首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Saccharomyces cerevisiae, Rad52 plays major roles in several types of homologous recombination. Here, we found that rad52-K200R mutation greatly reduced sumoylation of Rad52. The rad52-K200R mutant exhibited defects in various types of recombination, such as intrachromosomal recombination and mating-type switching. The K200 residue of Rad52 is part of the nuclear localization signal (NLS), which is important for transport into the nucleus. Indeed, the addition of a SV40 NLS to Rad52-K200R suppressed the sumoylation defect of Rad52-K200R. These findings indicate that nuclear localization of Rad52 is pre-requisite for its sumoylation.  相似文献   

2.
RecA/Rad51 proteins are essential in homologous DNA recombination and catalyze the ATP-dependent formation of D-loops from a single-stranded DNA and an internal homologous sequence in a double-stranded DNA. RecA and Rad51 require a "recombination mediator" to overcome the interference imposed by the prior binding of single-stranded binding protein/replication protein A to the single-stranded DNA. Rad52 is the prototype of recombination mediators, and the human Rad52 protein has two distinct DNA-binding sites: the first site binds to single-stranded DNA, and the second site binds to either double- or single-stranded DNA. We previously showed that yeast Rad52 extensively stimulates Rad51-catalyzed D-loop formation even in the absence of replication protein A, by forming a 2:1 stoichiometric complex with Rad51. However, the precise roles of Rad52 and Rad51 within the complex are unknown. In the present study, we constructed yeast Rad52 mutants in which the amino acid residues corresponding to the second DNA-binding site of the human Rad52 protein were replaced with either alanine or aspartic acid. We found that the second DNA-binding site is important for the yeast Rad52 function in vivo. Rad51-Rad52 complexes consisting of these Rad52 mutants were defective in promoting the formation of D-loops, and the ability of the complex to associate with double-stranded DNA was specifically impaired. Our studies suggest that Rad52 within the complex associates with double-stranded DNA to assist Rad51-mediated homologous pairing.  相似文献   

3.
Homologous recombination (HR) performs crucial functions including DNA repair, segregation of homologous chromosomes, propagation of genetic diversity, and maintenance of telomeres. HR is responsible for the repair of DNA double-strand breaks and DNA interstrand cross-links. The process of HR is initiated at the site of DNA breaks and gaps and involves a search for homologous sequences promoted by Rad51 and auxiliary proteins followed by the subsequent invasion of broken DNA ends into the homologous duplex DNA that then serves as a template for repair. The invasion produces a cross-stranded structure, known as the Holliday junction. Here, we describe the properties of Rad54, an important and versatile HR protein that is evolutionarily conserved in eukaryotes. Rad54 is a motor protein that translocates along dsDNA and performs several important functions in HR. The current review focuses on the recently identified Rad54 activities which contribute to the late phase of HR, especially the branch migration of Holliday junctions.  相似文献   

4.
Homologous recombination is one of the major pathways for repair of DNA double-strand breaks (DSBs). Important proteins in this pathway are Rad51 and Rad54. Rad51 forms a nucleoprotein filament on single-stranded DNA (ssDNA) that mediates pairing with and strand invasion of homologous duplex DNA with the assist of Rad54. We estimated that the nucleus of a mouse embryonic stem (ES) cells contains on average 4.7x10(5) Rad51 and 2.4x10(5) Rad54 molecules. Furthermore, we showed that the amount of Rad54 was subject to cell cycle regulation. We discuss our results with respect to two models that describe how Rad54 stimulates Rad51-mediated DNA strand invasion. The models differ in whether Rad54 functions locally or globally. In the first model, Rad54 acts in cis relative to the site of strand invasion. Rad54 coats the Rad51 nucleoprotein filament in stoichiometric amounts and binds to the target duplex DNA at the site that is homologous to the ssDNA in the Rad51 nucleoprotein filament. Subsequently, it promotes duplex DNA unwinding. In the second model, Rad54 acts in trans relative to the site of strand invasion. Rad54 binds duplex DNA distant from the site that will be unwound. Translocation of Rad54 along the duplex DNA increases superhelical stress thereby promoting duplex DNA unwinding.  相似文献   

