首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 1,2-cyclohexanedione and phenylglyoxal on staphylococcal alpha-toxin were studied. Modification of one arginine residue in alpha-toxin was sufficient to render the toxin nonhemolytic with no conformational change. Modified alpha-toxin did not protect cells from hemolysis by native alpha-toxin. An arginine residue is therefore at or near the binding site of alpha-toxin. Trypsin digestion of modified alpha-toxin generated a 20 kDa fragment which was isolated using a boric acid gel column. Upon regeneration, this 20 kDa fragment was not recognized by a population of antibodies which prevented alpha-toxin binding. The fragment was recognized by antibodies directed against post-binding events. However, the antibinding antibodies recognized the intact modified toxin. This leads us to conclude that antibinding determinants are not found directly in the binding site or are conformationally masked.  相似文献   

2.
The location and environment of tryptophans in the soluble and membrane-bound forms of Staphylococcus aureus alpha-toxin were monitored using intrinsic tryptophan fluorescence. Fluorescence quenching of the toxin monomer in solution indicated varying degrees of tryptophan burial within the protein interior. N-Bromosuccinimide readily abolished 80% of the fluorescence in solution. The residual fluorescence of the modified toxin showed a blue-shifted emission maximum, a longer fluorescence lifetime as compared to the unmodified and membrane-bound alpha-toxin, and a 5- to 6-nm red edge excitation shift, all indicating a restricted tryptophan environment and deeply buried tryptophans. In the membrane-bound form, the fluorescence of alpha-toxin was quenched by iodide, indicating a conformational change leading to exposure of some tryptophans. A shorter average lifetime of tryptophans in the membrane-bound alpha-toxin as compared to the native toxin supported the conclusions based on iodide quenching of the membrane-bound toxin. Fluorescence quenching of membrane-bound alpha-toxin using brominated and spin-labeled fatty acids showed no quenching of fluorescence using brominated lipids. However, significant quenching was observed using 5- and 12-doxyl stearic acids. An average depth calculation using the parallax method indicated that the doxyl-quenchable tryptophans are located at an average depth of 10 A from the center of the bilayer close to the membrane interface. This was found to be in striking agreement with the recently described structure of the membrane-bound form of alpha-toxin.  相似文献   

3.
By use of multilamellar phosphatidylcholine (PC) liposomes of different acyl composition and cholesterol content as model membranes, we studied whether or not membrane fluidity affects the assembly process of Staphylococcus aureus alpha-toxin. Under conditions using fluid and solid membranes, we assayed accessibility (or hemolytic activity) of liposome-bound alpha-toxin to rabbit erythrocytes added, hexamerization of membrane-bound toxin using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nondenaturating conditions, and susceptibility of liposome-bound toxin to trypsin digestion. Our data indicated 1) that alpha-toxin bound to PC membrane as a hemolytically active monomer (or reversibly bound state); 2) that when the membrane was fluidized either by phase transition of PC or by inclusion of cholesterol over 20 mol %, the hemolytically active monomer of the toxin was irreversibly converted to nonhemolytic monomer (and/or unstable oligomer) in a first-order kinetics with a t1/2 of about 1 min, and thereafter hexamerization of the toxin gradually proceeded in the following 60-90 min; 3) that alpha-toxin might have different topology and/or conformation in PC membrane, depending on the presence or absence of cholesterol in the PC membrane; and 4) that coexistence of unsaturated acyl chain-carrying PC and cholesterol was a prerequisite for efficient hexamerization of alpha-toxin in membrane. Thus, increase in membrane fluidity promoted the assembly process of S. aureus alpha-toxin.  相似文献   

4.
Comparison of hemolytic activity and chromate-releasing activity of partially purified preparations of staphylococcal alpha-toxin indicated the presence of a lytic factor other than alpha-toxin. This lytic release factor (RF) was isolated from the preparations and was shown to be active against both lipid spherules and erythrocytes. Heat-purified alpha-toxin (HP alpha-toxin) disrupted spherules, with the formation of fragments which always showed the presence of ring structures similar in dimensions (ca. 90 A) to pure alpha 12S-toxin. The interaction of HP alpha-toxin with spherules was accompanied by loss of hemolytic activity and adsorption of toxic protein. The alpha 12S-toxin, although only weakly hemolytic, was shown to be lytic for spherules. An alpha 12S-free toxin rapidly disrupted spherules, with formation of fragments with attached rings similar in dimensions to the alpha 12S molecule. Lipid monolayer experiments showed that HP alpha-toxin could penetrate lipid monolayers by virtue of a hydrophobic interaction. Effects of HP alpha-toxin on rabbit and human erythrocyte ghosts were similar to its effects on spherules, in that rings appeared on membrane fragments. Toxin-lysed rabbit erythrocytes showed similar rings on the resulting membrane fragments. However, rings were not seen on toxin-treated rabbit erythrocytes in the prelytic lag phase; this result and the fact that human erythrocytes are largely insensitive to alpha-toxin were interpreted as evidence against a lytic mechanism involving ring formation as the primary event. Rings were interpreted as toxin polymers similar to alpha 12S molecules, formed from specifically orientated active toxin molecules at the surface of lipid structures. Possible mechanisms for toxin lysis of spherules and erythrocytes are discussed.  相似文献   

