首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shoot tips of York and Vermont Spur Delicious apples (Malus domestica Borkh.) were cultured in vitro to test the influence of K+, Mg++ and gelling agent concentrations on vitrification. These concentrations were 20.05, 14.05 and 8.05 mM K+, 1.5 and 3.0 mM Mg++, 7.0 g/l Difco Bacto agar and 1.0, 1.5 and 2.0 g/l Gelrite. The lowest K+ level produced a higher percentage of vitrified shoots, affected tissue appearance, reduced shoot number and shoot elongation and apparently altered shoot metabolic activity. Gelrite consistently produced vitrified leaves and stems, even though media gelled with 1.5 g/l Gelrite presented the same apparent gel firmness as using 7 g/l Difco Bacto agar, which did not induce vitrification. Less shoot elongation, fewer total shoots, and more usable shoots of York were obtained on Bacto-agar, while similar but less noticeable effects were obtained with Vermont Spur Delicious. The results presented here show that vitrification can be studied in a standardized system in which the only change is substitution of one gelling agent for another.  相似文献   

2.
Summary This study reports the first use of gaspermeable, heat-sealable polyethylene bags for cold storage of plant tissue cultures. The bags were used to develop a new cold storage system for the in vitro strawberry collection at the National Clonal Germplasm Repository (NCGR), Corvallis. In vitro Fragaria plantlets of 96 different accessions (species and cultivars) were transferred to bags with basal medium without growth regulators, heat-sealed, grown for one week at 25°C, cold hardened for one week, and then stored in the dark at 4°C. These in vitro cultures were successfully stored for up to 24 months in polyethylene bags. Evaluations at three month intervals provided information on the condition of the diverse collection. Over 75% of the accessions originally stored remained in storage for 15 months and 47% remained for over 18 months. None of the 96 accessions studied was lost due to contamination or decline in vigor. Over 300 Fragaria accessions are currently stored using this system.Abbreviations BA N6-benzyladenine - IAA indole-3-acetic acid - GA3 gibberellic acid  相似文献   

3.
Summary An in vitro assay in which self-incompatible pollen of Malus domestica is selectively inhibited is described. This assay involves heat-labile substances diffusing from the stylar tissues — in particular, glycoproteins found in the protein extract of styles. In the presence of the self-style extract, a dramatic decrease in total protein concentration in the culture medium was revealed at 30-min germination. Pretreatment of the self-pollen with 100 mM glucose prevented this drop in protein level; moreover, tube growth was entirely restored. A possible explanation in terms of protein-carbohydrate complementation is suggested.  相似文献   

4.
Delicious apple (Malus domestica Borkh.) and several of its strains, which have been difficult to root in vitro, were successfully propagated with rooting percentages up to 100%. The combination of treatments used to achieve this result included placing the shoots on rooting medium in the dark at 30°C for the first week of the rooting stage, then moving them to a regime of 16 hr light-8 hr dark at 25°C. The rooting medium contained half strength Murashige and Skoog salts plus 1.2 M thiamine HCl, 0.56 mM myo-inositol, 1 mM phloroglucinol (PG), 1.4 M indolebutyric acid (IBA), 1.3 M gibberellic acid (GA3), 87.6 mM sucrose, and 7 g l–1 Difco Bacto agar. Dark treatment applied during the proliferation stage (etiolation) was less effective than one applied at the beginning of the rooting stage. The optimum length of dark treatment during rooting was 4 to 7 days. Increasing the temperature from 25°C to 30°C improved rooting of Delicious, Royal Red Delicious, and Vermont Spur Delicious in the absence of PG but generally had less effect in the presence of PG. Further increase in temperature to 35°C stimulated rooting of Royal Red Delicious but reduced rooting of Vermont Spur Delicious. Transfer of the cuttings to auxin-free medium after 1 week had no effect on percentage rooting and increased the number of roots per cutting for only 1 of 4 cultivars tested and then only in the presence of PG. In general PG stimulated rooting of Delicious and its strains, but had no effect on Golden Delicious.  相似文献   

