首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The cytokine resistin and the chemokine fractalkine (FKN) were found at increased levels in human atherosclerotic plaque, in the subendothelium, but their role in this location still needs to be characterized. Recently, high local resistin in the arterial vessel wall was shown to contribute to an enhanced accumulation of macrophages by mechanisms that need to be clarified. Our recent data showed that resistin activated smooth muscle cells (SMC) by up-regulating FKN and MCP-1 expression and monocyte chemotaxis by activating toll-like receptor 4 (TLR4) and Gi/o proteins. Since in the vessel wall both endothelial cells (EC) and SMC respond to cytokines and promote atherosclerosis, we questioned whether subendothelial resistin (sR) has a role in vascular cells cross-talk leading to enhanced monocyte transmigration and we investigated the mechanisms involved. To this purpose we used an in vitro system of co-cultured SMC and EC activated by sR and we analyzed monocyte transmigration. Our results indicated that: (1) sR enhanced monocyte transmigration in EC/SMC system compared to EC cultured alone; (2) sR activated TLR4 and Gi/o signaling in EC/SMC system and induced the secretion of more FKN and MCP-1 compared to EC cultured alone and used both chemokines to specifically recruit monocytes by CX3CR1 and CCR2 receptors. Moreover, FKN produced by resistin in EC/SMC system, by acting on CX3CR1 on EC/SMC specifically contributes to MCP-1 secretion in the system and to the enhanced monocyte transmigration. Our study indicates new possible targets for therapy to reduce resistin-dependent enhanced macrophage infiltration in the atherosclerotic arterial wall.  相似文献   

3.
4.
5.
The membrane-anchored form of CX3CL1 has been proposed as a novel adhesion protein for leukocytes. This functional property of CX3CL1 is mediated through CX3CR1, a chemokine receptor expressed predominantly on circulating white blood cells. Thus far, it is still uncertain at what stage of the trafficking process CX3CR1 becomes importantly involved and how the CX3CR1-dependent adhesion of leukocytes is regulated during inflammation. The objective of this study was to examine the functional effects of chemokine stimulation on CX3CR1-mediated adhesion of human monocytes. Consistent with previous reports, our data indicate that the activity of CX3CR1 on resting monocytes is sufficient to mediate cell adhesion to CX3CL1. However, the basal, nonstimulated adhesion activity is low, and we hypothesized that like the integrins, CX3CR1 may require a preceding activation step to trigger firm leukocyte adhesion. Compatible with this hypothesis, stimulation of monocytes with MCP-1 significantly increased their adhesion to immobilized CX3CL1, under both static and physiological flow conditions. The increase of the adhesion activity was mediated through CCR2-dependent signaling and obligatory activation of the p38 MAPK pathway. Stimulation with MCP-1 also induced a rapid increase of CX3CR1 protein on the cell surface. Inhibition of the p38 MAPK pathway prevented this increase of CX3CR1 surface expression and blunted the effect of MCP-1 on cell adhesion, indicating a causal link between receptor surface density and adhesion activity. Together, our data suggest that a chemokine signal is required for firm CX3CR1-dependent adhesion and demonstrate that CCR2 is an important regulator of CX3CL1-dependent leukocyte adhesion.  相似文献   

6.
7.
Human oral squamous cell carcinoma (OSCC) has been associated with a relatively low survival rate over the years and is characterized by a poor prognosis. C-X3-C motif chemokine ligand 1 (CX3CL1) has been involved in advanced migratory cells. Overexpressed CX3CL1 promotes several cellular responses related to cancer metastasis, including cell movement, migration and invasion in tumour cells. However, CX3CL1 controls the migration ability, and its molecular mechanism in OSCC remains unknown. The present study confirmed that CX3CL1 increased cell movement, migration and invasion. The CX3CL1-induced cell motility is upregulated through intercellular adhesion molecule-1 (ICAM-1) expression in OSCC cells. These effects were significantly suppressed when OSCC cells were pre-treated with CX3CR1 monoclonal antibody (mAb) and small-interfering RNA (siRNA). The CX3CL1-CX3CR1 axis activates promoted PLCβ/PKCα/c-Src phosphorylation. Furthermore, CX3CL1 enhanced activator protein-1 (AP-1) activity. The CX3CR1 mAb and PLCβ, PKCα, c-Src inhibitors reduced CX3CL1-induced c-Jun phosphorylation, c-Jun translocation into the nucleus and c-Jun binding to the ICAM-1 promoter. The present results reveal that CX3CL1 induces the migration of OSCC cells by promoting ICAM-1 expression through the CX3CR1 and the PLCβ/PKCα/c-Src signal pathway, suggesting that CX3CL1-CX3CR1-mediated signalling is correlated with tumour motility and appealed to be a precursor for prognosis in human OSCC.  相似文献   