5.
Repairing a double-strand break by homologous recombination requires binding of the strand exchange protein Rad51p to ssDNA, followed by synapsis with a homologous donor. Here we used chromatin immunoprecipitation to monitor the in vivo association of Saccharomyces cerevisiae Rad51p with both the cleaved MATa locus and the HML alpha donor. Localization of Rad51p to MAT precedes its association with HML, providing evidence of the time needed for the Rad51 filament to search the genome for a homologous sequence. Rad51p binding to ssDNA requires Rad52p. The absence of Rad55p delays Rad51p binding to ssDNA and prevents strand invasion and localization of Rad51p to HML alpha. Lack of Rad54p does not significantly impair Rad51p recruitment to MAT or its initial association with HML alpha; however, Rad54p is required at or before the initiation of DNA synthesis after synapsis has occurred at the 3' end of the invading strand.  相似文献   

6.
Yeast Rad51 recombinase has only minimal ability to form D loop. Addition of Rad54 renders D loop formation by Rad51 efficient, even when topologically relaxed DNA is used as substrate. Treatment of the nucleoprotein complex of Rad54 and relaxed DNA with topoisomerases reveals dynamic DNA remodeling to generate unconstrained negative and positive supercoils. DNA remodeling requires ATP hydrolysis by Rad54 and is stimulated by Rad51-DNA nucleoprotein complex. A marked sensitivity of DNA undergoing remodeling to P1 nuclease indicates that the negative supercoils produced lead to transient DNA strand separation. Thus, a specific interaction of Rad54 with the Rad51-ssDNA complex enhances the ability of the former to remodel DNA and allows the latter to harvest the negative supercoils generated for DNA joint formation.  相似文献   

7.
Cells from individuals with the recessive cancer-prone disorder ataxia telangiectasia (A-T) are hypersensitive to ionizing radiation (I-R). ATM (mutated in A-T) is a protein kinase whose activity is stimulated by I-R. c-Abl, a nonreceptor tyrosine kinase, interacts with ATM and is activated by ATM following I-R. Rad51 is a homologue of bacterial RecA protein required for DNA recombination and repair. Here we demonstrate that there is an I-R-induced Rad51 tyrosine phosphorylation, and this induction is dependent on both ATM and c-Abl. ATM, c-Abl, and Rad51 can be co-immunoprecipitated from cell extracts. Consistent with the physical interaction, c-Abl phosphorylates Rad51 in vitro and in vivo. In assays using purified components, phosphorylation of Rad51 by c-Abl enhances complex formation between Rad51 and Rad52, which cooperates with Rad51 in recombination and repair. After I-R, an increase in association between Rad51 and Rad52 occurs in wild-type cells but not in cells with mutations that compromise ATM or c-Abl. Our data suggest signaling mediated through ATM, and c-Abl is required for the correct post-translational modification of Rad51, which is critical for the assembly of Rad51 repair protein complex following I-R.  相似文献   

8.
Overexpression of the RAD52 epistasis group of gene products is a convenient way to investigate their in vivo roles in homologous recombination (HR) and DNA repair. Overexpression has the further attraction that any associated stimulation of HR may facilitate gene-targeting applications. Rad51p or Rad52p overexpression in mammalian cells have previously been shown to enhance some forms of HR and resistance to ionising radiation, but the effects of Rad52p overexpression on gene targeting have not been tested. Here we show that Rad52p overexpression inhibits gene targeting while stimulating extrachromosomal HR. We also find that Rad52p overexpression affects cell-cycle distribution, impairs cell survival and is lost during extensive passaging. Therefore, we suggest that excess Rad52p can inhibit the essential RAD51-dependent pathways of HR most likely to be responsible for gene targeting, while at the same time stimulating the RAD51-independent pathway thought to be responsible for extrachromosomal HR. The data also argue against Rad52p overexpression as a means of promoting gene targeting, and highlight the limitations of using a single HR assay to assess the overall status of HR.  相似文献   