5.
Leaves taken from micropropagated shoots of several apple (Malus domestica Borkh.) cultivars were cultured in vitro on Linsmaier & Skoog (LS) medium or the rice anther culture medium of Chu et al. (N6) containing various concentrations of either benzyladenine (BA) or thidiazuron (TDZ) plus naphthaleneacetic acid (NAA). Of the TDZ concentrations tested, 10 M was most effective and it was equivalent to, or better than, 22 M BA for both the percentage of leaves regenerating shoots and number of shoots formed per regenerating leaf in almost every experiment. Lower concentrations of NAA (1.1 and 5.4 M) gave best results with both BA and TDZ. N6 medium gave consistently better results than LS. Lowering total salt concentration or total N concentration of LS to that of N6 did not improve the response nor did changing the NO3:NH4 ratio. The 3–4 leaves on the most distal part of the shoot were most responsive and tended to form the most adventitious shoots. Placing the leaf cultures in the dark for the first 2–3 weeks of the culture period produced the best results. Optimum results were obtained by culturing leaves from the distal part of the shoot in the dark for 2 weeks on N6 medium containing 10 M TDZ and 1.1 or 5.4 M NAA, then moving the cultures to 16 h daylight at a photon flux of 60 mol s-1m-2.  相似文献   

6.
Plant regeneration from leaf protoplasts of apple   总被引:9,自引:0,他引:9  
Protoplasts were isolated from young leaves or etiolated shoot apices. For initiation of divisions the protoplasts were embedded in sodium alginate and cultivated in MS or MI medium supplemented with 2.2 M BA, 2.6 M NAA and 2.2 M 2,4-dichlorophenoxyacetic acid. The protoplasts of all seven lines tested developed to protocalluses at high frequencies. No genotypic differences were observed. When BA was used in combination with NAA in the regeneration experiments, only a few protocalluses (highest frequency 3%) exhibited shoot organogenesis. When BA was replaced with thidiazuron, the percentage of protocalluses that developed shoots increased in two of three tested lines to 7% and 56%, respectively. Shoot development was achieved under light conditions. The shoots were then rooted and transferred into soil.Abbreviations ABA abscisic acid - BA 6-benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - FW fresh weight - GA3 gibberellic acid - IBA indole-3-butyric acid - MES 2-N-morpholinoethane sulphonic acid - NAA -naphthaleneacetic acid  相似文献   

7.
Nodal segments of Hibiscus moscheutos (hardy hibiscus) were excised from proliferating axillary shoot cultures and encapsulated in high density sodium alginate hardened by 50 mM CaCl2. Nodal segments 4 mm long grew as well as and were easier to encapsulate than 8 mm long nodal segments. Although nodal segments grew regardless of the concentration of sodium alginate, 2.75% was determined to produce the highest quality encapsulated nodal segments beads (sufficient alginate coating and ease of use) because of the viscosity produced by the 2.75% sodium alginate solution. When encapsulated segments were stored at 5°C they did not grow in light or darkness. During the first month on fresh proliferation medium under normal incubation conditions following 5°C storage in the dark for up to 24 weeks, root number and root and shoot elongation were inhibited linearly as storage time increased. All encapsulated nodal segments survived 24 weeks of 5°C storage in two separate experiments. In fact, 80% of encapsulated hardy hibiscus nodal segments survived refrigerated storage for 1½ years (78 weeks) and after 3 months on proliferation medium, the nodal segments produced nearly the same length axillary shoots with the same number of axillary nodes per shoot as compared to encapsulated segments either not stored at 5°C or stored for 24 weeks at 5°C. Growth from encapsulated and cold-stored ‘Lord Baltimore’ nodal segments was more vigorous than from ‘Southern Belle’ nodal segments.  相似文献   

8.
Biosynthesis of phenolic compounds and its regulation in apple   总被引:6,自引:0,他引:6  
This paper summarises the information on the occurrence of phenolic compounds in apple Malus domestica leaves and fruits with special reference to their developmental changes and regulation of biosynthesis. Besides the ontogenetic variation in biosynthesis and accumulation, the stress-induced and pathogenesis-related changes are emphasised. Aspects of commercial importance are addressed, ranging from fruit colouration, through disease resistance, to the direct use of apple tissues, as raw material for the extraction of bioactive phenolic compounds.  相似文献   

9.
Micro-cuttings (shoots with two small leaves) of cultivar M9 apple were cultured in-vitro for 40 d under CO2-enriched and non-enriched (i.e., ambient air) conditions, and at a PPF of 40 or 100 μmol m-2 s-1 Afterward, shoot length, number of leaves, leaf area, chlorophyll content, shoot and root fresh weights, and % survival were recorded. Those plant-lets grown under CO2- and PPF-enriched treatments were healthy and vigorous, and showed higher values for their growth parameters. In contrast, those grown without supplemental CO2 or PPF often showed hyperhydricity. We also demonstrated that CO2 enrichment and a relatively high PPF during in-vitro culture promoted normal photosynthesis and growth after ex-vitro transplantation.  相似文献   

