首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendrobium nobile, a herbal medicine plant, contains many important alkaloids and other secondary metabolites with pharmacological and clinical effects. However, the biosynthetic pathway of these secondary metabolites is largely unknown. In present study, a cDNA sequence (DnTR2) that encodes a peptide with high similarity to known tropinone reductase (TR) was cloned from D. nobile Lindl. Sequence comparison and phylogenetic analysis showed that DnTR2 was evolutionarily distant from those well-characterized subgroups of TRs. qRT-PCR revealed that DnTR2 was expressed constitutively in all three vegetative organs (leaves, stems and roots) and was regulated by methyl jasmonate (MeJA), salicylic acid (SA) and nitrogen oxide (NO). Catalytic activity analysis using recombinant protein found that DnTR2 was not able to reduce tropinone, but reduced the two structural analogs of tropinone, 3-quinuclidinone hydrochloride and 4-methylcyclohexanone. Structural modeling and comparison suggested that the substrate specificity of TRs may not be determined by their phylogenetic relationships but by the amino acids that compose the substrate binding pocket. To verify this hypothesis, a site-directed mutagenesis was performed and it successfully restored the DnTR2 with tropinone reduction activity. Our results also showed that the substrate specificity of TRs was determined by a few residues that compose the substrate binding pocket which may have an important role for directed selecting of TRs with designated substrate specificities.  相似文献   

2.
3.
Agrobacterium rhizogenes mediated transformation of Decalepis arayalpathra, an ethnomedicinal plant, was achieved by infecting juvenile hypocotyl explants with different strains, including A4, MTCC 532, TR105 and LBA 5402. Hypocotyl explants induced hairy roots at a higher frequency (53.2 ± 0.3 %) than cotyledons (32.1 ± 0.2 %) when infected with the most virulent strain TR105. The explants co-cultivated 48 h in half-strength salts and vitamins of Murashige and Skoog basal medium (half-MSB) induced hairy roots either directly from the wounds or followed by the formation of gall like structures. Irrespective of the explants, the strain MTCC 532 induced callus alone. The root initials on the galls proliferated vigorously and elongated more rapidly when they were segmented and subcultured on half-MSB medium than the proliferation and elongation of directly emerged roots. The established hairy roots showed intermittent gall formation which was the active sites for hairy roots induction. The molecular evidence of rol A and rol C gene integration was confirmed by PCR amplification and southern blot hybridization. Growth of the hairy roots was undertaken by measuring root growth unit after culturing root tips in half-MSB solid medium and determined fresh weight/dry weight/conductivity during time-course study in shake flask cultures. The maximum biomass and accumulation of the root specific compound, 2-hydroxy-4-methoxy benzaldehyde (MBALD) (0.22 % dry weight), was recorded at the 6th week of growth, which was more than that observed in normal root cultures (0.16 % dry weight).  相似文献   

4.
5.
Ammonium transporters (AMTs) are crucial for the high affinity primary uptake and translocation of ammonium in plants. In the model legume Medicago truncatula, the genomic set of AMT-type ammonium transporters comprises eight members. Only four genes were abundantly expressed in young seedlings, both in roots and shoots. While the expression of all AMTs in the shoot was not affected by the nitrogen availability, the dominating MtAMT1;1 gene was repressed by nitrogen in roots, despite that cellular nitrogen concentrations were far above deficiency levels. A contrasting de-repression by nitrogen was observed for MtAMT1;4 and MtAMT2;1, which were both expressed at intermediate level. Weak expression was found for MtAMT1;2 and MtAMT2;3, while the other AMTs were not detected in young seedlings. When expressed from their endogenous promoters, translational fusion proteins of MtAMT1;1 and MtAMT2;1 with green fluorescent protein were co-localized in the plasma membrane of rhizodermal cells, but also detected in cortical root layers. Both transporter proteins similarly functionally complemented a yeast strain that is deficient in high affinity ammonium transport, both at acidic and neutral pH. The uptake into yeast mediated by these transporters saturated with Km AMT1;1 = 89 µM and Km AMT2;1 = 123 µM, respectively. When expressed in oocytes, MtAMT1;1 mediated much larger 15N-ammonium uptake than MtAMT2;1, but NH4 + currents were only recorded for MtAMT1;1. These currents saturated with a voltage-dependent Km = 90 µM at ?80 mV. The cellular localization and regulation of the AMTs suggests that MtAMT1;1 encodes the major high affinity ammonium transporter gene in low nitrogen grown young M. truncatula roots and despite the similar localization and substrate affinity, MtAMT2;1 appears functionally distinct and more important at higher nitrogen supply.  相似文献   

