首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two malic enzymes in Pseudomonas aeruginosa   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extract supernatant fluids of Pseudomonas aeruginosa were shown to lack malic dehydrogenase but possess a nicotinamide adenine dinucleotide (NAD)- or NAD phosphate (NADP)-dependent enzymatic activity, with properties suggesting a malic enzyme (malate + NAD (NADP) --> pyruvate + reduced NAD (NADH) (reduced NADP [NADPH] + CO(2)), in agreement with earlier findings. This was confirmed by determining the nature and stoichiometry of the reaction products. Differences in heat stability and partial purification of these activities demonstrated the existence of two malic enzymes, one specific for NAD and the other for NADP. Both enzymes require bivalent metal cations for activity, Mn(2+) being more effective than Mg(2+). The NADP-dependent enzyme is activated by K(+) and low concentrations of NH(4) (+). Both reactions are reversible, as shown by incubation with pyruvate, CO(2), NADH, or NADPH and Mn(2+). The molecular weights of the enzymes were estimated by gel filtration (270,000 for the NAD enzyme and 68,000 for the NADP enzyme) and by sucrose density gradient centrifugation (about 200,000 and 90,000, respectively).  相似文献   

2.
Herring spermatozoa exhibit higher activity of malic enzyme (ME) than Atlantic salmon (Salmo salar), brown trout (Salmo trutta), carp (Cyprinus carpio) and African catfish (Clarias gariepinus) spermatozoa. Two molecular forms of ME are present in herring spermatozoa: an NAD-preferring malic enzyme with very high activity and an NADP-specific malic enzyme with much lower activity (ratio about 33:1). NAD-preferring ME was purified by chromatography on DEAE-Sepharose, Red Agarose and Sephadex G-200 to a specific activity of 36 μmol/min/mg protein and NADP-specific ME on DEAE-Sepharose and 2′5′-ADP Sepharose. The molecular mass for NAD-preferring and NADP-specific ME determined by SDS-PAGE was equal to 61 and 64 kDa, respectively. High activity of ME suggests adaptation of herring spermatozoa to metabolism at high oxygen tension for herring spawn.  相似文献   

3.
The Gram-negative bacterium Rhizobium meliloti contains two distinct malic enzymes. We report the purification of the two isozymes to homogeneity, and their in vitro characterization. Both enzymes exhibit unusually high subunit molecular weights of about 82 kDa. The NAD(P)(+) specific malic enzyme [EC 1.1.1.39] exhibits positive co-operativity with respect to malate, but Michaelis-Menten type behavior with respect to the co-factors NAD(+) or NADP(+). The enzyme is subject to substrate inhibition, and shows allosteric regulation by acetyl-CoA, an effect that has so far only been described for some NADP(+) dependent malic enzymes. Its activity is positively regulated by succinate and fumarate. In contrast to the NAD(P)(+) specific malic enzyme, the NADP(+) dependent malic enzyme [EC 1.1.1.40] shows Michaelis-Menten type behavior with respect to malate and NADP(+). Apart from product inhibition, the enzyme is not subjected to any regulatory mechanism. Neither reductive carboxylation of pyruvate, nor decarboxylation of oxaloacetate, could be detected for either malic enzyme. Our characterization of the two R. meliloti malic enzymes therefore suggests a number of features uncharacteristic for malic enzymes described so far.  相似文献   