10.
Several factors that affect the frequency of organogenesis in apple leaf explants were examined for the scion cultivars Empire, Freedom, Golden Delicious, Liberty, McIntosh, and Mutsu and for the rootstocks Malling 7A and Malling 26. The main factors affecting morphogenesis were BA concentration, basal medium, leaf explant origin and maturity, explant orientation, and photosynthetic photon flux. Depending on the genotype, optimal regeneration was obtained using either 22.2 or 31.1 M BA and the N6 basal medium, with the exception of Golden Delicious which regenerated better on MS medium. After 6 weeks, the average number of shoots per segment varied from 5 to 16, and the percentage of regeneration between 70 and 100%, depending on the genotype tested and the maturity of the explant. Regeneration capacity increased dramatically from the tip towards the base of the leaf, and was higher from the middle to the proximal end.Cefotaxime and carbenicillin, two antibiotics commonly used during transformation studies to eliminate Agrobacterium tumefaciens from plant tissue, were tested to determine their effect on morphogenesis. Cefotaxime at a dose of 250 mg 1-1 enhanced regeneration and shoot development, whereas carbenicillin at a dose of 500 mg l-1 induced abundant callus formation and inhibited regeneration. Kanamycin, a widely used selection agent for plant transformation, strongly inhibited regeneration even at very low doses. Schemes for selection and recovery of transgenic apple plants when kanamycin is used as the selection agent are discussed.Abbreviations BA benzyladenine - Cef cefotaxime - Crb carbenicillin - IBA indolebutyric acid - Kan kanamycin - LS Linsmaier and Skoog (1965) medium - M Malling - MS Murashige and Skoog (1962) medium - NAA naphthaleneacetic acid - N6 medium (Chu et al. 1975) as modified by Welander (1988) - PPF photosynthetic photon flux  相似文献   

11.
We developed procedures for slow-growth storage of Cedrus atlantica and Cedrus libani microcuttings of juvenile and adult origin, noting factors favouring the extension of subculture intervals. Microcuttings could be stored effectively up to 6 months at 4°C and reduced light intensity, provided that they were grown on a diluted modified MS medium. The addition of 6% mannitol to the storage media affected negatively survival and multiplication capacity of the cultures. The slow-growth storage conditions used in our experiments did not induce remarkable effects on both RAPD variability and average DNA methylation in the species.  相似文献   

12.
Chitosan is a cationic marine polysaccharide with unique bioactive properties that make it an effective scavenger of reactive oxygen species. Chitosan application has been suggested as an aid for reducing oxidative injury caused by drought stress in crop plants. In order to confirm the antioxidant effects of exogenous chitosan, cell membrane stability and antioxidant enzyme activities were analyzed in leaves of apple seedlings placed under a period of drought stress. Pretreatment of apple seedling leaves with chitosan solution (20, 50, 100, 150 and 200 mg l−1) prior to drought stress significantly decreased electrolyte leakage and the production of malondialdehyde in the leaves, while increasing antioxidant enzyme activities (superoxide dismutase, catalase), following imposition of drought stress conditions. An optimum response was obtained at a chitosan concentration of 100 mg l−1. When apple seedlings were pretreated with 100 mg l−1 of chitosan, cell membrane stability and antioxidant enzyme activities were enhanced for 21 days of drought treatment. Following restoration of moisture and a repeated drought stress, similar results were obtained on day 35. It is proposed that chitosan may act as an exogenous antioxidant that enhances resistance to oxidative stress during drought.  相似文献   

13.
Summary A series of experiments involving defoliation or water stress at different dates indicated that either of these treatments can make potted apple trees flower a second time in any one year, as long as the treatment is given near the end of July. The results suggest that the reflowering after a period of water stress was primarily a result of the loss of leaves that occurred when the plants were subsequently rewatered. Reflowering normally occurred only if flower primordia had already differentiated at the time of the treatment. There was an indication that in early July water stress was more effective than defoliation at stimulating reflowering.  相似文献   

