首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eye lens extracts of the frog Rana temporaria contain a cAMP-independent protein kinase which is quantitatively adsorbed on immobilized RNA at physiological salt concentrations. The enzyme activity is maximal in the lenticular cortex, medium in the epithelium and minimal in the lens nuclei. Crude preparations of RNA-binding protein kinase from the epithelium, cortex and nuclei of the eye lens were prepared by affinity chromatography on poly(U)-Sepharose. It was found that these preparations contain no active forms of phosphatases, ATPases or proteases which may interfere with the results of phosphorylation experiments on exogenous and endogenous substrates. The protein kinase under study catalyzes the binding of phosphate groups to threonine and serine residues in casein molecules, does not phosphorylate histones and utilizes GTP alongside with ATP as phosphate donors. Heparin and RNA used at low concentrations inhibit the protein kinase activity. The data obtained allow the identification of lenticular RNA-binding protein kinase(s) as a casein kinase type II. It was shown that incubation of RNA-binding proteins from epithelium and lenticular cortex with [gamma-32P]ATP results in the label incorporation into six to seven polypeptide chains with Mr of 27-130 kDa. Poly(U) and heparin inhibit the self-phosphorylation reaction, cAMP has no stimulating effect on this process, while Ca2+ ions inhibit the self-phosphorylation of RNA-binding proteins.  相似文献   

2.
3.
Rabbit renal cortex was found to contain three types of glycogen synthase kinase (GSK). Cylic AMP-dependent protein kinase (GSK-C) accounted for only a small fraction of the total GSK activity. The predominant type of GSK (GSK-P) could be adsorbed to phosphocellulose, but not to DEAE cellulose. The other major type (GSK-D) could be adsorbed to DEAE cellulose and exhibited several peaks when eluted with a linear NaC1 gradient. GSK-P and GSK-D were not affected by cyclic AMP or by the heat-stable protein inhibitor of cyclic AMP-dependent protein kinase. This suggests that cyclic AMP-independent mechanisms may play a major role in regulation of GSK. Neither GSK-P nor GSK-D were associated with the major peak of histone, kinase, casein kinase, protamine kinase or phosvitin kinase. Therefore it cannot be assumed that these protein kinase activities can be used to monitor GSK activity.  相似文献   

4.
The phosphorylation activity associated with a neurofilament-enriched cytoskeletal preparation isolated from the squid giant axon has been studied and compared to the phosphorylation activities in intact squid axoplasm. The high molecular weight (greater than 300 kDa) and 220-kDa neurofilament proteins are the major endogenous substrates for the kinases in the axoplasm and the neurofilament preparation, whereas 95- and less than 60-kDa proteins are the major phosphoproteins in the ganglion cell preparation. The squid axon neurofilament (SANF) protein kinase activity appeared to be both cAMP and Ca2+ independent and could phosphorylate both casein (Km = 40 microM) and histone (Km = 180 microM). The SANF protein kinase could utilize either ATP or GTP in the phosphotransferase reaction, with a Km for ATP of 58 microM and 129.4 microM for GTP when casein was used as the exogenous substrate; and 25 and 98.1 microM for ATP and GTP, respectively, when the endogenous neurofilament proteins were used as substrates. The SANF protein kinase activity was only slightly inhibited by 2,3-diphosphoglycerate and various polyamines at high concentrations and was poorly inhibited by heparin (34% inhibition at 100 micrograms/ml). The failures of heparin to significantly inhibit and the polyamines to stimulate the SANF protein kinase indicate that it is not a casein type II kinase. The relative efficacy of GTP as a phosphate donor indicates that SANF protein kinase differs from known casein type I kinases. Phosphorylated (32P-labeled) neurofilament proteins were only slightly dephosphorylated in the presence of axoplasm or stellate ganglion cell supernatants, and the neurofilament-enriched preparation did not dephosphorylate 32P-labeled neurofilament proteins. The axoplasm and neurofilament preparations had no detectable protein kinase inhibitor activity, but a strong inhibitor activity, which was not dialyzable but was heat inactivatable, was found in ganglion cells. This inhibitor activity may account for the low phosphorylation activity found in the stellate ganglion cells and may indicate inhibitory regulation of SANF protein kinase activity in the ganglion cell bodies.  相似文献   

