首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the EGFR/ErbB family of tyrosine kinases are found to be highly expressed and deregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). The ErbB family, including EGFR, has been demonstrated to play key roles in metastasis, tumorigenesis, cell proliferation, and drug resistance. Recently, these characteristics have been linked to a small subpopulation of cells classified as cancer stem cells (CSCs) which are believed to be responsible for tumor initiation and maintenance. In this study, we investigated the possible role of EGFR as a regulator of "stemness" in HNSCC cells. Activation of EGFR by the addition of EGF ligand or ectopic expression of EGFR in two established HNSCC cell lines (UMSCC-22B and HN-1) resulted in the induction of CD44, BMI-1, Oct-4, NANOG, CXCR4, and SDF-1. Activation of EGFR also resulted in increased tumorsphere formation, a characteristic ability of cancer stem cells. Conversely, treatment with the EGFR kinase inhibitor, Gefinitib (Iressa), resulted in decreased expression of the aforementioned genes, and loss of tumorsphere-forming ability. Similar trends were observed in a 99.9% CD44 positive stem cell culture derived from a fresh HNSCC tumor, confirming our findings for the cell lines. Additionally, we found that these putative cancer stem cells, when treated with Gefitinib, possessed a lower capacity to invade and became more sensitive to cisplatin-induced death in vitro. These results suggest that EGFR plays critical roles in the survival, maintenance, and function of cancer stem cells. Drugs that target EGFR, perhaps administered in combination with conventional chemotherapy, might be an effective treatment for HNSCC.  相似文献   

2.
Interaction between epidermal growth factor (EGF) and EGF receptor (EGFR) promotes cell growth in most cell lines, but in a number of cell lines, EGF paradoxically inhibits proliferation. In the present study, we established a cell line expressing full-length human EGFR on membrane with a GFP fluorescence reporter at the C-terminal and studied the effects of EGF on cell proliferation in the transfected cell line. Our results suggested that low concentrations of EGF promoted proliferation, while high concentrations of EGF induced loss of adhesion, cell cycle arrest, apoptosis, and inhibition of proliferation. The effects of EGF on cell proliferation correlated well with the expression levels of EGFR. High concentrations of EGF induced both EGFR expression and apoptosis in a dose-dependent manner. Our study reported, for the first time, a relationship between the effects of EGF on cell proliferation and levels of EGFR expression in one cell line expressing different levels of EGFR caused by different concentrations of EGF treatment. The study should provide considerable insight into the effects of EGF on cell proliferation and tumor cell metastasis.  相似文献   

3.
The epidermal growth factor receptor (EGFR) gene is frequently amplified and/or overexpressed in human malignancies. To investigate the biological effects of its overexpression, we constructed a eukaryotic vector containing human EGFR cDNA. Introduction of this construct led to reconstitution of functional EGF receptors in NR6 mutant cells, which are normally devoid of this receptor. Transfection of NIH 3T3 resulted in no significant alterations in growth properties. However, EGF addition led to the formation of densely growing transformed foci in liquid culture and colonies in semisolid medium. NIH 3T3-EGFR clonal lines, which expressed the EGF at 500- to 1000-fold levels over control NIH 3T3 cells, demonstrated a marked increase in DNA synthesis in response to EGF. Thus EGF receptor overexpression appears to amplify normal EGF signal transduction. Finally, high levels of EGFR expression, which conferred a transformed phenotype to NIH 3T3 cells in the presence of ligand, were demonstrated in representative human tumor cell lines that contained amplified copies of the EGFR gene.  相似文献   

4.
Protein kinase C ε (PKCε) is a transforming oncogene and plays a pivotal role in numerous cellular processes including proliferation, invasion and differentiation. Recently, we described a function of PKCε as a scaffold protein linking PLCγ1 to the EGFR module. Here, in the head and neck squamous carcinoma cell line (HNSCC) FaDu we demonstrate that over-expressed PKCε may be associated with the EGFR. This is linked with the consecutive inhibition of the recruitment of PLCγ1 to the EGFR, of the catalytical activation of PLCγ1 by EGF, and of the PLCγ1-mediated effect of EGF on cell proliferation. These effects are independent of the catalytical as well as the scaffold activity of PKCε but are a function of the cellular expression level of PKCε. In contrast to FaDu cells where the PLCγ1 pathway was selectively affected, in three other HNSCC cell lines investigated over-expression of PKCε resulted in association with EGFR and, subsequently, in either partial (ERK and Akt or PLCγ1 and Akt) or complete (ERK, PLCγ1 and Akt) inhibition of the main EGFR signalling pathways. Together, our data suggest that in particular carcinoma cells highly expressed PKCε may act as negative allosteric modulator of EGFR signalling. This novel function of PKCε provides also the first indication that the EGFR may be a target for allosteric modulation by accessory proteins.  相似文献   