14.
With the objective to develop a practical and effective method of screening potato for drought tolerance, shoot and root growth in microtuber-derived plantlets was studied in vitro in three genotypes with known root mass production under field conditions. Different levels of water-stress were induced using five concentrations of either sorbitol or polyethylene glycol (PEG) in MS medium. Water potential of various media ranged from −0.80 MPa to −2.05 MPa. Water-stress in culture adversely affected plantlet growth, and genotypes differed for their responses. Genotype IWA-1 was less affected than IWA-3 and IWA-5. At the same level of water potential, sorbitol had lower adverse effect than PEG; the latter being sticky. Genotype × sorbitol and genotype × PEG interactions were significant. At 0.2 M sorbitol and 0.003 M PEG, IWA-1 had significantly more roots with higher total root length, root volume, as well as root-dry weight than those of IWA-3 and IWA-5, whereas the latter two genotypes were at par for all these characters. This pattern was similar to the reported pattern of these genotypes for root-dry weight under field conditions. It is concluded that in vitro screening of potato under specific and limited water-stress conditions may provide a system for effectively differentiating the genotypes for their expected root mass production under field conditions.  相似文献   

15.
The rosy apple aphid (Dysaphis plantaginea), the leaf-curling aphid (Dysaphis cf. devecta) and the green apple aphid (Aphis pomi) are widespread pest insects that reduce growth of leaves, fruits and shoots in apple (Malus × domestica). Aphid control in apple orchards is generally achieved by insecticides, but alternative management options like growing resistant cultivars are needed for a more sustainable integrated pest management (IPM). A linkage map available for a segregating F1-cross of the apple cultivars ‘Fiesta’ and ‘Discovery’ was used to investigate the genetic basis of resistance to aphids. Aphid infestation and plant growth characteristics were repeatedly assessed for the same 160 apple genotypes in three different environments and 2 consecutive years. We identified amplified fragment length polymorphism (AFLP) markers linked to quantitative trait loci (QTLs) for resistance to D. plantaginea (‘Fiesta’ linkage group 17, locus 57.7, marker E33M35–0269; heritability: 28.3%), and to D. cf. devecta (‘Fiesta’ linkage group 7, locus 4.5, marker E32M39–0195; heritability: 50.2%). Interactions between aphid species, differences in climatic conditions and the spatial distribution of aphid infestation were identified as possible factors impeding the detection of QTLs. A pedigree analysis of simple sequence repeat (SSR) marker alleles closely associated with the QTL markers revealed the presence of the alleles in other apple cultivars with reported aphid resistance (‘Wagener’, ‘Cox’s Orange Pippin’), highlighting the genetic basis and also the potential for gene pyramiding of aphid resistance in apple. Finally, significant QTLs for shoot length and stem diameter were identified, while there was no relationship between aphid resistance and plant trait QTLs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Identification and mapping of the novel apple scab resistance gene Vd3   总被引:1,自引:0,他引:1  
Apple scab, caused by the fungal pathogen Venturia inaequalis, is one of the most devastating diseases for the apple growing in temperate zones with humid springs and summers. Breeding programs around the world have been able to identify several sources of resistance, the Vf from Malus floribunda 821 being the most frequently used. The appearance of two new races of V. inaequalis (races 6 and 7) in several European countries that are able to overcome the resistance of the Vf gene put in evidence the necessity of the combination of different resistance genes in the same genotype (pyramiding). Here, we report the identification and mapping of a new apple scab resistance gene (Vd3) from the resistant selection “1980-015-25” of the apple breeding program at Plant Research International, The Netherlands. This selection contains also the Vf gene and the novel V25 gene for apple scab resistance. We mapped Vd3 on linkage group 1, 1 cM to the south of Vf in repulsion phase to it. Based on pedigree analysis and resistance tests, it could be deduced that 1980-015-25 had inherited Vd3 from the founder “D3.” This gene provides resistance to the highly virulent EU-NL-24 strain of race 7 of V. inaequalis capable of overcoming the resistance from Vf and Vg. JMS and SGJ contributed equally to this work  相似文献   

17.
A comprehensive developmental survey of leaf area, chlorophyll, photosynthetic rate, leaf resistance, transpiration ratio, CO2 compensation point and photorespiration was conducted in apple. The largest changes in each of the photosynthetic characteristics studied took place during the earliest stages of leaf development, coinciding with the period of greatest leaf expansion and chlorophyll synthesis. During early development, photosynthesis increased 5-fold, reaching a maximum rate of 40 mg CO2 dm-2 hr-1 at a leaf plastochron index (LPI) of 10. During this same period, leaf resistance, transpiration ratio, CO2 compensation point and mesophyll resistance decreased, while carboxylation efficiency increased. Two especially interesting aspects of the data discussed are simultaneous changes that occur at a LPI of 10 and 12 in all of the photosynthetic characteristics examined and an apparent decrease in photorespiration as leaves age. From our results it is clear that stage of leaf development is an important factor affecting the rate of photosynthesis and photorespiration.Scientific Paper No. 5687, College of Agriculture, Washington State University, Pullman. This work is supported by the National Science Foundation Grant 80-10958 and the Columbia River Orchards Foundation.  相似文献   