5.
The simple method is proposed for isolation and purification of staphylococcal alpha-toxin that permits one to obtain the homogeneous toxic protein with high activity. The time necessary for maximal toxin production at cultivation has been defined. The thermostability and interferonogenic characteristics of the obtained alpha-toxin were studied.  相似文献   

6.
The alpha-toxin of Clostridium oedematiens type A was purified from culture filtrate by two steps of column chromatography and repeated gel filtration. The purified alpha-toxin proved homogeneous in polyacrylamide gel electrophoresis and agar gel double diffusion. The molecular weight of the alpha-toxin was estimated at 280,000 by sodium dodecyl sulfate polyacrylamide gel electrophoresis and at 260,000 by gel filtration on a Sephadex G-200 column. The isoelectric point determined by isoelectric focusing polyacrylamide gel electrophoresis was 6.1. No dissociation of the purified alpha-toxin into subunits was demonstrated in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The 50% lethal and edematizing doses per mg protein of the purified alpha-toxin were 5.9 X 10(4) and 5.9 X 10(5), respectively. The L +/50 doses per mg protein of the toxin was 4.6 X 10(3). The purified alpha-toxin, when injected intradermally into the rabbit skin, induced increased vascular permeability. The toxin contained little or no hemolytic or lecithinase activity. These results attest that the lethal, edematizing and vascular permeability-enhancing activities elicited by C. oedematiens type A culture reside on the same protein molecule.  相似文献   

7.
Abstract Clostridium perfringens alpha-toxin was produced in a protein-hyperproducing strain, Bacillus brevis 47, by cloning the gene into the constructed expression-secretion vector which has the multiple promoters and the signal peptide coding region of an outer cell wall protein gene. The amount of alpha-toxin produced by the B. brevis 47 transformant carrying the gene was approximately 10 times greater than that produced by a B. subtilis transformant carrying the toxin gene. Biological activities and the N-terminal amino acid sequence of the toxin secreted by the B. brevis 47 transformant were identical to those of wild-type alpha-toxin.  相似文献   

8.
Trypsin treatment of staphylococcal alpha-toxin cleaves the molecule into two roughly equally sized parts, which results in inactivation of the toxin. Tetragonal arrays of oligomers, closely resembling the native ones, can however be formed on lipid layers. From tilted views of negatively stained crystals a 3D structure to 23 A resolution has been determined by electron microscopy and image processing. On comparison with the 3D structure of the native alpha-toxin (Olofsson et al., J. Mol. Biol. 214, 299-306, 1990) the subdomains are more separated, confirming the differences found when comparing the projection maps (Olofsson et al., J. Struct. Biol. 106, 199-204, 1991). The tryptic cleavage takes place in a postulated hinge region. The results are consistent with the hypothesis that the conformational change required for inducing the membrane permeabilizing property takes place in this region. Furthermore, we present a refined projection map at approximately 10 A resolution based on the analysis of a large number of crystals using unbending methods.  相似文献   

9.
Transport and processing of staphylococcal alpha-toxin   总被引:7,自引:1,他引:6       下载免费PDF全文
Two larger precursors to staphylococcal alpha-toxin were identified and partially characterized. Both precursor proteins were present on the cell membrane at very low levels and appeared to be rapidly processed to the mature form. Dinitrophenol inhibited processing such that the two precursors accumulated in the membranes, whereas little extracellular (mature) alpha-toxin is formed. The peptide maps of the 35S-labeled peptides from extracellular alpha-toxin and the two precursors were almost identical. The larger precursor protein contained four additional peptides and the smaller precursor protein contained three additional peptides not found in the extracellular toxin.  相似文献   