6.
Proteoid roots are a unique adaptation that allow white lupin (Lupinus albus L. var Ultra) to survive under extreme phosphorus (P) deficient conditions. The cascade of events that signals P-deficiency induced gene expression in proteoid roots remains unknown. Through promoter::GUS analysis we showed that expression of acid phosphatase (LaSAP1) in P-deficient proteoid roots depends on DNA located from ?465 bp to ?345 bp 5′ of the ATG start codon and that the P1BS (PHR1 Binding Site) element, located at ?160 bp, also contributes regulatory control. DNA located within the ?414 bp to ?250 bp region of the LaSAP1 promoter was bound by nuclear proteins isolated from P-sufficient normal roots in electrophoretic mobility shift assays (EMSA), suggesting negative regulation. Competition experiments were performed with unlabeled oligonucleotides to further delineate the region of the LaSAP1 promoter bound by P-sufficient normal root nuclear proteins to a motif spanning ?361 bp to ?346 bp. The promoter motif characterized through EMSA spanning ?361 bp to ?345 bp was used as “bait” in a yeast one-hybrid (Y1H) experiment and 31 putative DNA binding proteins were isolated. Taken together, our results increase understanding of P-deficiency signaling by identifying regulatory regions and putative regulatory proteins for LaSAP1 expression.  相似文献   

7.
5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS), the target enzyme for glyphosate inhibition, catalyzes an essential step in the shikimate pathway for aromatic amino acid biosynthesis. The full-length cDNA of 1,751 nucleotides (CaEPSPS, Genbank accession number: EU698030) from Convolvulus arvensis was cloned and characterized. The CaEPSPS encodes a polypeptide of 520 amino acids with a calculated molecular weight of 55.5 kDa and an isoelectric point of 7.05. The results of homology analysis revealed that CaEPSPS showed highly homologous with EPSPS proteins from other plant species. Tissue expression pattern analysis indicated that CaEPSPS was constitutively expressed in stems, leaves and roots, with lower expression in roots. CaEPSPS expression level could increase significantly with glyphosate treatment, and reached its maximum at 24 h after glyphosate application. We fused CaEPSPS to the CaMV 35S promoter and introduced the chimeric gene into Arabidopsis. The resultant expression of CaEPSPS in transgenic Arabidopsis plants exhibited enhanced tolerance to glyphosate in comparison with control.  相似文献   

8.
In addition to acting in the central nervous system, leptin also acts on peripheral tissues such as liver to provide a protection against lipid accretion. Previous evidence from human and animal model indicates that exercise training reduces circulating leptin levels beyond the changes in adiposity levels. Because liver is one of the main peripheral organs for leptin action, this present study was designed to determine whether leptin receptors expression in liver is changed by exercise training. Female rats trained (TR) or kept sedentary (Sed) for 8 weeks were submitted either to a standard (SD) diet for 8 weeks or for 6 weeks followed by 2 weeks of high-fat (HF) or high-carbohydrate (HC) feeding. Food intake, adiposity levels, circulating plasma leptin and insulin concentrations along with the hepatic expression of leptin receptors (ObR-a, -b, and -e) and peroxisome proliferator-activated receptor α (PPARα) and peroxisome proliferator-activated receptor-gamma co-activator-1α (PGC-1α), were measured in all the animals. Intra-abdominal fat depots were increased under the HF but not under the HC diet. As expected, exercise training decreases intra-abdominal adiposity in animals fed with the SD and the HF diet, and to a lesser extent in HC-fed rats. Plasma leptin levels either expressed in absolute values or in values relative to adiposity levels were significantly (P < 0.05) increased with the HF diet and significantly decreased in TR animals, independently of the diet. Moreover, a significant (< 0.01) reduction in hepatic gene expression of ObR-a, -b and -e was found in TR animals in all the three diet conditions. PPARα and PGC-1α mRNAs were also decreased (P < 0.05) in TR animals in two out of three diet conditions. The present findings indicate that exercise training-induced decrease in plasma leptin levels is accompanied by a reduction in gene expression of three different isoforms of leptin receptors in liver.  相似文献   