5.
EGFR is a potent stimulator of invasion and metastasis in head and neck squamous cell carcinomas (HNSCC). However, the mechanism by which EGFR may stimulate tumor cell invasion and metastasis still need to be elucidated. In this study, we showed that activation of EGFR by EGF in HNSCC cell line SCC10A enhanced cell migration and invasion, and induced loss of epitheloid phenotype in parallel with downregulation of E-cadherin and upregulation of N-cadherin and vimentin, indicating that EGFR promoted SCC10A cell migration and invasion possibly by an epithelial to mesenchymal transition (EMT)-like phenotype change. Interestingly, activation of EGFR by EGF induced production of matrix metalloproteinase-9 (MMP-9) and soluble E-cadherin (sE-cad), and knockdown of MMP-9 by siRNA inhibited sE-cad production induced by EGF in SCC10A. Moreover, both MMP-9 knockdown and E-cadherin overexpression inhibited cell migration and invasion induced by EGF in SCC10A. The results indicate that EGFR activation promoted cell migration and invasion through inducing MMP-9-mediated degradation of E-cadherin into sE-cad. Pharmacologic inhibition of EGFR, MEK, and PI3K kinase activity in SCC10A reduced phosphorylated levels of ERK-1/2 and AKT, production of MMP-9 and sE-cad, cell migration and invasion, and expressional changes of EMT markers (E-cadherin and N-cadherin) induced by EGF, indicating that EGFR activation promotes cell migration and invasion via ERK-1/2 and PI3K-regulated MMP-9/E-cadherin signaling pathways. Taken together, the data suggest that EGFR activation promotes HNSCC SCC10A cell migration and invasion by inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin into sE-cad related to activation of ERK-1/2 and PI3K signaling pathways.  相似文献   

6.
In tumor cells, high phosphorylation levels of receptor tyrosine kinases may occur in the absence of exogenous ligands due to autocrine signaling or enhanced tyrosine kinase activity. Here we show that the phosphorylation state of the endogenous epidermal growth factor receptor (EGFR) can be quantitatively imaged in tumor cells and tissues by detecting fluorescence resonance energy transfer between fluorophores conjugated to antibodies against the receptor and phosphotyrosine, respectively. Five different human colorectal cell lines were analyzed for activity and expression of EGFR. All cell lines exhibited basal EGFR phosphorylation under serum starvation conditions. Phosphorylation levels increased after stimulation with EGF or pervanadate, dependent on the level of basal EGFR phosphorylation in the respective cell lines. This basal activity correlated inversely with receptor expression. Using the acceptor photobleaching fluorescence resonance energy transfer imaging approach, a significantly higher phosphorylation state of EGFR was also found in resected human colorectal tumor samples as compared with adjacent healthy tissue. Imaging of EGFR phosphorylation may thus serve as a valuable tool to investigate the role of receptor tyrosine kinase activity in malignant cell growth.  相似文献   

7.
Human squamous cell carcinoma cell lines often possess increased levels of epidermal growth factor (EGF) receptor. The growth of these EGF receptor-hyperproducing cells is usually inhibited by EGF. To investigate the mechanism of EGF-mediated inhibition of cell growth, variants displaying alternate responses to EGF were isolated from two squamous cell carcinoma lines, NA and Ca9-22; these cell lines possess high numbers of the EGF receptor and an amplified EGF receptor (EGFR) gene. The variants were isolated from NA cells after several cycles of EGF treatment and they have acquired EGF-dependent growth. Scatchard plot analysis revealed a decreased level of EGF receptor in these ER variants as compared with parental NA cells. Southern blot analysis and RNA dot blot analysis demonstrated that the ER variants had lost the amplified EGFR gene. One variant isolated from Ca9-22 cells, CER-1, grew without being affected by EGF. CER-1 cells had higher numbers of EGF receptor than parental Ca9-22 but similar EGFR gene copy number. Flow cytometric analysis indicated an increase in ploidy and cell volume which may give rise to the increase in receptor number per cell. The EGF receptors on both Ca9-22 and CER-1 cells were autophosphorylated upon EGF exposure in a similar manner suggesting no obvious alteration in receptor tyrosine kinase. However, very efficient down-regulation of the EGF receptor occurred in CER-1 cells. These data suggest two independent mechanisms by which EGF receptor-hyperproducing cells escape EGF-mediated growth inhibition: one mechanism is common and involves the loss of the amplified EGFR genes, and another is novel and involves the efficient down-regulation of the cell-surface receptor.  相似文献   