5.
The purpose of this study was to analyze immunochemically the synthesis and distribution of tissue-specific proteins, i.e., alpha-, beta- gamma- and rho-crystallins, in morphologically distinct regions of the frog (Rana temporaria L.) lens which consist of cells at various stages of differentiation, maturation and aging. Five such cell compartments can be distinguished in the lens: (1) central zone of lens epithelium (stem/clonogenic cells); (2) equatorial epithelial cells (differentiating cells); (3) lens fibers of the outer cortex (post-mitotic differentiated cells); (4) lens fibers of the deep cortex (cells without nuclei at terminal stage of differentiation); and (5) cells of the lens "nucleus" (cells formed during embryogenesis). Intact lenses and isolated lens epithelium were cultured in vitro in the presence of 35S-methionine. Then lens epithelium, outer and deep cortex, and lens nucleus were extracted with buffered saline and extracts used for immunoautoradiography. Distribution of crystallins in paraffin sections of the whole lens or isolated lens epithelium was studied using indirect immunofluorescence. Synthesis of alpha-crystallins was observed in lens epithelium and cortex, but not in lens nucleus. According to immunohistochemistry, these proteins were absent from central part of the lens epithelium: positive fluorescence was observed only in elongating cells at its periphery and in lens fibers. The data on beta-crystallins are similar except that synthesis of these proteins (traces) was detected also in lens nucleus. Synthesis of gamma-crystallins was detected in lens cortex and nucleus (traces) but not in epithelium. Immunohistochemistry showed that these proteins are absent from all regions of lens epithelium and found only in fiber cells of cortex and nucleus. Rho-crystallin was synthesized in all cell compartments of the adult lens, and all lens cells contained this protein. Our results show that cells of central lens epithelium do not contain alpha- beta- or gamma-crystallins (or the rate of their synthesis is insignificant). While cells are moving towards lens equator and elongating, synthesis of alpha- and beta-crystallins is activated. Gamma-crystallins are synthesized later, first in young lens fibers near lens equator. During embryonic development in amphibia, in contrast, gamma- and beta-crystallins are detected at earlier stages than alpha- and rho-crystallins (Mikha?lov et al., 1988). These data suggest that different mechanisms are involved in differentiation on lens fibers from embryonic precursor cells, on one hand, and from epithelial stem cells of adult lens, on the other.  相似文献   

6.
Activity of phosphotyrosine - protein phosphatases (PTPases) has been investigated in the different cellular regions of bovine eye lens. PTPases were tested in cellular detergent extracts using phospholabelled synthetic peptides and p-nitrophenyl phosphate. We show that a high PTPase activity is only present in cells which undergo differentiation, namely the equatorial epithelium and cortex fiber cells. Since this activity is found to be severely inhibited by a specific inhibitor of receptor - type PTPases, it can be suggested that one or more members of this class of PTPases might play an important role in the lens differentiation process.  相似文献   

7.
The influence of Lyn kinase on Na,K-ATPase in porcine lens epithelium   总被引:3,自引:0,他引:3  
Na,K-ATPase is essential for the regulation of cytoplasmic Na+ and K+ levels in lens cells. Studies on the intact lens suggest activation of tyrosine kinases may inhibit Na,K-ATPase function. Here, we tested the influence of Lyn kinase, a Src-family member, on tyrosine phosphorylation and Na,K-ATPase activity in membrane material isolated from porcine lens epithelium. Western blot studies indicated the expression of Lyn in lens cells. When membrane material was incubated in ATP-containing solution containing partially purified Lyn kinase, Na,K-ATPase activity was reduced by 38%. Lyn caused tyrosine phosphorylation of multiple protein bands. Immunoprecipitation and Western blot analysis showed Lyn treatment causes an increase in density of a 100-kDa phosphotyrosine band immunopositive for Na,K-ATPase 1 polypeptide. Incubation with protein tyrosine phosphatase 1B (PTP-1B) reversed the Lyn-dependent tyrosine phosphorylation increase and the change of Na,K-ATPase activity. The results suggest that Lyn kinase treatment of a lens epithelium membrane preparation is able to bring about partial inhibition of Na,K-ATPase activity associated with tyrosine phosphorylation of multiple membrane proteins, including the Na,K-ATPase 1 catalytic subunit. lens; Na,K-ATPase; tyrosine phosphorylation; Lyn  相似文献   