9.
Dendrobium is an endangered genus in the orchid family with medicinal and horticultural value. Two preliminary genetic linkage maps were constructed using 90 F1 progeny individuals derived from an interspecific cross between D. nobile and D. moniliforme (both, 2n?=?38), using random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR). A total of 286 RAPD loci and 68 ISSR loci were identified and used for genetic linkage analysis. Maps were constructed by double pseudo-testcross mapping strategy using the software Mapmaker/EXP ver. 3.0, and Kosambi map distances were constructed using a LOD score ≥ 4 and a recombination threshold of 0.4. The resulting frame map of D. nobile was 1474 cM in total length with 116 loci distributed in 15 linkage groups; and the D. moniliforme linkage map had 117 loci placed in 16 linkage groups spanning 1326.5 cM. Both maps showed 76.91% and 73.59% genome coverage for D. nobile and D. moniliforme, respectively. These primary maps provide an important basis for genetic studies and further medicinal and horticultural traits mapping and marker-assisted selection in Dendrobium breeding programmes.  相似文献   

10.
A fully contained and efficient heterologous protein production system was designed using Brassica rapa rapa (turnip) hairy roots. Two expression cassettes containing a cauliflower mosaic virus (CaMV) 35S promoter with a duplicated enhancer region, an Arabidopsis thaliana sequence encoding a signal peptide and the CaMV polyadenylation signal were constructed. One cassette was used to express the green fluorescent protein (GFP)-encoding gene in hairy roots grown in flasks. A stable and fast-growing hairy root line secreted GFP at >120 mg/l culture medium. GFP represented 60 % of the total soluble proteins in the culture medium. Turnip hairy roots retained sustainable growth and stable GFP production over 3 years. These results were superior to those obtained using tobacco hairy roots.  相似文献   

11.
Bottle gourd (Lagenaria sicerar ia Standl.) has been used as a source of rootstock for grafting watermelon to improve its fruit quality. We report here the development of a bottle gourd with resistance to drought by ectopic expression of the Arabidopsis AVP1 gene that encodes a vacuolar H+-pyrophosphatase. The drought resistance of AVP1-expressing and wild-type plants was assessed by growing plants under drought conditions. After 12 days of water deprivation, both AVP1-expressing and wild-type plants demonstrated reduced growth. After 10 days of re-watering, wild-type plants showed minimal growth while the AVP1-expressing plants resumed rapid growth. Further, AVP1-expressing plants displayed longer primary roots and more robust root systems than wild-type plants.  相似文献   

12.
13.
As a key enzyme in the biosynthesis of flavonols, anthocyanidins and proanthocyanidins, flavanone-3ß-hydroxylase (F3H) plays very important roles in plant stress response. A putative flavanone-3ß-hydroxylase gene from Medicago truncatula (MtF3H), a model legume species, was identified from a bio-data analysis platform. It was speculated to be induced by salt stress based on the outcomes of the analysis platform. The complementary DNA (cDNA) consists of 1499 bp with an open reading frame (ORF) of 1098 bp, which encodes a putative protein of 365 amino acids with a molecular weight of about 41.36 kDa and an isoelectric point of 5.60. To measure the catalytic activity of the protein, the MtF3H gene was ligated to pYES2 vector and heterologously expressed in yeast. The recombinant protein converted naringen into dihydrokaempferol and displayed different enzymatic efficiencies with other flavanones, confirming that MtF3H coding a functional flavanone-3ß-hydroxylase. The expression pattern of the MtF3H gene was analyzed by comparative quantitative RT-PCR and a higher level of expression was observed in the roots than was observed in stems and leaves. Furthermore, the expression was induced by salt stress in the roots, and to a greater extent in the stems, but the response of the gene activity to salt stress in the stems was slower in the first 12 h following treatment when compared to the roots.  相似文献   

14.
15.
16.
Aluminum (Al) toxicity is a major limiting factor for plant growth and crop production in acidic soils. Al-induced organic acid (OA) exudation plays an important role in plant Al resistance. The exudation of OAs is mediated by membrane-localized OA transporters. In our previous study, a gene encoding the Al-induced malate transporter (MsALMT1) was identified in the roots of the Al-sensitive plant Medicago sativa L. cv. Yumu no. 1 (YM1). To further validate the function of MsALMT1, transgenic plants that overexpressed MsALMT1 under the control of the CaMV 35S (35S) promoter were generated. This transgenic tobacco showed an enhanced capacity for malate efflux and better Al resistance than wild type (WT) plants after exposure to 30 μM Al for 24 h. The Al content in the transgenic plant roots decreased to 40–52 % of that in WT plant roots. These results demonstrate that MsALMT1 is an Al-resistant gene in YM1 and encodes a malate transporter, the overexpression of which effectively enhances the Al resistance of transgenic tobacco plants.  相似文献   