4.
1. An NADP+-dependent malic enzyme was purified 7940-fold from the cytosolic fraction of human skeletal muscle with a final yield of 55.8% and a specific activity of 38.91 units/mg of protein. 2. The purification to homogeneity was achieved by ammonium sulfate fractionation, DEAE-Sepharose chromatography, affinity chromatography on NADP+-Agarose, gel filtration on Sephacryl S-300 and rechromatography on the affinity column. 3. Either Mn2+ or Mg2+ was required for activity: the pH optima with Mn2+ and Mg2+ were 8.1 and 7.5, respectively. The enzyme showed Michaelis-Menten kinetics. At pH 7.5 the apparent Km values with Mn2+ and Mg2+ for L-malate and NADP+ were 0.246 mM and 5.8 microM, and 0.304 mM and 5.8 microM, respectively. The Km values with Mn2+ for pyruvate, NADPH and bicarbonate were 8.6 mM, 6.1 microM and 22.2 mM, respectively. 4. The enzyme was also able to decarboxylate malate in the presence of NAD+. At pH 7.5 the reaction rate was approximately 10% of the rate in the presence of NADP+, with a Km value for NAD+ of 13.9 mM. 5. The following physical parameters were established: s0(20.w) = 10.48, Stokes' radius = 5.61 nm, pI = 5.72 Mr of the dissociated enzyme = 61,800. The estimates of the native apparent Mr yielded a value of 313,000 upon gel filtration, and 255,400 with f/fo = 1.33 by combining the chromatographic data with the sedimentation measurements. 6. The electron microscopy analysis of the uranyl acetate-stained enzyme revealed a tetrameric structure. 7. Investigations to detect sugar moieties indicated that the enzyme contains carbohydrate side chains, a property not previously reported for any other malic enzyme.  相似文献   

5.
Rat and calf adrenal cortex homogenates were found to contain three different malic enzymes. Two were strictly NADP+-dependent and were localized, one each, in the cytosol and the mitochondrial fractions, respectively. These two enzymes appear to be identical to those described by Simpson and Estabrook (Simpson, E. R., and Estabrook, R. W. (1969) Arch. Biochem. Biophys. 129, 384-395). The third was NAD(P)+-linked and was present in the mitochondrial fraction only. All three malic enzymes separated as distinct bands during electrophoresis on 5 percent polyacrylamide slab gels at pH 9.0. Marker enzymes and the mitochondrial malic enzymes migrated together in intact mitochondria during sucrose density gradient centrifugations despite changes in the equilibrium position of the mitochondria promoted by energy-dependent calcium phosphate accumulation. In adrenal cortex mitochondria subfractionated by the method of Sottocasa et al. (SOTTOCASA, G.L., KUYLENSTIERNA, B., ERNSTER, L., and BERGSTAND, A. (1967) J. Cell Biol. 32, 415-438), both malic enzymes were associated with the inner membrane-matrix space. Sonication solubilized the two malic enzymes along with the matrix space marker enzymes. The NAD(P)+-dependent malic enzyme was purified 100-fold from calf adrenal cortex mitochondria. The final preparation was free of malic dehydrogenase, fumarase, the strictly NADP+-linked malic enzyme and adenylate kinase. Either Mn24 orMg2+ was required for activity and 1 mol of pyruvate was formed for each mole of NAD+ and NADP+ reduced. The pH optima with NAD+ and NADP+ were 6.5 tp 7.0 and 6.0 to 6.5, respectively. Michaelis-Menten kinetics were observed on the alkaline side. Fumarate, succinate, and isocitrate were positive and ATP and ADP were negative modulators of the regulatory enzyme. The modulators did not influence the stoichiometry and they were not metabolized during the reaction. Under Vmax conditions the ratios for the rate of NAD+:NADP+ reduction were 1.76 and 1.15 at pH 7.4 and 6.0, respectively. The apparent Michaelis constants also differed depending on the pH and the coenzyme. At pH 7.4 (in the presence of 5 mM fumarate) and at pH 6.0 (no fumarate) the Km values for (-)-malate, NAD+, and Mn2+ were 1.7, 0.16, and 0.15 mM, and 0.31, 0.06, and 0.09 mM, respectively. At pH 7.4 (5MM fumarate) and pH 6.0 (no fumarate), the Km values for (-)-malate, NADP+, and Mn2+ were 6.5, 0.62, and 0.59 mM, and 0.68. 0.12, and 0.31 mM, respectively. The apparent Ki values for ATP with NAD+ and NADP+ as coenzyme were 0.42 and 0.27 mM, respectively.  相似文献   