8.
Epidermal growth factor (EGF) and its receptor (EGFR) are involved in hormone-refractory growth and poor prognosis of a subgroup of human prostate cancer. In this communication, we investigated the regulation of PSA by the EGFR signaling pathway using LNCaP C-81 prostate cancer cells. Administration of EGF stimulated the growth of LNCaP C-81 cells, however, PSA expression and secretion were suppressed. An EGFR inhibitor, AG1478, abrogated the PSA suppression effect by EGF, in concurrence with the suppression of tyro-phosphorylation levels of EGFR. Interestingly, the AR level was also decreased in EGF-treated LNCaP C-81 cells. Moreover, LY294002, but not PD98059, inhibited the PSA and AR suppression effect by EGF in concurrence with the suppression of phosphorylation levels of Akt. In conclusion, our results strongly suggest the existence of a novel androgen-independent PSA regulatory mechanism, i.e., the EGFR signaling pathway negatively regulates PSA expression which may be induced by the alteration of AR expression via the PI3K-Akt pathway in LNCaP C-81 cells.  相似文献   

9.
A cloned human hepatoma cell line (Li-7A), possessing epidermal growth factor (EGF) receptors numbering in the range of 10-20 pmol/10(6) cells, was inhibited in its growth by EGF as well as an antagonist monoclonal antibody (MoAb) to the EGF receptor. The mode of action of the two ligands of EGF receptors appeared to be different as indicated by the following results: 1) EGF induced marked alteration in cell morphology, whereas the antibody did not; 2) cellular protein accumulated in the EGF-treated cells but not in the antibody treated cells; and 3) ectoATPase activities were greatly enhanced in Li-7A cells treated with EGF and cholera toxin but were unaffected in cells treated with antibody and cholera toxin. The last result also suggests that expression of ectoATPase activities is under the regulation of both EGF and cholera toxin. Li-7A cells provide an additional valuable experimental system for the study of EGF action, as well as the interactive effects of EGF and cholera toxin. The enrichment of the ATPase activities in the EGF-cholera toxin-treated cells can be exploited for the detailed study and isolation of these enzymes and elucidation of their physiological functions.  相似文献   

10.
Exposure of the skin to UVB light results in the formation of DNA photolesions that can give rise to cell death, mutations, and the onset of carcinogenic events. Specific proteins are activated by UVB and then trigger signal transduction pathways that lead to cellular responses. An alteration of these signaling molecules is thought to be a fundamental event in tumor promotion by UVB irradiation. RhoB, encoding a small GTPase has been identified as a DNA damage-inducible gene. RhoB is involved in epidermal growth factor (EGF) receptor trafficking, cytoskeletal organization, cell transformation, and survival. We have analyzed the regulation of RhoB and elucidated its role in the cellular response of HaCaT keratinocytes to relevant environmental UVB irradiation. We report here that the activated GTP-bound form of RhoB is increased rapidly within 5 min of exposure to UVB, and then RhoB protein levels increased concomitantly with EGF receptor (EGFR) activation. Inhibition of UVB-induced EGFR activation prevents RhoB protein expression and AKT phosphorylation but not the early activation of RhoB. Blocking UVB-induced RhoB expression with specific small interfering RNAs inhibits AKT and glycogen synthase kinase-3beta phosphorylation through inhibition of EGFR expression. Moreover, down-regulation of RhoB potentiates UVB-induced cell apoptosis. In contrast, RhoB overexpression protects keratinocytes against UVB-induced apoptosis. These results indicated that RhoB is regulated upon UVB exposure by a two-step process consisting of an early EGFR-independent RhoB activation followed by an EGFR-dependent induction of RhoB expression. Moreover, we have demonstrated that RhoB is essential in regulating keratinocyte cell survival after UVB exposure, suggesting its potential role in photocarcinogenesis.  相似文献   