9.
Homologous recombinational repair (HRR) restores chromatid breaks arising during DNA replication and prevents chromosomal rearrangements that can occur from the misrepair of such breaks. In vertebrates, five Rad51 paralogs are identified that contribute in a nonessential but critical manner to HRR proficiency. We constructed and characterized a knockout of the paralog Rad51D in widely studied CHO cells. The rad51d mutant (clone 51D1) displays sensitivity to a diverse spectrum of induced DNA damage including gamma-rays, ultraviolet (UV)-C radiation, and methyl methanesulfonate (MMS), indicating the broad relevance of HRR to genotoxicity. Spontaneous chromatid breaks/gaps and isochromatid breaks are elevated 3- to 12-fold, but the chromosome number distribution remains unchanged. Most importantly, 51D1 cells exhibit a 12-fold-increased rate of hprt mutation, as well as 4- to 10-fold increased rates of gene amplification at the dhfr and CAD loci, respectively. Xrcc3 irs1SF cells from the same parental CHO line show similarly elevated mutagenesis at these three loci. Collectively, these results confirm the a priori expectation that HRR acts in an error-free manner to repress three classes of genetic alterations (chromosomal aberrations, loss of gene function and increased gene expression), all of which are associated with carcinogenesis.  相似文献   

10.
In eukaryotes, Rad51 and Rad54 functionally cooperate to mediate homologous recombination and the repair of damaged chromosomes by recombination. Rad51, the eukaryotic counterpart of the bacterial RecA recombinase, forms filaments on single-stranded DNA that are capable of pairing the bound DNA with a homologous double-stranded donor to yield joint molecules. Rad54 enhances the homologous DNA pairing reaction, and this stimulatory effect involves a physical interaction with Rad51. Correspondingly, the ability of Rad54 to hydrolyze ATP and introduce superhelical tension into covalently closed circular plasmid DNA is stimulated by Rad51. By controlled proteolysis, we show that the amino-terminal region of yeast Rad54 is rather unstructured. Truncation mutations that delete the N-terminal 113 or 129 amino acid residues of Rad54 attenuate or ablate physical and functional interactions with Rad51 under physiological ionic strength, respectively. Surprisingly, under less stringent conditions, the Rad54 Delta129 protein can interact with Rad51 in affinity pull-down and functional assays. These results highlight the functional importance of the N-terminal Rad51 interaction domain of Rad54 and reveal that Rad54 contacts Rad51 through separable epitopes.  相似文献   

11.
Mediator of DNA damage checkpoint protein-1 (MDC1) is a recently identified nuclear protein that participates in DNA-damage sensing and signaling. Here we report that knockdown of MDC1 by RNA interference results in cellular hypersensitivity to the DNA cross-linking agent mitomycin C and ionizing radiation and in impaired homology-mediated repair of double-strand breaks in DNA. MDC1 forms a complex with Rad51 through a direct interaction with the forkhead-associated domain of MDC1, not the BRCA1 C-terminal domain. Depletion of MDC1 results in impaired formation of Rad51 ionizing radiation-induced foci, reduced amounts of nuclear and chromatin-bound Rad51, and a corresponding increase in Rad51 protein degradation. Together, our findings suggest that MDC1 functions in Rad51-mediated homologous recombination by retaining Rad51 in chromatin.  相似文献   