6.
An NADP-preferring malic enzyme ((S)-malate:NADP oxidoreductase (oxalacetate-decarboxylating) EC 1.1.1.40) with a specific activity of 36.6 units per mg of protein at 60 degrees C and an isoelectric point of 5.1 was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4. The purification procedure employed ion exchange chromatography, ammonium sulfate fractionation, affinity chromatography, and gel filtration. Molecular weight determinations demonstrated that the enzyme was a dimer of Mr 105,000 +/- 2,000 with apparently identical Mr 49,000 +/- 1,500 subunits. Amino acid composition of S. solfataricus enzyme was determined and found to be significantly higher in tryptophan content than the malic enzyme from Escherichia coli. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, S. solfataricus malic enzyme was able to catalyze the decarboxylation of oxalacetate. The enzyme absolutely required divalent metal cations and it displayed maximal activity at 85 degrees C and pH 8.0 with a turnover number of 376 s-1. The enzyme showed classical saturation kinetics and no sigmoidicity was detected at different pH values and temperatures. At 60 degrees C and in the presence of 0.1 mM MnCl2, the Michaelis constants for malate, NADP, and NAD were 18, 3, and 250 microM, respectively. The S. solfataricus malic enzyme was shown to be very thermostable.  相似文献   

7.
Two of the three metabolic subtypes of species utilizing C4-pathway photosynthesis are defined by high activities of either NADP malic enzyme (NADP malic enzyme type) or a coenzyme A (CoA)- and acetyl-CoA-activated NAD malic enzyme (NAD malic enzyme type). These enzymes function to decarboxylate malate as an integral part of the photosynthetic process. Leaves of NADP malic enzyme-type species also contain significant NAD-dependent malic enzyme activity. The purpose of the present study was to examine the nature and photosynthetic role of this activity. With Zea mays, this NAD-dependent activity was found to vary widely in fresh leaf extracts. Incubating extracts at 25 °C resulted in a disproportionate increase in NAD activity so that the final ratio of NADP to NAD activity was always about 5. Strong evidence was provided that the NADP and NAD malic enzyme activities in Z. mays extracts were catalyzed by the same enzyme. These activities remained associated during purification and were coincident after polyacrylamide gel electrophoresis. The pH optimum for NAD-dependent activity was about 7.1, compared with 8.3 for NADP malic enzyme activity. Other properties of the NAD-dependent activity are described, a particularly notable feature being the inhibition of this activity by less than 1 μm NADP and NADPH. Evidence is provided that the NADP malic enzyme of several other NADP malic enzyme-type C4 species also has associated activity toward NAD. We concluded that the NAD-dependent malic enzyme activity would have no significant function in photosynthesis.  相似文献   

8.
In human liver, almost 90% of malic enzyme activity is located within the extramitochondrial compartment, and only approximately 10% in the mitochondrial fraction. Extramitochondrial malic enzyme has been isolated from the post-mitochondrial supernatant of human liver by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose, ADP-Sepharose-4B and Sephacryl S-300 to apparent homogeneity, as judged from polyacrylamide gel electrophoresis. The specific activity of the purified enzyme was 56 mumol.min-1.mg protein-1, which corresponds to about 10,000-fold purification. The molecular mass of the native enzyme determined by gel filtration is 251 kDa. SDS/polyacrylamide gel electrophoresis showed one polypeptide band of molecular mass 63 kDa. Thus, it appears that the native protein is a tetramer composed of identical-molecular-mass subunits. The isoelectric point of the isolated enzyme was 5.65. The enzyme was shown to carboxylate pyruvate with at least the same rate as the forward reaction. The optimum pH for the carboxylation reaction was at pH 7.25 and that for the NADP-linked decarboxylation reaction varied with malate concentration. The Km values determined at pH 7.2 for malate and NADP were 120 microM and 9.2 microM, respectively. The Km values for pyruvate, NADPH and bicarbonate were 5.9 mM, 5.3 microM and 27.9 mM, respectively. The enzyme converted malate to pyruvate (at optimum pH 6.4) in the presence of 10 mM NAD at approximately 40% of the maximum rate with NADP. The Km values for malate and NAD were 0.96 mM and 4.6 mM, respectively. NAD-dependent decarboxylation reaction was not reversible. The purified human liver malic enzyme catalyzed decarboxylation of oxaloacetate and NADPH-linked reduction of pyruvate at about 1.3% and 5.4% of the maximum rate of NADP-linked oxidative decarboxylation of malate, respectively. The results indicate that malic enzyme from human liver exhibits similar properties to the enzyme from animal liver.  相似文献   