11.
We have examined the expression of mRNAs for epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), EGF receptor (EGFR), PDGF-A chain (PDGFA), PDGF-B chain (PDGFB) and PDGF receptor (PDGFR) genes in seven human colorectal carcinoma cell lines and 18 human colorectal carcinomas. In surgically resected specimens of the 18 colorectal tumors, TGF-alpha, EGFR, PDGFA, PDGFB and PDGFR mRNAs were detected at various levels in 15 (83%), 9 (50%), 18 (100%), 8 (44%) and 12 (67%), respectively. They were also detected in normal tissues. Interestingly, EGF mRNA was detected in only five (28%) of the tumors, but not in normal mucosa. Expression of EGF was also confirmed immunohistochemically in tumor cells. Of the five tumors expressing EGF, four expressed EGFR mRNA and showed a tendency to invade veins and lymphatics. All the colorectal carcinoma cell lines expressed TGF-alpha mRNA, and five cell lines expressed EGFR mRNA simultaneously. Production of TGF-alpha protein by DLD-1 and CoLo320DM cells was confirmed by TGF-alpha specific monoclonal antibody binding assay. The spontaneous 3H-thymidine uptake by DLD-1 was suppressed by an anti-TGF-alpha monoclonal antibody. PDGFA and PDGFB mRNA were also expressed in four cell lines, but PDGFR and EGF mRNA was not detected. These results suggest that human colorectal carcinomas express multi-loops of growth factors and that TGF-alpha produced by tumor cells functions as an autocrine growth factor in human colonic carcinoma.  相似文献   

12.
13.
14.
15.
The tyrosine kinase inhibitor gefitinib inhibits growth in some tumor types by targeting the epidermal growth factor receptor (EGFR). Previous studies show that the affinity of the EGF-EGFR interaction varies between hosting cell line, and that gefitinib increases the affinity for some cell lines. In this paper, we investigate possible mechanisms behind these observations. Real-time interaction analysis in LigandTracer® Grey revealed that the HER2 dimerization preventing antibody pertuzumab clearly modified the binding of 125I-EGF to EGFR on HER2 overexpressing SKOV3 cells in the presence of gefitinib. Pertuzumab did not affect the binding on A431 cells, which express low levels of HER2. Cross-linking measurements showed that gefitinib increased the amount of EGFR dimers 3.0–3.8 times in A431 cells in the absence of EGF. In EGF stimulated SKOV3 cells the amount of EGFR dimers increased 1.8–2.2 times by gefitinib, but this effect was cancelled by pertuzumab. Gefitinib treatment did not alter the number of EGFR or HER2 expressed in tumor cell lines A431, U343, SKOV3 and SKBR3. Real-time binding traces were further analyzed in a novel tool, Interaction Map, which deciphered the different components of the measured interaction and supports EGF binding to multiple binding sites. EGFR and HER2 expression affect the levels of EGFR monomers, homodimers and heterodimers and EGF binds to the various monomeric/dimeric forms of EGFR with unique binding properties. Taken together, we conclude that dimerization explains the varying affinity of EGF – EGFR in different cells, and we propose that gefitinib induces EGFR dimmers, which alters the interaction characteristics with 125I-EGF.  相似文献   

16.
Overexpression of the epidermal growth factor receptor (EGFR, ErbB1, HER1) is frequent in head and neck squamous cell carcinomas (HNSCCs) and correlates with disease progression. Inhibition of EGFR with the kinase inhibitor AG1478 abolished receptor phosphorylation and reduced cell proliferation. However, treatment of HNSCC cells with cetuximab (Erbitux), a monoclonal antibody designed to block the EGFR ligand binding site, led to paradox EGFR activation due to hyperphosphorylation of tyrosine 1173, however, with a concomitant reduction in Erk1/2 phosphorylation levels. No pronounced influence on cell proliferation levels could be observed after treatment with this antibody. Since cetuximab appears able to activate EGFR in HNSCC cell lines, it is necessary to rethink the exact mechanisms by which cetuximab that recently was approved for the treatment of advanced head and neck cancer, inhibits tumor growth.  相似文献   