8.
H Zhang  C Guo  D Wu  A Zhang  T Gu  L Wang  C Wang 《PloS one》2012,7(7):e41147
Hydrogen sulfide, as a novel gaseous mediator, has been suggested to play a key role in atherogenesis. However, the precise mechanisms by which H(2)S affects atherosclerosis remain unclear. Therefore, the present study aimed to investigate the potential role of H(2)S in atherosclerosis and the underlying mechanism with respect to chemokines (CCL2, CCL5 and CX3CL1) and chemokine receptors (CCR2, CCR5, and CX3CR1) in macrophages. Mouse macrophage cell line RAW 264.7 or mouse peritoneal macrophages were pre-incubated with saline or NaHS (50 μM, 100 μM, 200 μM), an H(2)S donor, and then stimulated with interferon-γ (IFN-γ) or lipopolysaccharide (LPS). It was found that NaHS dose-dependently inhibited IFN-γ or LPS-induced CX3CR1 and CX3CL1 expression, as well as CX3CR1-mediated chemotaxis in macrophages. Overexpression of cystathionine γ-lyase (CSE), an enzyme that catalyzes H(2)S biosynthesis resulted in a significant reduction in CX3CR1 and CX3CL1 expression as well as CX3CR1-mediated chemotaxis in stimulated macrophages. The inhibitory effect of H(2)S on CX3CR1 and CX3CL1 expression was mediated by modulation of proliferators-activated receptor-γ (PPAR-γ) and NF-κB pathway. Furthermore, male apoE(-/-) mice were fed a high-fat diet and then randomly given NaHS (1 mg/kg, i.p., daily) or DL-propargylglycine (PAG, 10 mg/kg, i.p., daily). NaHS significantly inhibited aortic CX3CR1 and CX3CL1 expression and impeded aortic plaque development. NaHS had a better anti-atherogenic benefit when it was applied at the early stage of atherosclerosis. However, inhibition of H(2)S formation by PAG increased aortic CX3CR1 and CX3CL1 expression and exacerbated the extent of atherosclerosis. In addition, H(2)S had minimal effect on the expression of CCL2, CCL5, CCR2 and CCR5 in vitro and in vivo. In conclusion, these data indicate that H(2)S hampers the progression of atherosclerosis in fat-fed apoE(-/-) mice and downregulates CX3CR1 and CX3CL1 expression on macrophages and in lesion plaques.  相似文献   

9.
Recent genetic evidence has implicated the adhesive chemokine CX3CL1 and its leukocyte receptor CX3CR1 in atherosclerosis. We previously proposed a mechanism involving foam cell anchorage to vascular smooth muscle cells because: 1) CX3CL1 and CX3CR1 are expressed by both cell types in mouse and human atherosclerotic lesions; 2) foam cells are reduced in lesions in cx3cr1(-/-)apoE(-/-) mice; and 3) proatherogenic lipids (oxidized low density lipoprotein [oxLDL] and oxidized linoleic acid derivatives) induce adhesion of primary human macrophages to primary human coronary artery smooth muscle cells (CASMCs) in vitro in a macrophage CX3CR1-dependent manner. Here we analyze this concept further by testing whether atherogenic lipids regulate expression and function of CX3CL1 and CX3CR1 on CASMCs. We found that both oxLDL and oxidized linoleic acid derivatives indirectly up-regulated CASMC CX3CL1 at both the protein and mRNA levels through an autocrine feedback loop involving tumor necrosis factor alpha production and NF-kappaB signaling. Oxidized lipids also up-regulated CASMC CX3CR1 but through a different mechanism. Oxidized lipid stimulation also increased adhesion of macrophages to CASMCs when CASMCs were stimulated prior to assay, and a synergistic pro-adhesive effect was observed when both cell types were prestimulated. Selective inhibition with a CX3CL1-specific blocking antibody indicated that adhesion was strongly CASMC CX3CL1-dependent. These findings support the hypothesis that CX3CR1 and CX3CL1 mediate heterotypic anchorage of foam cells to CASMCs in the context of atherosclerosis and suggest that this chemokine/chemokine receptor pair may be considered as a pro-inflammatory target for therapeutic intervention in atherosclerotic cardiovascular disease.  相似文献   