10.
利用PCR技术,从A型产气荚膜梭菌标准株染色体DNA中扩增出α毒素基因,构建了含α毒素基因的重组菌株BL21(DE3)(pXETA02)。经酶切鉴定和序列测定证实,构建的表达质粒pXETA02含有α毒素基因序列。经SDS-PAGE、Western blot分析和ELISA检测,重组菌株表达的α毒素蛋白能够被α毒素单抗识别。表达优化结果表明,以IPTG为诱导剂诱导α毒素表达的优化条件是:培养基pH 7.5,培养温度37℃,IPTG浓度0.8mmol/L,菌体生长密度OD600达到0.8时加入IPTG,诱导时间5h,此时α毒素蛋白表达量为34.83%。以乳糖为诱导剂诱导α毒素表达的优化条件是:培养基pH7.5、培养温度37℃,乳糖浓度0.1g/L,菌体生长密度OD600达到0.8时加入乳糖,诱导时间5h,α毒素蛋白表达量为23.82%。动物实验结果表明,用重组菌株α毒素蛋白免疫的小鼠可以抵抗1MLD的A型产气荚膜梭菌标准株C57-1毒素攻击。  相似文献   

11.
Clostridium perfringens biotype A strains are the causative agents of gas-gangrene in man and are also implicated as etiological agents in sudden death syndrome in young domestic livestock. The main virulence factor produced by these strains is a zinc-dependent, phosphatidylcholine-preferring phospholipase C (alpha-toxin). The crystal structure of alpha-toxin, at pH 7.5, with the active site open and therefore accessible to substrate has previously been reported, as has calcium-binding to the C-terminal domain of the enzyme at pH 4.7. Here we focus on conformation changes in the N-terminal domain of alpha-toxin in crystals grown at acidic pH. These changes result in both the obscuring of the toxin active site and the loss of one of three zinc ions from it. Additionally, this "closed" form contains a small alpha helix, not present in the open structure, which hydrogen bonds to both the N and C-terminal domains. In conjunction with the previously reported findings that alpha-toxin can exist in active and inactive forms and that Thr74Ile and Phe69Cys substitutions markedly reduced the haemolytic activity of the enzyme, our work suggests that these loop conformations play a critical role in the activity of the toxin.  相似文献   

12.
Clostridium perfringens type A strains that produce alpha-toxin cause gas gangrene, which is a life-threatening infection with fever, pain, edema, myonecrosis and gas production. Intramuscular injection of the toxin or Bacillus subtilis carrying the alpha-toxin gene causes myonecrosis and produces histopathological features of the disease. Immunization of mice with alpha-toxin or fragments of the toxin prevents gas gangrene caused by C. perfringens. The toxin possesses phospholipase C (PLC), sphingomyelinase (SMase) and biological activities causing hemolysis, lethality and dermonecrosis. These biological activities are closely related to PLC and/or SMase activities. However, there is yet some uncertainty about the biological activities induced by the PLC and SMase activities of alpha-toxin. Based on the isolation and characterization of the gene for alpha-toxin and a comparison of the toxin with enzymes of the PLC family, significant progress has been made in determining the function-structure of alpha-toxin and the mode of action of the toxin. To provide a better understanding of the role of alpha-toxin in tissue damage in gas gangrene, this article summarizes current knowledge of the characteristics and mode of action of alpha-toxin.  相似文献   

13.
The Clostridium perfringens alpha-toxin   总被引:3,自引:0,他引:3  
The gene encoding the alpha-(cpa) is present in all strains of Clostridium perfringens, and the purified alpha-toxin has been shown to be a zinc-containing phospholipase C enzyme, which is preferentially active towards phosphatidylcholine and sphingomyelin. The alpha-toxin is haemolytic as a result if its ability to hydrolyse cell membrane phospholipids and this activity distinguishes it from many other related zinc-metallophospholipases C. Recent studies have shown that the alpha-toxin is the major virulence determinant in cases of gas gangrene, and the toxin might play a role in several other diseases of animals and man as diverse as necrotic enteritis in chickens and Crohn's disease in man. In gas gangrene the toxin appears to have three major roles in the pathogenesis of disease. First, it is able to cause mistrafficking of neutrophils, such that they do not enter infected tissues. Second, the toxin is able to cause vasoconstriction and platelet aggregation which might reduce the blood supply to infected tissues. Finally, the toxin is able to detrimentally modulate host cell metabolism by activating the arachidonic acid cascade and protein kinase C. The molecular structure of the alpha-toxin reveals a two domain protein. The amino-terminal domain contains the phospholipase C active site which contains zinc ions. The carboxyterminal domain is a paralogue of lipid binding domains found in eukaryotes and appears to bind phospholipids in a calcium-dependent manner. Immunisation with the non-toxic carboxyterminal domain induces protection against the alpha-toxin and gas gangrene and this polypeptide might be exploited as a vaccine. Other workers have exploited the entire toxin as the basis of an anti-tumour system.  相似文献   