9.
The NAD- and NADP-dependent malic enzymes from rat liver and adrenal mitochondrial fractions were separated and partially purified by gel filtration on Sepharose 6B. Two activity peaks were observed. The first contained a malic enzyme capable of reducing either NAD or NADP. This enzyme showed sigmoid kinetics in plots of activity versus the malate concentration. Succinate was an allosteric activator and ATP was a competitive inhibitor of malate. The second peak showed hyperbolic kinetics in plots of activity versus the malate concentration and was unaffected by either succinate or ATP. The relative activities of the two malic enzymes were quite constant in the adrenal mitochondrial fractions. In the liver mitochondrial fractions, the activity of the first peak varied and was sometimes absent while the activity of the second peak was quite constant. The kinetic properties of the first malic enzyme implicate it as an important regulator of malate oxidation.  相似文献   

10.
NADP+ -dependent malic enzyme of Rhizobium meliloti.   总被引:1,自引:0,他引:1       下载免费PDF全文
The bacterium Rhizobium meliloti, which forms N2-fixing root nodules on alfalfa, has two distinct malic enzymes; one is NADP+ dependent, while a second has maximal activity when NAD+ is the coenzyme. The diphosphopyridine nucleotide (NAD+)-dependent malic enzyme (DME) is required for symbiotic N2 fixation, likely as part of a pathway for the conversion of C4-dicarboxylic acids to acetyl coenzyme A in N2-fixing bacteroids. Here, we report the cloning and localization of the tme gene (encoding the triphosphopyridine nucleotide [NADP+]-dependent malic enzyme) to a 3.7-kb region. We constructed strains carrying insertions within the tme gene region and showed that the NADP+ -dependent malic enzyme activity peak was absent when extracts from these strains were eluted from a DEAE-cellulose chromatography column. We found that NADP+ -dependent malic enzyme activity was not required for N2 fixation, as tme mutants induced N2-fixing root nodules on alfalfa. Moreover, the apparent NADP+ -dependent malic enzyme activity detected in wild-type (N2-fixing) bacteroids was only 20% of the level detected in free-living cells. Much of that residual bacteroid activity appeared to be due to utilization of NADP+ by DME. The functions of DME and the NADP+ -dependent malic enzyme are discussed in light of the above results and the growth phenotypes of various tme and dme mutants.  相似文献   

11.
Electrophoretic studies were performed on enzymes concerned with the oxidation of malate in free-living and bacteroid cells of Mesorhizobium ciceri CC 1192, which forms nitrogen-fixing symbioses with chickpea (Cicer arietinum L.) plants. Two malate dehydrogenases were detected in extracts from both types of cells in native polyacrylamide electrophoresis gels that were stained for enzyme activity. One band of malate dehydrogenase activity was stained only in the presence of NADP+, whereas the other band was revealed with NAD+ but not NADP+. Further evidence for the occurrence of separate NAD- and NADP-dependent malate dehydrogenases was obtained from preliminary enzyme kinetic studies with crude extracts from free-living M. ciceri CC 1192 cells. Activity staining of electrophoretic gels also indicated the presence of two malic enzymes in free-living and bacteroid cells of M. ciceri CC 1192. One malic enzyme was active with both NAD+ and NADP+, whereas the other was specific for NADP+. Possible roles of the multiple forms of malate dehydrogenase and malic enzyme in nitrogen-fixing symbioses are discussed.  相似文献   

12.
Betaine aldehyde dehydrogenase from Xanthomonas translucens was purified to apparent homogeneity by ammonium sulfate fractionation, followed by ion-exchange, butyl-Toyopearl and gel filtration chromatography. The amino acid composition and the N-terminal sequence of 35 amino acid residues were determined. The enzyme was found to be a tetramer with identical 50 kDa subunits. Both NAD and NADP could be used as a cofactor for the enzyme and Km values for NAD and NADP were 70 μM and 50 μM, respectively. The enzyme was highly specific for betaine aldehyde and the Km value for betaine aldehyde was 0.19 mM.  相似文献   