8.
The absence of casein kinase 2 on blots of temporal cortex extracts from Alzheimer's disease patients (ADP) was shown using antiserum to casein kinase 2. Casein kinase 2 activity towards endogenous substrates and casein is 2-5 times less in ADP brain in comparison to normal controls. The fractions of heparin-binding proteins, containing protein substrates for phosphorylation, were isolated from temporal cortex of ADP and normal controls. The total amount of heparin-binding proteins from ADP brains is less than from control brains, and the polypeptide composition of these fractions is much more poop.  相似文献   

9.
Inhibition of casein kinase II by heparin   总被引:24,自引:0,他引:24  
Casein kinase II, a cyclic nucleotide-independent protein kinase from rabbit reticulocytes, was shown to be inhibited by heparin. Heparin specifically inhibited the enzyme and had no effect on other protein kinases, including casein kinase I, the type I and II cAMP-dependent protein kinases, protease-activated kinase I, and the hemin-controlled repressor. Heparan sulfate was found to be 40-fold less effective than heparin towards casein kinase II; other acid mucopolysaccharides had little or no effect on the enzymatic activity. Steady state studies revealed that heparin acted as a competitive inhibitor with respect to the substrate, casein. A value of 20 ng/ml or about 1.4 nM was obtained for the apparent Ki. The inhibition was not reversed by ATP and varying the ATP and heparin concentrations in the assay only altered the maximum velocity.  相似文献   

10.
The functional consequence of the casein kinase I-catalyzed phosphorylation of the lens gap junctional protein connexin49 was investigated using a sheep primary lens cell culture system. To determine whether the phosphorylation of connexin49 catalyzed by endogenous casein kinase I results in an altered junctional communication between lens cells, the effect of the casein kinase I-specific inhibitor CKI-7 on Lucifer Yellow dye transfer between cells in the lens culture was examined. Dye transfer was analyzed in cultures of different ages because we have demonstrated previously that the expression of connexin49 increases as the cultures age while that of connexin43, which is likely not a substrate for casein kinase I, has been shown to decrease [Yang & Louis (1999) Invest. Ophthalmol. Vis. Sci. 41: 2568–2564]. In 9-day old lens cultures, in which gap junctions are composed primarily of connexin43, CKI-7 had little effect on the rate of dye transfer between lens cells. In contrast, treatment of 15-day and 28-day old cultures with CKI-7 resulted in a significant increase in the rate of dye transfer. Thus, the extent of this CKI-7-dependent increase in cell-to-cell communication was positively correlated with the level of expression of connexin49, the major casein kinase I substrate in lens plasma membranes. These results suggest that the casein kinase I-catalyzed phosphorylation of connexin49 decreases cell communication between connexin49-containing gap junctions in the lens. Received: 31 July 2000/Revised: 12 January 2001  相似文献   

11.
A soluble protein kinase that phosphorylates the last serine residue (Ser-833) in the cytoplasmic domain of the low density lipoprotein (LDL) receptor was purified about 1300-fold from the cytosol of bovine adrenal cortex. The LDL receptor kinase shared several properties with casein kinase II: use of either GTP or ATP; phosphorylation of a typical casein kinase II recognition sequence in the LDL receptor (a serine followed by a cluster of three negatively charged amino acids); and inhibition by heparin. The LDL receptor kinase differed from classic casein kinase II in the following respects: its apparent molecular weight on gel filtration was approximately 500,000 as opposed to the usual molecular weight of 130,000 for casein kinase II; its affinity for the LDL receptor (apparent Km approximately 5 nM) was much greater than its affinity for casein (approximately 10 microM); and its activity was inhibited by polylysine, an agent that stimulates casein kinase II. The physiologic role of this unusual kinase, if any, is unknown.  相似文献   