10.
Interleukin 15 (IL-15) is a pro-inflammatory cytokine that modulates T cell recruitment and activation, independent of antigen. It has been detected in human atherosclerotic plaques and atherosclerotic plaques of apoE-/- mice. IL-15 regulates fractalkine (FKN)-CX3CR1 chemokine signaling which is involved in atherogenesis and promotes SMC proliferation. We investigated the role of IL-15 in intimal thickening after arterial injury. Treatment of serum-stimulated SMC with IL-15 in vitro attenuated proliferation and suppressed CX3CR1 and FKN mRNA expression. The role of endogenous IL-15 in vivo was investigated in injured carotid arteries of mice. Periadventitial arterial injury resulted in increased IL-15 expression in the media and neointima, paralleled by increased IL-15 receptor alpha expression. Blockade of endogenous IL-15 increased intimal thickening. FKN and CX3CR1 expression increased after injury and were further augmented after IL-15 blockade. These data suggest that endogenous IL-15 attenuated intimal thickening after arterial injury. The potential mechanism of action is suppression of CX3CR1 signaling.  相似文献   

11.
Although it is known that septic shock rapidly induces immune dysfunctions, which contribute to the impaired clearance of microorganisms observed in patients, the mechanisms for this phenomenon remain incompletely understood. We recently observed, in a microarray study, an altered circulating leukocyte CX3CR1 mRNA expression associated with patients' mortality. As monocytes play a central role in septic shock pathophysiology and express high levels of CX3CR1, we therefore further investigated the alteration of CX3CR1 expression and of its ligand fractalkine (CX3CL1) on those cells in this clinical condition. We observed that CX3CR1 expression (both mRNA and protein) was severely down-regulated in monocytes and consequently associated with a lack of functionality upon fractalkine challenge. Importantly, nonsurvivors presented with significantly sustained lower expression in comparison with survivors. This down-regulation was reproduced by incubation of cells from healthy individuals with LPS, whole bacteria (Escherichia coli and Staphylococcus aureus), and, to a lower extent, with corticosteroids-in accordance with the concept of LPS-induced monocyte deactivation. In addition, CX3CL1 serum concentrations were elevated in patients supporting the hypothesis of increased cleavage of the membrane-anchored form expressed by endothelial cells. As CX3CR1/CX3CL1 interaction preferentially mediates arrest and migration of proinflammatory cells, the present observations may contribute to patients' inability to kill invading microorganisms. This could represent an important new feature of sepsis-induced immunosuppression.  相似文献   

12.
The injection of Clostridium difficile toxin A into the ileal loops caused fluid accumulation with the destruction of intestinal epithelial structure and the recruitment of neutrophils and macrophages. Concomitantly, intraileal gene expression of CX3CL1/fractalkine (FKN) and its receptor, CX3CR1, was enhanced. When treated with toxin A in a similar manner, CX3CR1-deficient (CX3CR1(-/-)) mice exhibited exaggerated fluid accumulation, histopathological alterations, and neutrophil recruitment, but not macrophage infiltration. Mice reconstituted with CX3CR1(-/-) mouse-derived bone marrow cells exhibited exacerbated toxin A-induced enteritis, indicating that the lack of the CX3CR1 gene for hematopoietic cells aggravated toxin A-induced enteritis. A heme oxygenase-1 (HO-1) inhibitor, tin-protoporphyrin-IX, markedly increased fluid accumulation in toxin A-treated wild-type mice, indicating the protective roles of HO-1 in this situation. HO-1 expression was detected mainly in F4/80-positive cells expressing CX3CR1, and CX3CR1(-/-) mice failed to increase HO-1 expression after toxin A treatment. Moreover, CX3CL1/FKN induced HO-1 gene expression by isolated lamina propria-derived macrophages or a mouse macrophage cell line, RAW264.7, through the activation of the ERK signal pathway. Thus, CX3CL1/FKN could induce CX3CR1-expressing macrophages to express HO-1, thereby ameliorating toxin A-induced enteritis.  相似文献   

