelmata of varying sizes to determine the relationships between habitat size, trophic structure and decomposition over a wide geographical range. We experimentally disentangled the effects of site and litter quality by quantifying invertebrate control of decomposition of a native and a transplanted litter type within one site. We found that the relationship between bromeliad size and decomposition rates differed among study sites. In rainforests in Costa Rica and Puerto Rico, decomposition was strongly linked to macroinvertebrate trophic structure, which varies with bromeliad size, driving strong bromeliad size‐decomposition relationships. However, in Brazil there was no relationship between bromeliad size and decomposition. Our manipulative experiment suggests that within coastal forest in Brazil, the poor quality of native litter resulted in little invertebrate control of decomposition. Furthermore, the key detritivore in this site builds a predator‐resistant case, which likely prevented effects of bromeliad size on trophic structure from being transmitted to decomposition even when litter quality was increased. We conclude that differences in both leaf litter quality and macroinvertebrate traits among sites determine the link between decomposition and macroinvertebrates, and consequently the decomposition‐bromeliad size relationship. These results show that the response of decomposition to habitat size is context‐dependent, and depends on which component of the food web is the main driver of the function.  相似文献   

15.
1. We examined the relative importance of litter quality and stream characteristics in determining decomposition rate and the macroinvertebrate assemblage living on autumn‐shed leaves. 2. We compared the decomposition rates of five native riparian tree species (Populus fremontii, Alnus oblongifolia, Platanus wrightii, Fraxinus velutina and Quercus gambelii) across three south‐western streams in the Verde River catchment (Arizona, U.S.A.). We also compared the decomposition of three‐ and five‐species mixtures to that of single species to test whether plant species diversity affects rate. 3. Decomposition rate was affected by both litter quality and stream. However, litter quality accounted for most of the variation in decomposition rates. The relative importance of litter quality decreased through time, explaining 97% of the variation in the first week but only 45% by week 8. We also found that leaf mixtures decomposed more quickly than expected, when all the species included were highly labile or when the stream environment led to relatively fast decomposition. 4. In contrast to decomposition rate, differences in the invertebrate assemblage were more pronounced across streams than across leaf litter species within a stream. We also found significant differences between the invertebrate assemblage colonising leaf mixtures compared with that colonising pure species litter, indicating non‐additive properties of litter diversity on stream invertebrates. 5. This study shows that leaf litter diversity has the capacity to affect in‐stream decomposition rates and stream invertebrates, but that these effects depend on both litter quality and stream characteristics.  相似文献   

16.

Key message

There is a positive correlation between leaf and root decomposition across species, both in a warm-temperate forest in Japan, as well as globally.

Abstract

Evaluating the effects of plant species traits on litter decomposition would increase our understanding of plant–soil feedbacks in forest ecosystems. Currently, an assessment of a possible coordination between leaf and root decomposition across different species is required. However, previous studies have generated conflicting results. We hypothesized that such inconsistencies may be attributed to differences in local climatic effects on the decomposition process. We focused on the linkages between leaf and fine-root decomposition of woody species in a warm-temperate forest, which have not been addressed in previous studies. We found a significant positive correlation between leaf and root decomposition, and this linkage may be attributed to a wider range of decomposition rates across the species in our study forest. Additionally, we combined our data with those of previous studies of woody species to infer a global linkage in the decomposition process between leaves and roots. We found a positive correlation in decomposition rates between leaves and roots at the global scale, as well as a relatively strong correlation in warmer regions. These results support the importance of litter quality on biogeochemical processes and suggest that synergetic interactions between climate and plant communities could be amplified in a warmer future.
  相似文献   