12.
  • 1.1. Rat liver microsomal membranes were studied for the presence of protein kinases. Microsomal proteins solubilized with Triton X-100 were analyzed by means of ion exchange chromatography.
  • 2.2. Protein kinase activity was detected in the column fractions using specific assays for cAMP-dependent protein kinase, cGMP-dependent protein kinase, protein kinase C, Ca2+/calmodulin-dependent protein kinase and casein kinases.
  • 3.3. Fractions with protein kinase activity were further analyzed by SDS-polyacrylamide gel electrophoresis.
  • 4.4. The results indicate that cAMP-dependent protein kinase type I and II, casein kinases I and II, protein kinase C proenzymes I and II and Ca2+ /calmodulin kinase II are associated with the membranes of endoplasmic reticulum (ER).
  相似文献   

13.
The aminoacyl-tRNA synthetase complex from rabbit liver possesses an endogenous protein kinase activity. The associated protein kinase in the complex was defined as casein kinase I. Using FPLC, a fraction of the supramolecular complex with a high level of metabolic activity was isolated; this preparation was found to be enriched in the casein kinase activity. Incubation of this fraction with [gamma-32P] ATP leads to the intensive incorporation of labeled phosphate into 12 polypeptides of the complex, i.e., glutamyl-, isoleucyl-, leucyl-, methionyl-, lysyl-, arginyl- and aspartyl-tRNA synthetases. An addition of free homologous casein kinase I does not change the spectrum or level of phosphorylation of the complex substrates. The homologous casein kinase II phosphorylates polypeptides with Mr of 65, 43 and 20 kDa in the complex.  相似文献   

14.
MP70 (a 70 kDa membrane protein) is a component of the gap junctions of the young fibre cells in the lens outer cortex. In the older fibres deeper in the mammalian lens (lens nucleus), MP70 is processed to MP38 by cleavage and removal of the carboxy terminal half. It is shown here that cortical MP70, and its derivative MP64, can be phosphorylated with cAMP-dependent protein kinase. In contrast, MP38 from the lens nucleus is not phosphorylated by the enzyme. Proteolytic processing and this lens region specific phosphorylation are relevant for the future development of functional assays for lens gap junctions.  相似文献   

15.
Summary Non-histone chromatin protein (NHCP) fractions were extracted from purified beef thyroid nuclear preparations and tested for the presence of protein kinase activities using several known mediators of thyroid regulation, as well as potential phosphotransferase substrates using purified or partially purified protein kinase activities. The addition of cAMP/3-isobutyl-l-methylxanthine had no effect on NHCP historic kinase activity; the addition of 10 g of the heat-stable cAMP-dependent protein kinase A inhibitor, however, resulted in a 47% reduction in histone H2 kinase activity. Nuclear casein kinase II activity was present in the NHCP fractions as evidenced by the capacity of spermine to stimulate (ED50 = 0.19 mM) and heparin to inhibit (ID50 = 0.09 g/ml) the phosphorylation of casein; further, the phosphotransferase activity could be purified by sequential casein-agarose and spermine-agarose affinity chromatography. Neither calcium-calmodulin nor calcium/phosphatidylserine/diolein had an effect on NHCP casein kinase or histone kinase activities, respectively. The addition of cAMP-dependent protein kinase A catalytic subunit, nuclear casein kinase II, calcium-activated calmodulin-dependent protein kinase and diacylglycerol-activated calcium/phospholipid-dependent protein kinase C activities exhibited distinct phosphorylation patterns when NHCP were used as substrates and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. We conclude that NHCP fraction from beef thyroid: 1) contains both cAMP-dependent protein kinase A catalytic subunit and nuclear casein kinase II and 2) substrates for cAMP-dependent protein kinase A, calcium-activited calmodulin-dependent protein kinase, protein kinase C, and nuclear casein kinase II.Abbreviations NHCP Non-Histone Chromatin Proteins - PK-A cAMP-Dependent Protein Kinase - CAMPK Calcium-Activated Calmodulin-Dependent Protein Kinase - PK-C Diacylglycerol-Activated Calcium/phospholipid-dependent Protein Kinase - NK-11 Nuclear Casein Kinase 11 - CK-G Cytosolic Casein Kinase G or 11 - PMSF Phenylmethyl Sulfonyl Fluoride - PKI the Heat Stable PK-A Inhibitor (Walsh inhibitor) - SDS-PAGE Sodium Dodecylsulfate Polyacrylamide Gel Electrophoresis - EDTA Ethylenediamine Tetraacetic Acid - EGTA Ethyleneglycol bis- (B-aminoethyl ether) N,N,N,N,-Tetraacetic Acid - PS Phosphatidylserine - DO 1,2-Diolein  相似文献   