17.
Alterations in EGF receptor (EGFR) signaling occur in intestinal disorders associated with dysregulated epithelial transport. In the present study, we investigated a role for the EGFR in the chronic regulation of intestinal epithelial secretory function. Epithelial Cl(-) secretion was measured as changes in short-circuit current (Isc) across voltage-clamped monolayers of T84 cells in Ussing chambers. Acute treatment of T84 cells with EGF (100 ng/ml, 15 min) chronically enhanced Isc responses to a broad range of secretagogues. This effect was apparent within 3 h, maximal by 6 h, and sustained for 24 h after treatment with EGF. The Na+/K+/2Cl(-) cotransporter (NKCC1) inhibitor bumetanide (100 microM) abolished the effect of EGF, indicating increased responses are due to potentiated Cl(-) secretion. Neither basal nor agonist-stimulated levels of intracellular Ca2+ or PKA activity were altered by EGF, implying that the effects of the growth factor are not due to chronic alterations in levels of second messengers. EGF increased the expression of NKCC1 with a time course similar to that of its effects on Cl(-) secretion. This effect of EGF was maximal after 6 h, at which time NKCC1 expression in EGF-treated cells was 199.9 +/- 21.9% of that in control cells (n = 21, P < 0.005). EGF-induced NKCC1 expression was abolished by actinomycin D, and RT-PCR analysis demonstrated EGF increased expression of NKCC1 mRNA. These data increase our understanding of mechanisms regulating intestinal fluid and electrolyte transport and reveal a novel role for the EGFR in the chronic regulation of epithelial secretory capacity through upregulation of NKCC1 expression.  相似文献   

18.
We have examined the expression of mRNAs for epidermal growth factor (EGF), transforming growth factor-alpha (TGF-α), EGF receptor (EGFR), PDGF-A chain (PDGFA), PDGF-B chain (PDGFB) and PDGF receptor (PDGFR) genes in seven human colorectal carcinoma cell lines and 18 human colorectal carcinomas. In surgically resected specimens of the 18 colorectal tumors, TGF-α, EGFR, PDGFA, PDGFB and PDGFR mRNAs were detected at various levels in 15 (83%), 9 (50%), 18 (100%), 8 (44%) and 12 (67%), respectively. They were also detected in normal tissues. Interestingly, EGF mRNA was detected in only five (28%) of the tumors, but not in normal mucosa. Expression of EGF was also confirmed immunohistochemically in tumor cells. Of the five tumors expressing EGF, four expressed EGFR mRNA and showed a tendency to invade veins and lymphatics. All the colorectal carcinoma cell lines expressed TGF-α mRNA, and five cell lines expressed EGFR mRNA simultaneously. Production of TGF-α protein by DLD-1 and CoLo320DM cells was confirmed by TGF-α specific monoclonal antibody binding assay. The spontaneous3H-thymidine uptake by DLD-1 was suppressed by an anti-TGF-α monoclonal antibody. PDGFA and PDGFB mRNA were also expressed in four cell lines, but PDGFR and EGF mRNA was not detected. These results suggest that human colorectal carcinomas express multi-loops of growth factors and that TGF-α produced by tumor cells functions as an autocrine growth factor in human colonic carcinoma.  相似文献   

19.
Many cell types display two classes of epidermal growth factor receptor (EGFR) as judged from EGF binding studies; i.e., a major class of low affinity EGFR and a minor class of high affinity EGFR. We have studied their respective contribution to the cascade of events elicited by EGF in human A431 carcinoma cells, using anti-EGFR mAb 2E9. This antibody specifically blocks EGF binding to low affinity EGFR, without activating receptors in intact cells, and thus enables us to study the effects of exclusive EGF binding to high affinity EGFR. We show that blocking of low affinity EGFR by mAb 2E9 has almost no effect on the activation of the receptor protein-tyrosine kinase by EGF, suggesting that EGFR kinase activation occurs exclusively through the subclass of high affinity EGFR (5-10%). In addition, we provide evidence that high affinity EGFR exists both in monomeric and dimeric forms, and that cross-phosphorylation of low affinity EGFR by high affinity EGFR may take place in dimers of both receptor types. We demonstrate that the following early cellular response to EGF are also unimpaired in the presence of mAb 2E9: (a) inositol phosphate production, (b) release of Ca2+ from intracellular stores, (c) rise in intracellular pH, (d) phosphorylation of EGF on threonine residue 654, (e) induction of c-fos gene expression, and (f) alteration in cell morphology. As possible nonspecific side effects, we observed that the EGF induced Ca2+ influx and fluid-phase pinocytosis were inhibited in A431 cells in the presence of mAb 2E9. We conclude, therefore, that the activation of the EGFR signal transduction cascade can occur completely through exclusive binding of EGF to the subclass of high affinity EGFR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号