18.
The present study aimed to dissect tree architectural plasticity into genetic, ontogenetic and environmental effects over the first 4 years of growth of an apple F1 progeny by means of quantitative traits loci (QTL) mapping. Both growth and branching processes were phenotyped on the consecutive annual shoots of different axes within a tree. For each studied trait, predicted values (best linear unbiased predictors, BLUPs) of the genotypic (G) effect or its interaction with tree age (G×A) and climatic year (G×Y) were extracted from mixed linear models of repeated data. These BLUPs, which are independent from autocorrelations between repeated measurements, were used for QTL mapping. QTL detection power was improved by this two-step approach. For each architectural process, numerous QTLs were detected and some particularly interesting co-localised in common genomic regions, for internode lengthening, top diameter, and number and percentage of axillary shoots. When several QTLs were detected for a given trait, global models were estimated, which explained a maximum of 40% of the total variance for both internode length and top diameter and 28% for branching. QTLs detected for BLUPs of G×Y effects were interpreted as resulting from the interaction between genetic maximal potential of growth and climatic factors, while those for G×A effects were interpreted in relation to tree ontogeny. Most of the latter ones were found to be concomitant with key development stages during which the trait average started to decrease, but with different magnitudes depending on genotype. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Specific leaf weight (SLW), net photosynthesis (P n ), and dark respiration (R d ) of apple leaves were monitored for an entire growing season. Leaves were sampled from the canopy interior and periphery to provide a range of SLW. Leaf P n was linearly correlated with SLW until mid-August, when P n began to decline. During September the relationship between SLW and P n was a quadratic. Leaf R d and SLW were linearly correlated throughout the season. Leaf P n and R d were significantly correlated through most of the season, but the relationship was not always linear. Specific leaf weight appears to be a reliable index of the previous light environment of a leaf, but use to estimate P n is probably limited to the first half of the season, because of increased variation after mid-August.Former Graduate Research Assistant (presently Assistant Professor, Department of Horticulture and Forestry, Rutgers University, Cook College, New Brunswick, NJ 08903, USA) and Associate Professor, respectively.  相似文献   

20.
Effect of fruiting on carbon budgets of apple tree canopies   总被引:1,自引:0,他引:1  
Summary Carbon budgets were calculated from net photosynthesis and dark respiration measurements for canopies of field-grown, 3-year-old apple trees (Malus domestica Borkh.) with maximum leaf areas of 5.4 m2 in a temperature-controlled Perspex tree chamber, measured in situ over 2 years (July 1988 to October 1990) by computerized infrared gas analysis using a dedicated interface and software. Net photosynthesis (Pn) and carbon assimilation per leaf area peaked at respectively 8.3 and 7.7 mol CO2 m–2 s–1 in April. Net photosynthesis (Pn) and dark respiration (Rd) per tree peaked at 3.6 g CO2 tree–1 h–1 (Pn) and 1.2 g CO2 tree–1 h–1 (Rd), equivalent to 4.2 mol CO2 (Pn) and 1.4 mol CO2 (Rd) m–2 s–1 with maximum carbon gain per tree in August and maximum dark respiration per tree in October 1988 and 1989. In May 1990, a tree was deblossomed. Pn (per tree) of the fruiting apple tree canopy exceeded that of the non-fruiting tree by 2–2.5 fold from June to August 1990, attributed to reduced photorespiration (RI), and resulting in a 2-fold carbon gain of the fruiting over the non-fruiting tree. Dark respiration of the fruiting tree canopy progressively exceeded, with increasing sink strength of the fruit, by 51% (June–August), 1.4-fold (September) and 2-fold (October) that of the non-fruiting tree due to leaf (i. e. not fruit) respiration to provide energy (a) to produce and maintain the fruit on the tree and (b) thereafter to facilitate the later carbohydrate translocation into the woody perennial parts of the tree. The fruiting tree reached its optium carbon budget 2–4 weeks earlier (August) then the non-fruiting tree (September 1990). In the winter, the trunk respired 2–100 g CO2 month–1 tree–1. These data represent the first long-term examination of the effect of fruiting without fruit removal which shows increased dark respiration and with the increase progressing as the fruit developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号