首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus muscle tissues from Meishan and Large White pigs. One novel mRNA that was differentially expressed was identified through semi-quantitative RT-PCR and the cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The nucleotide sequence of the mRNA is not homologous to any of the known porcine genes. Sequence prediction analysis revealed that the this mRNA is not protein-coding mRNA. Polymorphism analyses revealed that there was a C-T mutation on the position of 669 bp and PCR -Dra I-RFLP analyses revealed that Chinese indigenous pig breeds and exotic pig breeds displayed obvious genotype and allele frequency differences at this locus. Association analyses revealed that this polymorphic locus was significantly associated with the drip loss rate, skin percentage, meat color value (m.Longissimus Dorsi, LD), loin eye width, loin eye area, water holding capacity, carcass length, caul fat weight, intramuscular fat (m.Longissimus Dorsi, LD), lean meat weight, lean meat percentage, backfat thickness at buttock (< 0.05).  相似文献   

2.
There is accumulating evidence that leptin may be directly involved in mammalian reproduction, however, the potential role of obesity gene/obesity gene long form receptor (ob/ob-Rb) system in porcine implantation is poorly understood. To further confirm this role, mRNA and protein expression of ob/ob-Rb in implantation site and inter-implantation sites of porcine uterus on pregnancy day 13, 18 and 24 were compared in this study. Ob mRNA level went up with the advance of pregnancy and was higher in implantation site than inter-implantation site (P < 0.05). But ob-Rb mRNA, which was negative-regulated by leptin, went down with the advance of pregnancy and lessened in implantation site compared with inter-implantation site (P < 0.05). During the three implantation phase, leptin protein peaked at day 18 pregnancy (P < 0.05) and leptin protein at implantation site were always higher than inter-implantation site (P < 0.05). The higher ob-Rb protein in implantation site compared with inter-implantation site (P < 0.05) only appeared at day 18 pregnancy. Localization of ob/ob-Rb protein in porcine uterus was assayed using immunohistochemistry and found that ob/ob-Rb protein mainly located in luminal epithelium and glandular epithelium in pregnant pigs, but distinct immune-staining of leptin also detected in stroma in non-pregnancy porcine uterus except for luminal epithelium and glandular epithelium. In conclusion, the peak of leptin and the peak of ob-Rb protein in implantation site specifically appeared on day 18 pregnancy of pig. Another funning discovery is ob-Rb mRNA in porcine endometrium was mainly negative-regulated by leptin. The space–time difference of gene and protein expression for ob/ob-Rb confirmed ob/ob-Rb system role as delicate regulator of porcine implantation process.  相似文献   

3.
The fibronectin type III and SPRY domain containing 2 (FSD2) on porcine chromosome 7 is considered a candidate gene for pork quality, since its two domains, which were present in fibronectin and ryanodine receptor. The fibronectin type III and SPRY domains were first identified in fibronectin and ryanodine receptor, respectively, which are candidate genes for meat quality. The aim of this study was to elucidate the genomic structure of FSD2 and functions of single nucleotide polymorphisms (SNPs) within FSD2 that are related to meat quality in pigs. Using a bacterial artificial chromosome clone sequence, we revealed that porcine FSD2 consisted of 13 exons encoding 750 amino acids. In addition, FSD2 was expressed in heart, longissimus dorsi muscle, psoas muscle, and tendon among 23 kinds of porcine tissues tested. A total of ten SNPs, including four missense mutations, were identified in the exonic region of FSD2, and two major haplotypes were obtained based on the SNP genotypes of 633 Berkshire pigs. Both haplotypes were associated significantly with intramuscular fat content (IMF, P < 0.020) and moisture percentage (MP, P < 0.002). Moreover, haplotype 2 was associated with meat color, affecting yellowness (P = 0.002). These haplotype effects were further supported by the alteration of putative protein structures with amino acid substitutions. Taken together, our results suggest that FSD2 haplotypes are involved in regulating meat quality including IMF, MP, and meat color in pigs, and may be used as meaningful molecular makers to identify pigs with preferable pork quality.  相似文献   