17.
18.
Thyroid hormone receptor α1 (TRα1) is shown to be critical for the maturation of cardiomyocytes and for the cellular response to stress. TRα1 is altered during post ischemic cardiac remodeling but the physiological significance of this response is not fully understood. Thus, the present study explored the potential consequences of selective pharmacological inhibition of TRα1 on the mechanical performance of the post-infarcted heart. Acute myocardial infarction was induced in mice (AMI), while sham operated animals served as controls (SHAM). A group of mice was treated with debutyl-dronedarone (DBD), a selective TRα1 inhibitor (AMI–DBD). AMI resulted in low T3 levels in plasma and in down-regulation of TRα1 and TRβ1 expression. Left ventricular ejection fraction (LVEF%) was significantly reduced in AMI [33 (SEM 2.1) vs 79(2.5) in SHAM, p < 0.05] and was further declined in AMI–DBD [22(1.1) vs 33(2.1), respectively, p < 0.05]. Cardiac mass was increased in AMI but not in AMI–DBD hearts, resulting in significant increase in wall tension index. This increase in wall stress was accompanied by marked activation of p38 MAPK, a kinase that is sensitive to mechanical stretch and exerts negative inotropic effect. Furthermore, AMI resulted in β-myosin heavy chain overexpression and reduction in the ratio of SR(Ca)ATPase to phospholamban (PLB). The latter further declined in AMI–DBD mainly due to increased expression of PLB. AMI induces downregulation of thyroid hormone signaling and pharmacological inhibition of TRα1 further depresses post-ischemic cardiac function. p38 MAPK and PLB may, at least in part, be involved in this response.  相似文献   

19.
Heme oxygenase1 (HO1) is involved in protecting plants from environmental stimuli. In this study, a sunflower (Helianthus annuus L.) HO1 gene (HaHO1) was cloned and sequenced. It was confirmed that HaHO1 encodes a precursor protein of 32.93 kDa with an N-terminal plastid transit peptide which was validated by subcellular localization. The amino acid sequence of HaHO1 shared high homology with other plant HO1s. The predicted three-dimensional structure showed a high degree of structural conservation as compared to the known HO1 crystal structures. Phylogenetic analysis revealed that HaHO1 clearly grouped with the plant HO1-like sequences. Moreover, the purified recombinant mature HaHO1 expressed in Escherichia coli exhibits HO activity. Thus, it was concluded that HaHO1 encodes a functional HO1 in sunflower. Additionally, HaHO1 gene was ubiquitously expressed in all tested tissues, and induced differentially during different growth stages after germination, and could be differentially induced by several stresses and hemin treatment. For example, a pretreatment with a low concentration of NaCl (25 mM) could lead to the induction of HaHO1 gene expression and thereafter a salinity acclamatory response. Above cytoprotective effect could be impaired by the potent HO1 inhibitor zinc protoporphyrin IX (ZnPPIX), which was further rescued by the addition of 50 % carbon monoxide aqueous solution (in particular) or bilirubin, two catalytic by-products of HO1, respectively. Similarly, a HO1 inducer, hemin, could mimic the salinity acclamatory response. Together, these findings strongly suggested that the up-regulation of HaHO1 might be required for the observed salinity acclimation in sunflower plants.  相似文献   

20.
In order to understand the molecular basis of high nitrogen use efficiency of finger millet, five genes (EcHNRT2, EcLNRT1, EcNADH-NR, EcGS, and EcFd-GOGAT) involved in nitrate uptake and assimilation were isolated using conserved primer approaches. Expression profiles of these five genes along with the previously isolated EcDof1 was studied under increased KNO3 concentrations (0.15 to 1,500 μM) for 2 h as well as at 1.5 μM for 24 h in the roots and shoots of 25 days old nitrogen deprived two contrasting finger millet genotypes (GE-3885 and GE-1437) differing in grain protein content (13.76 and 6.15 %, respectively). Time kinetics experiment revealed that, all the five genes except EcHNRT2 in the leaves of GE-3885 were induced within 30 min of nitrate exposure indicating that there might be a greater nitrogen deficit in leaves and therefore quick transportation of nitrate signals to the leaves. Exposing the plants to increasing nitrate concentrations for 2 h showed that in roots of GE-3885, NR was strongly induced while GS was repressed; however, the pattern was found to be reversed in leaves of GE-1437 indicating that in GE-3885, most of the nitrate might be reduced in the roots but assimilated in leaves and vice-versa. Furthermore, compared with the low-protein genotype, expression of HNRT2 was strongly induced in both roots and shoots of high-protein genotype at the least nitrate concentration supplied. This further indicates that GE-3885 is a quick sensor of nitrogen compared with the low-protein genotype. Furthermore, expression of EcDof1 was also found to overlap the expression of NR, GS, and GOGAT indicating that Dof1 probably regulates the expression of these genes under different conditions by sensing the nitrogen fluctuations around the root zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号