12.
In the yeast Saccharomyces cerevisiae, the RAD52 gene is indispensable for homologous recombination and DNA repair. Rad52 protein binds DNA, anneals complementary ssDNA strands, and self-associates to form multimeric complexes. Moreover, Rad52 physically interacts with the Rad51 recombinase and serves as a mediator in the Rad51-catalyzed DNA strand exchange reaction. Here, we examine the functional significance of the Rad51/Rad52 interaction. Through a series of deletions, we have identified residues 409-420 of Rad52 as being indispensable and likely sufficient for its interaction with Rad51. We have constructed a four-amino acid deletion mutation within this region of Rad52 to ablate its interaction with Rad51. We show that the rad52delta409-412 mutant protein is defective in the mediator function in vitro even though none of the other Rad52 activities, namely, DNA binding, ssDNA annealing, and protein oligomerization, are affected. We also show that the sensitivity of the rad52delta409-412 mutant to ionizing radiation can be complemented by overexpression of Rad51. These results thus demonstrate the significance of the Rad51-Rad52 interaction in homologous recombination.  相似文献   

13.
Kwon Y  Chi P  Roh DH  Klein H  Sung P 《DNA Repair》2007,6(10):1496-1506
Rad54, a member of the Swi2/Snf2 protein family, works in concert with the RecA-like recombinase Rad51 during the early and late stages of homologous recombination. Rad51 markedly enhances the activities of Rad54, including the induction of topological changes in DNA and the remodeling of chromatin structure. Reciprocally, Rad54 promotes Rad51-mediated DNA strand invasion with either naked or chromatinized DNA. Here, using various Saccharomyces cerevisiae rad51 and rad54 mutant proteins, mechanistic aspects of Rad54/Rad51-mediated chromatin remodeling are defined. Disruption of the Rad51-Rad54 complex leads to a marked attenuation of chromatin remodeling activity. Moreover, we present evidence that assembly of the Rad51 presynaptic filament represents an obligatory step in the enhancement of the chromatin remodeling reaction. Interestingly, we find a specific interaction of the N-terminal tail of histone H3 with Rad54 and show that the H3 tail interaction domain resides within the amino terminus of Rad54. These results suggest that Rad54-mediated chromatin remodeling coincides with DNA homology search by the Rad51 presynaptic filament and that this process is facilitated by an interaction of Rad54 with histone H3.  相似文献   

14.
Double-strand DNA breaks (DSBs) cause cell death and genome instability. Homologous recombination is a major DSB repair pathway that operates by forming joint molecules with homologous DNA sequences, which are used as templates to achieve accurate repair. In eukaryotes, Rad51 protein (RecA homolog) searches for homologous sequences and catalyzes the formation of joint molecules (D-loops). Once joint molecules have been formed, DNA polymerase extends the 3' single-stranded DNA tails of the broken chromosome, restoring the lost information. How joint molecules subsequently dissociate is unknown. We reconstituted DSB repair in vitro using purified human homologous recombination proteins and DNA polymerase eta. We found that Rad54 protein, owing to its ATP-dependent branch-migration activity, can cause dissociation of joint molecules. These results suggest a previously uncharacterized mechanism of DSB repair in which Rad54 branch-migration activity plays an important role.  相似文献   

15.
The Schizosaccharomyces pombe rad31 and hus5 genes are required for the DNA damage response, as mutants defective in these genes are sensitive to DNA damaging agents, such as UV and ionising radiation and to the DNA synthesis inhibitor hydroxyurea (HU). Sequence analysis has suggested that rad31 and hus5 encode components of the Pmt3 (SUMO) modification process in S.pombe. We show here that the rad31 null and hus5.62 mutants display reduced levels of Pmt3 modification. We have initiated a search for proteins required for the DNA damage response, which may be modified by Pmt3 and have identified Rad22, the fission yeast homologue of the recombination protein Rad52. Purification of myc + His-tagged Rad22 protein from cells expressing HA-tagged Pmt3 identifies an 83 kDa species which cross-reacts with anti-HA antisera. We show here that Rad22 interacts with Rhp51 and Rpa70 (the fission yeast homologues of Rad51 and the large subunit of RPA, respectively), but that neither of these proteins appears to be responsible for the 83 kDa species. The 83 kDa species is observed when extracts are prepared under both native and denaturing conditions, and is also observed when myc + His-tagged Rad22 and Pmt3 are expressed at wild type levels, suggesting that Rad22 is modified by Pmt3 in vivo. We have established an S.pombe in vitro Pmt3 modification system and have shown that Rad22 and Rhp51 are modified in vitro, but that Rpa70 is not.  相似文献   