4.
5.
The 2-DE/MS-based proteomics approach was used to investigate the differences of porcine skeletal muscle, and ATP5B was identified as one differential expression protein. In the present study, ATP5B gene was further cloned by RT-PCR, the sequence was analyzed using the bioinformatics method, and the mRNA expression was detected by qRT-PCR. Sequence analysis showed that the porcine ATP5B gene contains an ORF encoding 528-amino-acid residues with 49 and 166 nucleotides in the 5′ and 3′ UTRs, respectively. The mRNA of ATP5B was widely expressed in all 14 tissues tested, but especially highly expressed in parorchis and fat. The expression pattern of ATP5B was similar in Large White and Meishan breeds, showing that the expression was upregulated by 3 days after birth and downregulated during postnatal development of skeletal muscle. Comparing the two breeds, the mRNA abundance of ATP5B in Large White was more highly expressed than in Meishan at all developmental stages (P < 0.05). Moreover, a synonymous mutation, G75A in exon 8, was identified and association analysis with the traits of meat quality showed that it was significantly associated with the RLF, FMP, IFR, IMF, and IMW (P < 0.05). These results suggested that ATP5B probably plays a key role in porcine skeletal muscle development and may provide further insight into the molecular mechanisms responsible for breed-specific differences in meat quality.  相似文献   

6.
Skeletal muscle genes are important potentially functional candidate genes for livestock production and meat quality. Myosin regulatory light chain (MLC) regulates myofilament activation via phosphorylation by Ca2+ dependent myosin light chain kinase. The cDNA of the myosin light chain, phosphorylatable, fast skeletal muscle (MYLPF) gene from the longissimus dorsi of Tianfu goat was cloned and sequenced. The results showed that MYLPF full-length coding sequence consists of 513 bp and encodes 170 amino acids with a molecular mass of 19.0 kD. Two EF-hand superfamily domain of MYLPF gene conserved between caprine and other animals. The deduced amino acid sequence of MYLPF shared significant identity with the MYLPF from other mammals. A phylogenetic tree analysis revealed that the caprine MYLPF protein has a close genetic relationship and evolutional distance with MYLPF in other mammals. Analysis by RT-PCR showed that the MYLPF mRNA was detected in heart, liver, spleen, lung, kidney, gastrocnemius, abdominal muscle and longissimus dorsi. In particular, high expression levels of MYLPF mRNA were detected in the longissimus dorsi, gastrocnemius and abdominal muscle, and low level of expressions were observed in liver, spleen, lung and kidney. In addition, the temporal expression analysis further showed MYLPF expression decreased gradually with age in the skeletal muscle. This may be important as muscle growth occurs mainly in young age in goats. Western blotting results detected the MYLPF protein in four of the tissues in which MYLPF was shown to be expressed; the four exceptions were liver, spleen, lung and kidney.  相似文献   

7.
8.
To study the molecular basis of intramuscular fat (IMF) deposition, suppression subtractive hybridization was used to investigate the differences in gene expression between m. longissimus dorsi (LD) of high IMF Laiwu pig group and low IMF Laiwu pig group. From two specific subtractive cDNA libraries, the expression-upregulated clone HL-27 was selected by reverse Northern high-density blot, and then identified to be pig mitochondrial NADH dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4). Pig NDUFS4 full-length cDNA was cloned by RACE, and contains a 528 bp-open reading frame (ORF) encoding 175 amino acid residues. The derived amino acid sequence of NDUFS4 is well conserved compared with NDUFS4 of various species with higher degree of sequence similarity with other mammalian (86.3–92.6 %) than amphibian, aves, and fishes (70.2–81.1 %), and contains one N-linked glycosylation site, one O-linked glycosylation site, seven Ser phosphorylation sites and five Thr phosphorylation sites. A-G mutation was found at nt 122 site of ORF between Laiwu pig and Large White, which results in the K-R mutation at 41 site of protein sequence. Real-time PCR analysis indicated that the level of NDUFS4 mRNA expression was higher in high IMF Laiwu pig group than in low IMF Laiwu pig group, and in Laiwu pig than in Large White. The tissue expression of the pig NDUFS4 gene showed a tissue-specific pattern: highly expressed in LD muscle, spleen and kidney, but hardly expressed in lung, stomach and large intestine. The possible role of NDUFS4 and its relation to IMF deposition are discussed.  相似文献   