13.
Cecal ligation and puncture (CLP) caused septic peritonitis in wild-type (WT) mice, with approximately 33% mortality within 7 days after the procedure. Concomitantly, the protein level of intraperitoneal CX3CL1/fractalkine was increased, with infiltration by CX3CR1-expressing macrophages into the peritoneum. CLP induced 75% mortality in CX3CR1-deficient (CX3CR1(-/-)) mice, which, however, exhibited a similar degree of intraperitoneal leukocyte infiltration as WT mice. Despite this, CX3CR1(-/-) mice exhibited impairment in intraperitoneal bacterial clearance, together with a reduction in the expression of intraperitoneal inducible NO synthase (iNOS) and bactericidal proinflammatory cytokines, including IL-1beta, TNF-alpha, IFN-gamma, and IL-12, compared with WT mice. Bactericidal ability of peritoneal phagocytes such as neutrophils and macrophages was consistently attenuated in CX3CR1(-/-) mice compared with WT mice. Moreover, when WT macrophages were stimulated in vitro with CX3CL1, their bactericidal activity was augmented in a dose-dependent manner, with enhanced iNOS gene expression and subsequent NO generation. Furthermore, CX3CL1 enhanced the gene expression of IL-1beta, TNF-alpha, IFN-gamma, and IL-12 by WT macrophages with NF-kappaB activation. Thus, CX3CL1-CX3CR1 interaction is crucial for optimal host defense against bacterial infection by activating bacterial killing functions of phagocytes, and by augmenting iNOS-mediated NO generation and bactericidal proinflammatory cytokine production mainly through the NF-kappaB signal pathway, with few effects on macrophage infiltration.  相似文献   

14.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   

15.
The chemokine fractalkine (CX(3)CL1) is constitutively expressed by central neurons, regulating microglial responses including chemotaxis, activation, and toxicity. Through the activation of its own specific receptor, CX(3)CR1, CX(3)CL1 exerts both neuroprotection against glutamate (Glu) toxicity and neuromodulation of the glutamatergic synaptic transmission in hippocampal neurons. Using cultured hippocampal neuronal cell preparations, obtained from CX(3)CR1(-/-) (CX(3)CR1(GFP/GFP)) mice, we report that these same effects are mimicked by exposing neurons to a medium conditioned with CX(3)CL1-treated mouse microglial cell line BV2 (BV2-st medium). Furthermore, CX(3)CL1-induced neuroprotection from Glu toxicity is mediated through the adenosine receptor 1 (AR(1)), being blocked by neuronal cell preparations treatment with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a specific inhibitor of AR(1), and mimicked by both adenosine and the specific AR(1) agonist 2-chloro-N(6)-cyclopentyladenosine. Similarly, experiments from whole-cell patch-clamped hippocampal neurons in culture, obtained from CX(3)CR1(+/+) mice, show that CX(3)CL1-induced depression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- (AMPA-) type Glu receptor-mediated current (AMPA-current), is associated with AR(1) activity being blocked by DPCPX and mimicked by adenosine. Furthermore, BV2-st medium induced a similar AMPA-current depression in CX(3)CR1(GFP/GFP) hippocampal neurons and this depression was again blocked by DPCPX. We also report that CX(3)CL1 induced a significant release of adenosine from microglial BV2 cells, as measured by HPLC analysis. We demonstrate that (i) CX(3)CL1, along with AR(1), are critical players for counteracting Glu-mediated neurotoxicity in the brain and (ii) AR(1) mediates neuromodulatory action of CX(3)CL1 on hippocampal neurons.  相似文献   

16.
The long-term potentiation (LTP) of spinal C-fiber-evoked field potentials is considered as a fundamental mechanism of central sensitization in the spinal cord. Accumulating evidence has showed the contribution of spinal microglia to spinal LTP and pathological pain. As a key signaling of neurons-microglia interactions, the involvement of CX3CL1/CX3CR1 signaling in pathological pain has also been investigated extensively. The present study examined whether CX3CL1/CX3CR1 signaling plays a role in spinal LTP. The results showed that 10-trains tetanic stimulation (100 Hz, 2s) of the sciatic nerve (TSS) produced a significant LTP of C-fiber-evoked field potentials lasting for over 3 h in the rat spinal dorsal horn. Blockade of CX3CL1/CX3CR1 signaling with an anti-CX3CR1 neutralizing antibody (CX3CR1 AB) markedly suppressed TSS-induced LTP. Exogenous CX3CL1 significantly potentiated 3-trains TSS-induced LTP in rats. Consistently, spinal LTP of C-fiber-evoked field potentials was also induced by TSS (100 Hz, 1s, 4 trains) in all C57BL/6 wild type (WT) mice. However, in CX3CR1-/- mice, TSS failed to induce LTP and behavioral hypersensitivity, confirming an essential role of CX3CR1 in spinal LTP induction. Furthermore, blockade of IL-18 or IL-23, the potential downstream factors of CX3CL1/CX3CR1 signaling, with IL-18 BP or anti-IL-23 neutralizing antibody (IL-23 AB), obviously suppressed spinal LTP in rats. These results suggest that CX3CL1/CX3CR1 signaling is involved in LTP of C-fiber-evoked field potentials in the rodent spinal dorsal horn.  相似文献   