13.
The NADP(+)-dependent activity of malic enzymes EC 1.1.1.39 and EC 1.1.1.40 was studied in human cardiac and skeletal muscle obtained from living subjects. We used polyacrylamide gel electrophoresis to detect and extract the enzymatic forms and starch gel electrophoresis to confirm their identification. This simple procedure allowed us to provide evidence of a selective NADP(+)-dependent distribution of malic enzyme activities between the two muscular tissues, using a smaller amount of sample than used with previous methods.  相似文献   

14.
The NAD(P)-dependent malic enzyme from human term placental mitochondria was purified 108-fold with a final yield of 72% and specific activity of about 2 mumol per minute per milligram protein. The final preparation was completely free of fumarase, malic, and lactic dehydrogenases. Divalent cations were required for NAD(P)-dependent malic enzyme activity, Mn2+ and Co2+ were by far more effective activators than Mg2+ and Ni2+, whereas the reaction did not proceed in the presence of Ca2+. The optimum pH with NAD and NADP as coenzymes was at around 7.1 and 6.4, respectively. The ratio of the rate of NAD:NADP reduction was 7.4 and 1.3 at pH 7.1 and 6.4, respectively. The enzyme is activated by succinate and fumarate and inhibited by ATP. In the absence of fumarate the Michaelis constants for L-malate and NAD were 2.82 and 0.33 mM; and in the presence of fumarate 1.18 and 0.22 mM, respectively. This study presents the first report showing the purification and kinetic properties of NAD(P)-dependent malic enzyme from human tissue.  相似文献   

15.
Two forms of succinic-semialdehyde dehydrogenase have been isolated in Pseudomonas putida. The two enzymes could be separated by filtration on Sephacryl S-300 and their apparent molecular weights were approx. 200,000 and 100,000. The smaller enzyme, which is induced by growth on 4-hydroxyphenylacetate, has been purified to 88% homogeneity by anion-exchange and affinity chromatography. Electrophoresis in sodium dodecyl sulphate gave rise to a molecular weight of 53,000, indicating that the native enzyme is dimeric. Under standard assay conditions this enzyme acts preferentially with NAD but reduces NADP at 9% of the rate observed for NAD. The large enzyme, which is dependent on NADP, is induced by growth on putrescine and its induction is highly coordinated with putrescine: 2-oxoglutarate transaminase, gamma-amino-butyraldehyde dehydrogenase and gamma-aminobutyrate: 2-oxoglutarate transaminase activities. Activity and stability conditions and true Km values for substrate and cosubstrates of the two enzymes were determined.  相似文献   

16.
NAD malic enzyme (EC 1.1.1.39), which is involved in C4 photosynthesis, was purified to electrophoretic homogeneity from leaves of Eleusine coracana and to near homogeneity from leaves of Panicum dichotomiflorum. The enzyme from each C4 species was found to have only one type of subunit by SDS polyacrylamide gel electrophoresis. The Mr of subunits of the enzme from E. coracana and P. dichotommiflorum was 63 and 61 kilodaltons, respectively. The native Mr of the enzyme from each species was determined by gel filtration to be about 500 kilodaltons, indicating that the NAD malic enzyme from C4 species is an octamer of identical subunits. The purified NAD malic enzyme from each C4 species showed similar kinetic properties with respect to concentrations of malate and NAD; each had a requirement for Mn2+ and activation by fructose- 1,6-bisphosphate (FBP) or CoA. A cooperativity with respect to Mn2+ was apparent with both enzymes. The activator (FBP) did not change the Hill value but greatly decreased K0.5 (the concentration giving half-maximal activity) for Mn2+. The enzyme from E. coracana showed a very low level of activity when NADP was used as substrate, but this activity was also stimulated by FBP. Significant differences between the enzymes from E. coracana and P. dichotomiflorum were observed in their responses to the activators and their immunochemical properties. The enzyme from E. coracana was largely dependent on the activators FBP or CoA, regardless of concentration of Mn2+. In contrast, the enzyme from P. dichotomiflorum showed significant activity in the absence of the activator, especially at high concentrations of Mn2+. Both immunodiffusion and immunoprecipitation, using antiserum raised against the purified NAD malic enzyme from E. coracana, revealed partial antigenic differences between the enzymes from E. coracana and P. dichotomiflorum. The activity of the NAD malic enzyme from Amaranthus edulis, a typical NAD malic enzyme type C4 dicot, was not inhibited by the antiserum raised against the NAD malic enzyme from E. coracana.  相似文献   