9.
The study was conducted to evaluate the effects of chromium-loaded chitosan nanoparticles (Cr-CNP) on glucose transporter 4 (GLUT4), relevant messenger RNA (mRNA), and proteins involved in phosphatidylinositol 3-kinase (PI3K), Akt2-kinase, and AMP-activated protein kinase (AMPK) of skeletal muscles in finishing pigs. A total of 120 crossbred barrows (BW 65.00 ± 1.26 kg) were randomly allotted to four dietary treatments, with three pens per treatment and 10 pigs per pen. Pigs were fed the basal diet supplemented with 0, 100, 200, or 400 μg/kg of Cr from Cr-CNP for 35 days. After the feeding trials, 24 pigs were slaughtered to collect longissimus muscle samples for analysis. Cr-CNP supplementation increased GLUT4 messenger RNA (mRNA) (quadratically, P < 0.01) and total and plasma membrane GLUT4 protein contents (linearly and quadratically, P < 0.001) in skeletal muscles. Glycogen synthase kinase 3β (GSK-3β) mRNA was decreased linearly (P < 0.001) and quadratically (P < 0.001). Supplemental Cr-CNP increased insulin receptor (InsR) mRNA quadratically (P < 0.01), Akt2 total protein level linearly (P < 0.01) and quadratically (P < 0.001), and PI3K total protein was increased significantly (P < 0.05) in 200 μg/kg treatment group. The mRNA of AMPK subunit gamma-3 (PRKAG3) and protein of AMPKα1 was significantly increased (P < 0.001) with the addition of Cr-CNP. The results indicate that dietary supplementation of Cr-CNP may promote glucose uptake by leading to recruitment of GLUT4 to the plasma membrane in skeletal muscles, and these actions may be associated with the insulin signal transduction and AMPK.  相似文献   

10.
11.
This experiment was conducted to evaluate the effects of chromium methionine with/without zinc sulfate or zinc amino acid complex on the growth performance, carcass traits, meat quality, serum parameters, endocrine parameters, and antioxidant status of growing-finishing pigs. A total of 180 (32.0 ± 1.7 kg body weight, BW) crossbred pigs (Duroc × Landrace × Yorkshire) were used in a completely randomized design with three dietary treatments and 10 replicates per treatment (five pens of barrows and five pens of gilts with six pigs per replicate). Three treatments were corn-soybean meal-based diets supplemented with 100 mg Zn/kg from zinc sulfate (ZnSO4), 100 mg Zn/kg from ZnSO4 + 0.2 mg Cr/kg from chromium methionine complex (CrMet), or 50 mg Zn/kg from ZnSO4 + 50 mg Zn/kg from zinc amino acid complex (ZnAA) + 0.2 mg Cr/kg from CrMet, respectively. The experiment lasted 105 days, of which was divided into three stages including phase 1 (30 to 50 kg BW), phase 2 (50 to 80 kg BW), and phase 3 (80 to 110 kg BW). Results showed that supplementation with CrMet and ZnAA improved (P < 0.05) the feed conversion of the pigs in phase 2, phase 3, and the overall experiment. Hot carcass weight, dressing percentage, and a longissimus dorsi muscle area were increased (P < 0.05) in pigs fed with diets supplemented with both CrMet and ZnAA compared with pigs fed with diets containing only ZnSO4 (P < 0.05). There was also an increase (P < 0.01) pH24 h in the longissimus dorsi muscle in pigs fed with diets supplemented with CrMet and ZnAA. The concentration of serum glucose in pigs fed with diets containing CrMet and ZnAA was decreased (P < 0.05) compared with that in pigs fed with the diet containing ZnSO4. Supplementation with CrMet and ZnAA increased (P < 0.05) the circulating levels of insulin and decreased (P < 0.05) cortisol. There was an increase (P < 0.05) in total serum antioxidant capacity and Cu/Zn superoxide dismutase activity as well as a decrease (P < 0.05) in serum malondialdehyde concentrations in pigs fed with diets supplemented with CrMet and ZnAA compared with pigs fed with the diet supplemented only with ZnSO4. In conclusion, supplementation of CrMet only or CrMet together with ZnAA improved feed conversion, carcass traits, and meat quality in the growing-finishing pigs.  相似文献   