14.
Replacement of the Trp-1 in Clostridium perfringens alpha-toxin with tyrosine caused no effect on hemolytic and phospholipase C (PLC) activities or on binding to the zinc ion, but that of the residue with alanine, glycine and histidine led to drastic decreases in these activities and a significant reduction in binding to the zinc ion. The hemolytic and PLC activities of W1H and W1A were significantly increased by the preincubation of these variant toxins with zinc ions, but the preincubation of W1G with the metal ion caused little effect on these activities. Gly-Ile-alpha-toxin, which contained an additional Gly-Ile linked to the N-terminal amino acid of alpha-toxin, did not show hemolytic activity, but showed about 6% PLC activity of the wild-type toxin. A mutant toxin, which contained an additional Gly-Ile linked to the N-terminus of a protein lacking 4 N-terminal residues of alpha-toxin, showed about 1 and 6% hemolytic and PLC activities of the wild-type toxin, respectively. Incubation of the mutant toxin with zinc ions caused a significant increase in PLC activity. These observations suggested that Trp-1 is not essential for toxin activity, but plays a role in binding to zinc ions.  相似文献   

15.
Interaction of the pore-forming protein alpha-toxin from Staphylococcus aureus with lipid components from platelet membranes induces crystal formation of the toxin oligomers. Structure analysis of crystalline areas in either sodium phosphotungstic acid or a sodium phosphotungstic acid/glucose mixture has been performed with electron microscopy and image processing. Ordered domains extending up to a few micrometers were observed, particularly after application of alpha-toxin to pre-formed lipid layers. The crystals, showing tetragonal symmetry, formed either separate two-dimensional sheets or three-dimensional piles of layers. The corresponding unit cell parameter of the single layer was a = b = 109.4 A (standard deviation 2.1 A, n = 21). Incubation of the toxin with intact membranes or extracted lipids as well as application of the lipid layer technique resulted in congruous crystalline properties. The projected averaged alpha-toxin oligomer shows cyclic symmetry with a stain-filled space in the centre. The bulk of the three-dimensional model consists of four asymmetric protein units forming a ring. In addition, a small domain covers the central cavity at the face of the protein opposite to the underlying lipid. The conditions under which the tetragonal arrays are formed on the lipid layers suggest that the alpha-toxin molecule is in a conformation binding to a hydrophobic surface rather than fully inserted into a lipid bilayer.  相似文献   

16.
Highly purified alpha-toxin (phospholipase C) of Clostridium perfringens prepared by affinity chromatography on agarose-linked egg-yolk lipoprotein induced the in vitro aggregation of platelets of an irreversible type. The aggregation started after a time lag, the length of which depended on the concentration of the toxin; the reciprocal of the time lag was found to be directly proportional to the toxin concentration. Using this assay method, we demonstrated that the platelet-aggregating activity of alpha-toxin reached minimum at around 70 C but heating at higher temperatures inactivated it to a lesser extent; the same anomaly in heat inactivation was observed with phospholipase C activity possessed by the toxin. By subjecting purified alpha-toxin to isoelectric focusing, four molecular forms were isolated, all of which were associated with both the platelet-aggregating and phospholipase C activities. From all these results we concluded that the entity responsible for the platelet-aggregating activity is identical with alpha-toxin (phospholipase C).  相似文献   

17.
Clostridial glucosylating cytotoxins inactivate mammalian Rho GTPases by mono-O glucosylation of a conserved threonine residue located in the switch 1 region of the target protein. Here we report that EhRho1, a RhoA-like GTPase from the protozoan parasite Entamoeba histolytica, is glucosylated by clostridial cytotoxins. Recombinant glutathione S-transferase-EhRho1 and EhRho1 from cell lysate of Entamoeba histolytica were glucosylated by Clostridium difficile toxin B and Clostridium novyi alpha-toxin. In contrast, Clostridium difficile toxin A, which shares the same mammalian protein substrates with toxin B, did not modify EhRho1. Change of threonine 52 of EhRho1 to alanine prevented glucosylation by toxin B from Clostridium difficile and by alpha-toxin from Clostridium novyi, which suggests that the equivalent threonine residues are glucosylated in mammalian and Entamoeba Rho GTPases. Lethal toxin from Clostridium sordellii did not glucosylate EhRho1 but labeled several other substrate proteins in lysates from Entamoeba histolytica in the presence of UDP-[14C]glucose.  相似文献   