17.
In the past two centuries, anthropogenic fire suppression has affected many biomes, including boreal forests. Absence of fire in the boreal zone is often linked to declining soil fertility and increased carbon sequestration in the humus through changes in NPP and litter decomposition. We studied tree litterfall and litter decomposition for thirty lake islands in the boreal forested zone of Sweden, which differ naturally in fire regime: larger islands have burned far more frequently than smaller ones because they are intercepted more often by lightning. We used litter trays to show that the ratio of twig to foliar litterfall for Picea abies with prolonged absence of fire is largely responsible for the concomitant increased twig proportion in the total litterfall. We hypothesised that the increased twig proportion in the litterfall with time since fire would affect overall decomposition by reducing net litter quality and through impairing decomposition of associated foliar litters. We established a litter decomposition mesocosm experiment based on litter from the three main tree species found on the islands. From each of the thirty islands, we prepared a set of litterbags comprising three mixtures (all foliar litters combined, all twig litters combined, and all twig and foliar litters combined), plus monotypes (i.e. each of the separate foliage and twig litters for each species). Unlike most studies, we used the natural litterfall proportions in the mixtures. We found a (negative) effect of time since wildfire on decomposition rate for only the foliage‐twig mixtures, although twig litter did not inhibit the decomposition of foliar litter within these mixtures. The reduced decomposition rate in the foliage‐twig mixture from the small islands was therefore due to the increased proportion of twigs in the mixtures from these islands. Our results suggest that, with prolonged absence of fire, the increase of twig proportion in the foliage‐twig litterfall for P. abies combined with the shift to canopy dominance by P. abies may be important in contributing to reduced decomposition rates in boreal forest soils.  相似文献   

18.
We assessed direct and indirect effects of snow cover on litter decomposition and litter nitrogen release in alpine tundra. Direct effects are driven by the direct influence of snow cover on edaphoclimatic conditions, whereas indirect effects result from the filtering effect of snow cover on species’ abundance and traits. We compared the in situ decomposition of leaf litter from four dominant plant species (two graminoids, two shrubs) at early and late snowmelt locations using a two-year litter-bag experiment. A seasonal experiment was also performed to estimate the relative importance of winter and summer decomposition. We found that growth form (graminoids vs. shrubs) are the main determinants of decomposition rate. Direct effect of snow cover exerted only a secondary influence. Whatever the species, early snowmelt locations showed consistently reduced decomposition rates and delayed final stages of N mineralization. This lower decomposition rate was associated with freezing soil temperatures during winter. The results suggest that a reduced snow cover may have a weak and immediate direct effect on litter decomposition rates and N availability in alpine tundra. A much larger impact on nutrient cycling is likely to be mediated by longer term changes in the relative abundance of lignin-rich dwarf shrubs.  相似文献   

19.
Among the factors determining litter decomposition rates, the role of soil fauna as decomposers still remains unclear, especially for how they are involved in decomposing below‐ground root litter compared to their relatively‐known contributions to decomposing above‐ground leaf litter. We conducted a litterbag experiment using two sizes of meshes and pursued the leaf and root decomposition of six major tree species in a Japanese temperate forest over 411‐days to test the interactive effects of soil mesofauna and litter quality addressed based on two features (litter types and species) on the process. Moreover, given a possible correlation between litter traits of the leaves and roots, we examined whether soil mesofauna alters the relationship between leaf and root decomposition across species. We found that the effects of plant species identity was stronger than that of soil mesofauna for determining the litter mass loss rate and the microbial respiration rate in both above‐ground and below‐ground decomposition. In addition, we found a significant positive correlation between leaf and root litter decomposition processes, regardless of the involvement soil mesofauna. On the other hand, the presence of soil mesofauna increased microbial respiration rates in the early stage of leaf decomposition; however, soil mesofauna did not affect root microbial respiration rates during the experiment. Such differential involvement of mesofauna in the leaf and root litter decomposition may drive the general patterns of faster and slower decomposition of plant leaves and roots in the soil, respectively.  相似文献   

20.
Biodiversity and decomposition in experimental grassland ecosystems   总被引:11,自引:0,他引:11  
We examined the impact of biodiversity on litter decomposition in an experiment that manipulated plant species richness. Using biomass originating from the experimental species richness gradient and from a species used as a common substrate, we measured rates of decomposition in litterbags in two locations: in situ in the experiment plots and in an adjacent common garden. This allowed us to separate the effects of litter quality and decomposition location on decomposition. We found that plant species richness had a significant, but minor negative effect on the quality (nitrogen concentration) of the biomass. Neither litter type nor location had a consistent effect on the rate of carbon and nitrogen loss over a 1-year period. Thus, the increased productivity and corresponding lower soil available nitrogen levels observed in high diversity plots do not lead to faster litter decomposition or faster nitrogen turnover. This supports the hypothesis that increased productivity corresponding with higher species richness results in increased litter production, higher standing litter pools and a negative feedback on productivity, because of an increased standing nitrogen pool in the litter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号