12.
RPS25 is a component of the 40S small ribosomal subunit encoded by RPS25 gene, which is specific to eukaryotes. Studies in reference to RPS25 gene from animals were handful. The Giant Panda (Ailuropoda melanoleuca), known as a “living fossil”, are increasingly concerned by the world community. Studies on RPS25 of the Giant Panda could provide scientific data for inquiring into the hereditary traits of the gene and formulating the protective strategy for the Giant Panda. The cDNA of the RPS25 cloned from Giant Panda is 436 bp in size, containing an open reading frame of 378 bp encoding 125 amino acids. The length of the genomic sequence is 1,992 bp, which was found to possess four exons and three introns. Alignment analysis indicated that the nucleotide sequence of the coding sequence shows a high homology to those of Homo sapiens, Bos taurus, Mus musculus and Rattus norvegicus as determined by Blast analysis, 92.6, 94.4, 89.2 and 91.5%, respectively. Primary structure analysis revealed that the molecular weight of the putative RPS25 protein is 13.7421 kDa with a theoretical pI 10.12. Topology prediction showed there is one N-glycosylation site, one cAMP and cGMP-dependent protein kinase phosphorylation site, two Protein kinase C phosphorylation sites and one Tyrosine kinase phosphorylation site in the RPS25 protein of the Giant Panda. The RPS25 gene was overexpressed in E. coli BL21 and Western Blotting of the RPS25 protein was also done. The results indicated that the RPS25 gene can be really expressed in E. coli and the RPS25 protein fusioned with the N-terminally his-tagged form gave rise to the accumulation of an expected 17.4 kDa polypeptide. The cDNA and the genomic sequence of RPS25 were cloned successfully for the first time from the Giant Panda using RT-PCR technology and Touchdown-PCR, respectively, which were both sequenced and analyzed preliminarily; then the cDNA of the RPS25 gene was overexpressed in E. coli BL21 and immunoblotted, which is the first report on the RPS25 gene from the Giant Panda. The data will enrich and supplement the information about RPS25, which will contribute to the protection for gene resources and the discussion of the genetic polymorphism.  相似文献   

13.
14.
The pre-melanin-concentrating hormone (PMCH) gene is an important gene functionally concerning the regulations of body fat content, feeding behavior and energy balance. In this study, the full-length cDNA of chicken PMCH gene was amplified by SMART RACE method. The single nucleotide polymorphisms (SNPs) in the PMCH gene were screened by comparative sequence analysis. The obtained non-synonymous coding SNPs (ncSNPs) were designed for genotyping firstly. Its effects on growth, carcass characteristics and meat quality traits were investigated employing the F2 resource population of Gushi chicken crossed with Anak broiler by AluI CRS-PCR–RFLP. Our results indicated that the cDNA of chicken PMCH shared 67.25 and 66.47 % homology with that of human and bovine PMCH, respectively. The deduced amino acid sequence of chicken PMCH (163 amino acids) were 52.07 and 50.89 % identical to those of human and bovine PMCH, respectively. The PMCH protein sequence is predicted to have several functional domains, including pro-MCH, CSP, IL7, XPGI and some low complexity sequence. It has 8 phosphorylation sites and no signal peptide sequence. gga-miR-18a, gga-miR-18b, gga-miR-499 microRNA targeting site was predicted in the 3′ untranslated region of chicken PMCH mRNA. In addition, a total of seven SNPs including an ncSNP and a synonymous coding SNP, were identified in the PMCH gene. The ncSNP c.81 A > T was found to be in moderate polymorphic state (polymorphic index = 0.365), and the frequencies for genotype AA, AB and BB were 0.3648, 0.4682 and 0.1670, respectively. Significant associations between the locus and shear force of breast and leg were observed. This polymorphic site may serve as a useful target for the marker assisted selection of the growth and meat quality traits in chicken.  相似文献   