18.
P Cassidy  S Harshman 《Biochemistry》1976,15(11):2348-2355
Staphylococcal alpha-toxin, a hemolytic exotoxin, can be iodinated using the lactoperoxidase method. 125 I-Labeled alpha-toxin binds to rabbit erythrocytes in an apparently irreversible and highly specific manner. The binding of 125 I-labeled alpha-toxin to erythrocytes of rabbit and human reflects the species specificity of native alpha-toxin. Binding of 125I-labeled alpha-toxin is blocked by the presence of native alpha-toxin, 127I-labeled alpha-toxin, or anti-alpha-toxin antibody. Simultaneous assays of 125I-labeled alpha-toxin binding and leakage of intracellular 86Rb+ suggest that toxin binding and membrane damage are separate, sequential functions. Both the rate and extent of binding are temperature dependent. Rabbit erythrocytes possess 5 X 10(3) binding sites/cell, while human erythrocytes possess no detectable binding sites. Treatment of rabbit erythrocytes with 125I-labeled alpha-toxin appears to decrease the number of unoccupied binding sites. Chaotropic ions can inhibit 125I-labeled alpha-toxin binding and cause bound 125I-labeled alpha-toxin to dissociate from rabbit erythrocyte membranes. Treatment of intact rabbit erythrocytes with pronase reduces both the binding capacity of the cells for 125I-labeled alpha-toxin, and the cells' sensitivity to hemolysis by native alpha-toxin. It is proposed that the primary binding site for alpha-toxin in biomembranes is a surface membrane protein.  相似文献   

19.
Bacillus cereus phospholipase was characterized as a phospholipase C by the analysis of lecithin degradation products by thin-layer and paper chromatography. Methanol in the growth menstruum inhibited completely the synthesis of phospholipase C, whereas the synthesis of lethal toxin and hemolysin were only partially inhibited. Dialysis of preformed B. cereus products against ethyl alcohol and methanol did not inactivate hemolytic, phospholipase C, or lethal activity. The hemolytic and lethal activities of culture filtrates were completely abolished by trypsin, but phospholipase C activity was resistant to inactivation. Lethal and phospholipase C properties of culture filtrates were resistant to inactivation at 45 C, whereas the hemolytic activity was completely destroyed. Lethal, hemolytic, and phospholipase C activities appeared simultaneously in a complex growth menstruum, but the kinetics of synthesis were different in all cases. Resolution of B. cereus filtrates on columns of Sephadex showed that the phospholipase C, hemolysin, and lethal toxin are distinct proteins. Evidence is also presented which suggests a correlation between the synthesis of B. cereus toxin and the period of transition from vegetative growth to sporulation. The activity of each B. cereus product was cation-independent, as opposed to cation-dependency of the phospholipase C and lethal activities of Clostridium perfringens alpha-toxin. Immunological cross-reactivity between the B. cereus products and C. perfringens alpha-toxin was not apparent; indeed, they were shown to be antigenically distinct.  相似文献   

20.
Heat stability and species range of purified staphylococcal alpha-toxin   总被引:9,自引:0,他引:9  
Cooper, Louis Z. (New England Medical Center Hospital, Boston, Mass.), Morton A. Madoff, and Louis Weinstein. Heat stability and species range of purified staphylococcal alpha-toxin. J. Bacteriol. 91:1686-1692. 1966.-Heating of high-titer purified staphylococcal alpha-toxin at 60 and 80 C resulted in a double-sloped curve of inactivation of the hemolytic effect on rabbit erythrocytes. Early inactivation was less at the lower temperature, but activity persisted for a longer time at 80 C. Toxin inactivated at 60 C showed renewed activity when heated briefly at 80 C. A precipitate which formed during heating of alpha-toxin at 60 or 80 C yielded hemolytic activity when resuspended and heated at 80 but not at 60 C. Supernatant fluid of heat-precipitated toxin was heat-labile and did not regain activity when heated at 80 C. The results indicate that the "paradoxical effect" of heating of staphylococcal alpha-toxin is not due to a thermolabile inhibitor, but results from alteration of the toxin molecule to a heat-stable active form. Demonstration of renewed activity by 80 C heating of purified toxin requires potent toxin preparations and brief heating periods. Hemolysis of erythrocytes of several animal species by purified alpha-toxin was generally similar to that produced by impure toxin. Rabbit cells were most susceptible. Human and horse erythrocytes hemolyzed to less than 0.1% of the extent of rabbit cells. Blood cells of other species were intermediate in their response to the lytic effect of alpha-toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号