17.
Thermoproteus tenax possesses two different glyceraldehyde-3-phosphate dehydrogenases, one specific for NADP+ and the other for NAD+. NADP(H) inhibits the NAD+-specific enzyme competetively with respect to NAD+ whereas NAD(H) virtually does not interact with the NADP+-specific enzyme. Both enzymes represent homomeric tetramers with subunit molecular masses of 39 kDa (NADP+-specific enzyme) and 49 kDa (NAD+-specific enzyme), respectively. The NADP+-specific enzyme shows significant homology to the known glyceraldehyde-3-phosphate dehydrogenases from eubacteria and eukaryotes as indicated by partial sequencing. The enzymes are thermostable, the NADP+-specific enzyme with a half-life of 35 min at 100 degrees C, the NAD+-specific enzyme with a half-line of greater than or equal to 20 min at 100 degrees C, depending on the protein concentration. Both enzymes show conformational and functional changes at 60-70 degrees C.  相似文献   

18.
Screening of four malic enzymes--NAD-linked enzyme [EC 1.1.1.38], NAD, NADP-linked enzyme [EC 1.1.1.39], NADP-linked enzyme [EC 1.1.1.40], and D-malic enzyme--was carried out with cell-free extracts of the following 16 strains of bacteria by the aid of Sepharose 6B column chromatography: 9 strains of enteric bacteria, 3 strains of Pseudomonas, Alcaligenes faecalis, Agrobacterium tumefaciens, Rhodospirillum rubrum, and Clostridium tetanomorphum. All the strains tested contained at least one malic enzyme. The NADP-linked enzyme activity was found in all the strains except C. tetanomorphum, the NAD-linked enzyme activity in 12 strains--8 strains of enteric bacteria, 2 strains of Pseudomonas, Ag. tumefaciens, and C. tetanomorphum--and D-malic enzyme activity in 4 strains--A, aerogenes (IFO 3319 and 12059), Ps. fluorescens, and R. rubrum. The NADP-linked and NAD-linked enzyme activities of two strains of Pseudomonas were not separated by the chromatography. The available evidence suggested that the NAD, NADP-linked enzyme was not present in these 16 strains. The comparative studies of molecular, enzymatic, and serological properties of the malic enzymes in these 16 strains revealed a close similarity of the same types of malic enzymes among enteric bacteria.  相似文献   

19.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

20.
Malic enzymes are widely distributed in nature, and have important biological functions. They catalyze the oxidative decarboxylation of malate to produce pyruvate and CO(2) in the presence of divalent cations (Mg(2+), Mn(2+)). Most malic enzymes have a clear selectivity for the dinucleotide cofactor, being able to use either NAD(+) or NADP(+), but not both. Structural studies of the human mitochondrial NAD(+)-dependent malic enzyme established that malic enzymes belong to a new class of oxidative decarboxylases. Here we report the crystal structure of the pigeon cytosolic NADP(+)-dependent malic enzyme, in a closed form, in a quaternary complex with NADP(+), Mn(2+), and oxalate. This represents the first structural information on an NADP(+)-dependent malic enzyme. Despite the sequence conservation, there are large differences in several regions of the pigeon enzyme structure compared to the human enzyme. One region of such differences is at the binding site for the 2'-phosphate group of the NADP(+) cofactor, which helps define the cofactor selectivity of the enzymes. Specifically, the structural information suggests Lys362 may have an important role in the NADP(+) selectivity of the pigeon enzyme, confirming our earlier kinetic observations on the K362A mutant. Our structural studies also revealed differences in the organization of the tetramer between the pigeon and the human enzymes, although the pigeon enzyme still obeys 222 symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号