15.
Sixteen families derived from a clonal seed orchard (CSO) and 10 “provenances” (Prov) of teak (Tectona grandis) were tested in two different sites to be compared with respect to their growth performances. Both sites were located in Sabah, East Malaysia, under 2,500 mm of annual rainfall and no distinct dry season. The land in Taliwas was flat but prone to waterlogging. In Luasong, the soil was more hilly, acidic, and less fertile, though deeper. Nearly 9 years after planting, the two classes of genetic entries showed significant differences for height (P?=?0.0002) and diameter at breast height (DBH) and volume (P?<?0.0001) for the two sites combined. The superiority of the CSO families compared with the Prov class was more obvious in Luasong with averages of 18.0 vs 15.2 m (+18.6 %) for height, 18.1 vs 15.1 cm (+20.2 %) for DBH, and 0.179 vs 0.107 m3 for individual tree volume (+67.9 %), as against 17.4 vs 15.7 m (+11.2 %), 19.1 vs 16.8 cm (+13.5 %), and 0.176 vs 0.126 m3 (+40.3 %), respectively, in Taliwas. The CSO families were also more prone to site interaction for height (P?=?0.004) and, to a lesser extent, for volume (P?=?0.017) than the “Prov” (P?=?0.030 and P?=?0.057, respectively). Narrow-sense heritabilities estimated for the 16 CSO families across the two sites were lower for DBH (0.17) and volume (0.23) than for height (0.38). Type B genetic correlations suggested also higher site × families interactions for height (r B?=?0.28).  相似文献   

16.
In the present study, it was investigated whether acute muscle contractions in rat skeletal muscle increased the protein content of FABPpm in the plasma membrane. Furthermore, the effect of AICAR stimulation on FAT/CD36 and FABPpm protein content in sarcolemma of rat skeletal muscle was evaluated. Methods Male wistar rats (150 g) were anesthetized and either subjected to in situ electrically induced contractions (hindlimb muscles: 20 min, 10–20 V, 200 ms trains, 100 Hz) or stimulated with the pharmacological activator of AMPK, AICAR. To investigate changes in the content of FABPpm and FAT/CD36 in the plasma membrane by these stimuli, the giant sarcolemma vesicle (GSV) technique was applied. The hindlimb muscles were removed and used for the production of GSV and lysates. All samples were analyzed using the western blotting technique. Results Electrical stimulation of rat hindlimb muscle resulted in an increase in FABPpm protein content in the GSV of 61% (P < 0.05) and in FAT/CD36 protein content in the GSV of 33% (P < 0.05). AICAR stimulation increased FAT/CD36 protein content in GSV by 22% (P < 0.05), whereas FABPpm protein content in GSV was unaffected by AICAR treatment. There was no change in total FAT/CD36 and FABPpm protein expression, measured in lysates with western blotting, by either stimulus. AMPK thr172 and ERK1/2 thr202/204 phosphorylation were significantly increased with muscle contractions (P < 0.05), whereas only AMPK thr172 phosphorylation was increased with AICAR stimulation (P < 0.05). Conclusion These data show that contractions increase both FAT/CD36 and FABPpm protein content in skeletal muscle plasma membrane, whereas only FAT/CD36 protein content is increased when muscle are stimulated with AICAR. This suggests that AMPK is involved in regulation of FAT/CD36, but not FABPpm in skeletal muscle. However, since both ERK1/2 thr202/204 and AMPK thr172 phosphorylation are increased during muscle contractions, the present study cannot rule out that both could play a significant role in regulation of FAT/CD36 and FABPpm during muscle contractions.  相似文献   