17.
We identified two novel isoforms of the human chemokine receptor CX3CR1, produced by alternative splicing and with N-terminal regions extended by 7 and 32 aa. Expression of the messengers coding these isoforms, compared with that of previously described V28 messengers, is lower in monocytes and NK cells, but higher in CD4(+) T lymphocytes. CX3CR1 and its extended isoforms were expressed in HEK-293 cells and compared for expression, ligand binding, and cellular responses. In steady state experiments, all three CX3CR1 isoforms bound CX3CL1 with similar affinity. In kinetic binding studies, however, k(on) and k(off) were significantly greater for the extended CX3CR1 isoforms, thereby suggesting that the N-terminal extensions may alter the functions induced by CX3CL1. In signaling studies, all three CX3CR1 isoforms mediated agonist-dependent calcium mobilization, but the EC(50) was lower for the extended than for the standard isoforms. In addition, chemotactic responses for these extended isoforms shifted left, also indicating a more sensitive response. Finally, the longer variants appeared to be more potent HIV coreceptors when tested in fusion and infection assays. In conclusion, we identified and characterized functionally two novel isoforms of CX3CR1 that respond more sensitively to CX3CL1 and HIV viral envelopes. These data reveal new complexity in CX3CR1 cell activation and confirm the critical role of the N-terminal domain of the chemokine receptors in ligand recognition and cellular response.  相似文献   

18.
19.
Chemokines are the inflammatory mediators that modulate liver fibrosis, a common feature of chronic inflammatory liver diseases. CX3CL1/fractalkine is a membrane-associated chemokine that requires step processing for chemotactic activity and has been recently implicated in liver disease. Here, we investigated the potential shedding activities involved in the release of the soluble chemotactic peptides from CX3CL1 in the injured liver. We showed an increased expression of the sheddases ADAM10 and ADAM17 in patients with chronic liver diseases that was associated with the severity of liver fibrosis. We demonstrated that hepatic stellate cells (HSC) were an important source of ADAM10 and ADAM17 and that treatment with the inflammatory cytokine inter-feron-γ induced the expression of CX3CL1 and release of soluble peptides. This release was inhibited by the metalloproteinase inhibitor batimastat; however, ADAM10/ADAM17 inhibitor GW280264X only partially affected shedding activity. By using selective tissue metalloprotease inhibitors and overexpression analyses, we showed that CX3CL1 was mainly processed by matrix metalloproteinase (MMP)-2, a metalloprotease highly expressed by HSC. We further demonstrated that the CX3CL1 soluble peptides released from stimulated HSC induced the activation of the CX3CR1-dependent signalling pathway and promoted chemoattraction of monocytes in vitro . We conclude that ADAM10, ADAM17 and MMP-2 synthesized by activated HSC mediate CX3CL1 shedding and release of chemotactic peptides, thereby facilitating recruitment of inflammatory cells and paracrine stimulation of HSC in chronic liver diseases.  相似文献   

20.
Idiopathic inflammatory myopathy is a chronic inflammatory muscle disease characterized by mononuclear cell infiltration in the skeletal muscle. The infiltrated inflammatory cells express various cytokines and cytotoxic molecules. Chemokines are thought to contribute to the inflammatory cell migration into the muscle. We induced experimental autoimmune myositis (EAM) in SJL/J mice by immunization with rabbit myosin and CFA. In the affected muscles of EAM mice, CX3CL1 (fractalkine) was expressed on the infiltrated mononuclear cells and endothelial cells, and its corresponding receptor, CX3CR1, was expressed on the infiltrated CD4 and CD8 T cells and macrophages. Treatment of EAM mice with anti-CX3CL1 mAb significantly reduced the histopathological myositis score, the number of necrotic muscle fibers, and infiltration of CD4 and CD8 T cells and macrophages. Furthermore, treatment with anti-CX3CL1 mAb down-regulated the mRNA expression of TNF-alpha, IFN-gamma, and perforin in the muscles. Our results suggest that CX3CL1-CX3CR1 interaction plays an important role in inflammatory cell migration into the muscle tissue of EAM mice. The results also point to the potential therapeutic usefulness of CX3CL1 inhibition and/or blockade of CX3CL1-CX3CR1 interaction in idiopathic inflammatory myopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号