16.
M-Phase specific protein kinase or cdc2 protein kinase is a component of MPF (M-Phase promoting factor). During meiotic maturation of Xenopus oocytes, cdc2 protein kinase is activated in correlation with MPF activity. A protein phosphorylation cascade takes place involving several protein kinases, among which casein kinase II, and different changes associated with meiosis occur such as germinal vesicle breakdown, chromosome condensation, cytoskeletal reorganization and increase in protein synthesis. Our results provide a biochemical link between cdc2 protein kinase and protein synthesis since they show that the kinase phosphorylates in vitro a p47 protein identified as elongation factor EF1 (gamma subunit) and that the in vitro site of p47 corresponds to the site phosphorylated in vivo. Immunofluorescence showed that the elongation factor (EF1-beta gamma) is localized in the oocyte cortex. Furthermore, they show that cdc2 kinase phosphorylates and activates casein kinase II in vitro, strongly supporting the view that casein kinase II is involved in the phosphorylation cascade originated by cdc2 kinase.  相似文献   

17.
DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein of Mr 32,000, is phosphorylated in vitro by casein kinase II at a site which is also phosphorylated in intact cells. In the present study, we show that a protein kinase activity, present in caudate-putamen cytosol, phosphorylates DARPP-32 on a seryl residue located on the same thermolytic peptide that is phosphorylated by purified casein kinase II. This DARPP-32 serine kinase was indistinguishable from casein kinase II on the basis of a number of biochemical criteria. Excitotoxic lesions of the caudate-putamen and immunocytochemistry revealed the presence of casein kinase II in the medium-sized striatonigral neurons which are known to contain DARPP-32. Casein kinase II activity was high in all rat brain regions studied, and casein kinase II-like immunoreactivity was detected in most brain neurons, although some neuronal populations (e.g., cortical pyramidal cells and large striatal neurons) were stained more intensely than others. In rat caudate-putamen, 45% of the total casein kinase II activity was in the cytosol and 20% in the synaptosomal fraction. In mouse cerebral cortex and caudate-putamen, casein kinase II activity was high at embryonic day 16, and remained elevated during development. In addition to DARPP-32, several major substrates for casein kinase II were observed specifically in brain, but not in liver extracts. The high activity of casein kinase II in brain from the embryonic period to adult age and the existence of a number of specific substrates suggest that this enzyme may play an important role in both developing and mature brain, possibly in modulating the responsiveness of target proteins to various extracellular signals.  相似文献   