17.
18.
In addition to regulate body growth and development process, growth hormone (GH) also involved in lipid metabolism, decreasing fat mass and improving lipolysis. To normal mice, GH could reduce their fat content, but events turned uncertain coming to the pattern of feeding high-fat-diet. In order to investigate the role of GH in adipogenesis of mice with high-fat-diet, the high-fat-diet feeding mice were randomly assigned into three groups and treated with recombinant human growth hormone (rhGH) and the somatostatin analogue octreotide respectively. Results demonstrated that both rhGH and octreotide could reduce the body weight but the trends diminished in the end. HDL-C level was increased in octreotide treated groups but the activity of lipase was increased significantly in both two groups. RhGH remarkable increased the expression of SOCS2, FAS (P < 0.01) and SREBP-1c (P < 0.05), decreased the expression of SOCS1, SOCS3 (P < 0.05) and HSL (P < 0.01) in subcutaneous fat mass. In visceral fat tissue, all genes were increased except SOCS2 (P < 0.01), at the same time the visceral fat mass was decreased. The protein phosphorylation of JAK2 and STAT5 which were treated with octreotide were increased in subcutaneous fat, visceral fat and liver (P < 0.01) and were increased significant in visceral fat by rhGH treated (P < 0.01). In liver, only JAK2 protein phosphorylation was raised (P < 0.01). In conclusion, rhGH and octreotide could decrease the whole body mass before 6 days; the trend was weaken in later period with high-fat-diet. RhGH could increase the subcutaneous fat mass and reduce the visceral fat mass, and SOCS2 might be involved in regulation of the mechanism through JAK2/STAT5 signaling pathway.  相似文献   

19.
Follistatin (FST), which was first found in the follicles of cattle and pigs, has been shown to be an essential regulator for muscle development. Mice that were genetically engineered to overexpress Fst specifically in muscle had at least twice the amount of skeletal muscle mass as controls; these findings are similar to earlier results obtained in myostatin-knockout mice. However, the role of follistatin in skeletal muscle development has yet to be clarified in livestock. Here, we describe transgenic Duroc pigs that exogenously express Fst specifically in muscle tissue. The transgenic pigs exhibited an increased proportion of skeletal muscle and a reduced proportion of body fat that were similar to those reported in myostatin-null cattle. The lean percentage of lean meat was significantly higher in the F1 generation of TG pigs (72.95 ± 1.0 %) than in WT pigs (69.18 ± 0.97 %) (N = 16, P < 0.05). Myofiber hypertrophy was also observed in the longissimus dorsi of transgenic pigs, possibly contributing to the increased skeletal muscle mass. Western blot analysis showed a significantly reduced level of Smad2 phosphorylation and an increased level of AktS473 phosphorylation in the skeletal muscle tissue of the transgenic pigs. Moreover, no cardiac muscle hypertrophy or reproductive abnormality was observed. These findings indicate that muscle-specific Fst overexpression in pigs enhances skeletal muscle growth, at least partly due to myofiber hypertrophy and providing a promising approach to increase muscle mass in pigs and other livestock.  相似文献   

20.
Three experiments were conducted to investigate the effects of inorganic and organic Mn sources on MnSOD mRNA, protein and enzymatic activity and the possible signal pathways. The primary broiler myocardial cells were treated with MnCl2 (I) or one of organic chelates of Mn and amino acids with weak, moderate (M) or strong (S) chelation strength for 12 and 48 h. Cells were preincubated with superoxide radical anions scavenger N-acetylcysteine (NAC) or specific inhibitors for MAPKs and protein tyrosine kinase (PTK) or protein kinase C (PKC) for 30 min before treatments of I and M. The MnSOD mRNA, protein and enzymatic activity, phosphorylated MAPKs or protein kinases activations were examined. The results showed that additions of Mn increased (P < 0.05) MnSOD mRNA levels and M was more effective than I. Additions of Mn elevated (P < 0.05) MnSOD protein levels and enzymatic activities, and no differences were found among I and M. Addition of NAC did not decrease (P > 0.05) Mn-induced MnSOD mRNA and protein levels. None of the three MAPKs was phosphorylated (P > 0.05) by Mn. Additions of Mn decreased (P < 0.05) the PTK activities and increased (P < 0.05) the membrane PKC contents. Inhibitors for PTK or PKC decreased (P < 0.05) Mn-induced MnSOD protein levels. The results suggested that Mn-induced MnSOD mRNA and protein expressions be not related with NAC, and MAPK pathways might not involve in Mn-induced MnSOD mRNA expression. PKC and PTK mediated the Mn-induced MnSOD protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号