16.
A pool of PTEN localizes to the nucleus. However, the exact mechanism of action of nuclear PTEN remains poorly understood. We have investigated PTEN’s role during DNA damage response. Here we report that PTEN undergoes chromatin translocation after DNA damage, and that its translocation is closely associated with its phosphorylation on S366/T370 but not on S380. Deletional analysis reveals that the C2 domain of PTEN is responsible for its nuclear translocation after exposure to genotoxin. Both casein kinase 2 and GSK3β are involved in the phosphorylation of the S366/T370 epitope, as well as PTEN’s association with chromatin after DNA damage. Significantly, PTEN specifically interacts with Rad52 and colocalizes with Rad52, as well as γH2AX, after genotoxic stress. Moreover, PTEN is involved in regulating Rad52 sumoylation. Combined, our studies strongly suggest that nuclear/chromatin PTEN mediates DNA damage repair through interacting with and modulating the activity of Rad52.  相似文献   

17.
Rad54, a Jack of all trades in homologous recombination   总被引:12,自引:0,他引:12  
Tan TL  Kanaar R  Wyman C 《DNA Repair》2003,2(7):787-794
Homologous recombination mediates the transfer or exchange of genetic information between homologous DNA molecules. It plays important roles in central processes in the cell such as genome duplication and DNA damage repair. Recent experiments reveal the surprising versatility of one of its central actors, the Rad54 protein.  相似文献   

18.
19.
The Chinese hamster cell mutant, CL-V4B that is mutated in the Rad51 paralog gene, Rad51C (RAD51L2), has been described to exhibit increased sensitivity to DNA cross-linking agents, genomic instability, and an impaired Rad51 foci formation in response to DNA damage. To directly examine an effect of the Rad51C protein on homologous recombination (HR) in mammalian cells, we compared the frequencies and rates of spontaneous HR in CL-V4B cells and in parental wildtype V79B cells, using a recombination reporter plasmid in host cell reactivation assays. Our results demonstrate that HR is reduced but not abolished in the CL-V4B mutant. We thus, provide direct evidence for a role of mammalian Rad51C in HR processes. The reduced HR events described here help to explain the deficient phenotypes observed in Rad51C mutants and support an accessory role of Rad51C in Rad51-mediated recombination.  相似文献   

20.
A helical filament of Rad51 on single-strand DNA (ssDNA), called the presynaptic filament, catalyzes DNA joint formation during homologous recombination. Rad52 facilitates presynaptic filament assembly, and this recombination mediator activity is thought to rely on the interactions of Rad52 with Rad51, the ssDNA-binding protein RPA, and ssDNA. The N-terminal region of Rad52, which has DNA binding activity and an oligomeric structure, is thought to be crucial for mediator activity and recombination. Unexpectedly, we find that the C-terminal region of Rad52 also harbors a DNA binding function. Importantly, the Rad52 C-terminal portion alone can promote Rad51 presynaptic filament assembly. The middle portion of Rad52 associates with DNA-bound RPA and contributes to the recombination mediator activity. Accordingly, expression of a protein species that harbors the middle and C-terminal regions of Rad52 in the rad52 Delta327 background enhances the association of Rad51 protein with a HO-made DNA double-strand break and partially complements the methylmethane sulfonate sensitivity of the mutant cells. Our results provide a mechanistic framework for rationalizing the multi-faceted role of Rad52 in recombination and DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号