18.
In the erythrocyte, a membrane-bound serine/threonine protein kinase (a casein kinase) has been shown to phosphorylate a number of membrane proteins, modulating their function. Here we report that the membrane-bound protein kinase binds to membranes by an association with a minor membrane component contained in preparations of glycophorin (possibly a minor glycophorin). The binding of the kinase to glycophorins does not significantly modify kinase activity. However, upon binding, the kinase activity is potently inhibited by phosphatidylinositol 4,5-bisphosphate, and the affinity of the kinase for the glycophorins is increased. Other phospholipids or polyanions such as inositol 1,4,5-trisphosphate or 2,3-diphosphoglycerate do not affect protein kinase activity when the kinase is bound to membranes but do inhibit the solubilized membrane-bound kinase. In the erythrocyte, there is a cytosolic form of the casein kinase which is very similar, having the same molecular weight and substrate specificity as the membrane-bound casein kinase. The cytosolic casein kinase is inhibited by 2,3-diphosphoglycerate but much less so by glycophorin preparations containing phosphoinositol 4,5-bisphosphate. When the sequences of both casein kinases were compared by two-dimensional peptide mapping, it was found that the two kinases were very similar but not identical.  相似文献   

19.
During their life cycle Leishmania are exposed to environments that differ markedly in pH and temperature. The effect of these factors on protein kinase release into the surrounding environment by Leishmania donovani promastigotes was examined. Promastigotes release protein kinase activity both constitutively and following induction by incubation with an exogenous substrate, phosvitin. The substrate specificity of the constitutive and induced activities was similar, unlike that previously described for Leishmania major promastigotes. The Leishmania donovani enzymes phosphorylate phosvitin, but not casein, mixed histones or protamine sulphate, and both activities are shed over a wide pH range from 6 to 9. Transfer of promastigotes from pH 7.4/30 degrees C to pH 5.0-5.5/37 degrees C, conditions that mimic those encountered by parasites following transmission from sandflies to a mammalian host and uptake by macrophages, inhibited release of the constitutive activity. Identical conditions had only a minor effect on induced protein kinase release. Both types of protein kinase activities released at pH 7.4 were still active when assayed at pH 5.0. Characterisation of the constitutive and induced promastigote protein kinases showed that casein kinase 1- and casein kinase 2-like activities are released by Leishmania donovani. Constitutive enzyme release decreased over time, however, the addition of phosvitin to these "casein kinase-depleted" promastigotes induced elevated casein kinase 1 and casein kinase 2 shedding. These results suggest that shed protein kinase might play a role in parasite survival and adaptation to host environments.  相似文献   

20.
The two cell types in the lens, epithelium and fiber, have a very different specific activity of Na,K-ATPase; activity is much higher in the epithelium. However, judged by Western blot, fibers and epithelium express a similar amount of both Na,K-ATPase alpha and beta subunit proteins. Na,K-ATPase protein abundance does not tally with Na,K-ATPase activity. Studies were conducted to examine whether protein synthesis plays a role in maintenance of the high Na,K-ATPase activity in lens epithelium. An increase of cytoplasmic sodium was found to increase Na,K-ATPase protein expression in the epithelium, but not in the fibers. The findings illustrate the ability of lens epithelium to synthesize new Na,K-ATPase protein as a way to boost Na,K-ATPase in response to cell damage or pathological events. Methionine incorporation studies suggested Na,K-ATPase synthesis may also play a role in day to day preservation of high Na,K-ATPase activity. Na,K-ATPase protein in lens epithelial cells appeared to be continually synthesized and degraded. Experiments with cycloheximide suggest that specific activity of Na,K-ATPase in the lens epithelium may depend on the ability of the cells to continuously synthesize fresh Na,K-ATPase proteins. However, other factors such as phosphorylation of Na,K-ATPase alpha subunit may also influence Na,K-ATPase activity. When intact lenses were exposed to the agonist thrombin, Na,K-ATPase activity was diminished, but the response was suppressed by inhibitors of the Src family of non-receptor tyrosine kinases. Thrombin elicited tyrosine phosphorylation of lens epithelium membrane proteins, including a 100 kDa protein band thought to be the Na,K-ATPase alpha 1 subunit. It remains to be determined whether a tyrosine phosphorylation mechanism contributes to the low activity of Na,K-ATPase in lens fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号