首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Massive mortality of planktivorous fish had a dramatic impact on plankton community dynamics of Lake Mendota, Wisconsin, USA. After fish mortality, the largerDaphnia pulicaria replaced the smallerDaphnia galeata mendotae, resulting in greater grazing pressure on phytoplankton. This was accompanied by a much longer spring clear-water period and lower summer phytoplankton biomass compared to years before the fish mortality. Analysis of historical data (from the mid-1970's) showed that previous fluctuations in planktivorous abundance had similar effects onDaphnia abundance and species composition, and on spring phytoplankton biomass. However, the mid-1970's fish fluctuations had no detectable effect on summer phytoplankton. Concentrations of phosphorus were much higher in the 1970's (spring P 80–135 μg 1−1) than in the 1980's (spring P 19–36 μg 1−1) and it is possible that high P concentrations may reduce trophic cascade effects on summer phytoplankton communities. This suggests that the success of biomanipulation programs may be dependent on lake nutrient status.  相似文献   

2.
Benthic species and communities are linked to pelagic zooplankton through life‐stages encompassing both benthic and pelagic habitats and through a mutual dependency on primary producers as a food source. Many zooplankton taxa contribute to the sedimentary system as benthic eggs. Our main aim was to investigate the nature of the population level biotic interactions between and within these two seemingly independent communities, both dependent on the pelagic primary production, while simultaneously accounting for environmental drivers (salinity, temperature, and oxygen conditions). To this end, we applied multivariate autoregressive state‐space models to long (1966–2007) time series of annual abundance data, comparing models with and without interspecific interactions, and models with and without environmental variables included. We were not able to detect any direct coupling between sediment‐dwelling benthic taxa and pelagic copepods and cladocerans on the annual scale, but the most parsimonious model indicated that interactions within the benthic community are important. There were also positive residual correlations between the copepods and cladocerans potentially reflecting the availability of a shared resource or similar seasonal dependence, whereas both groups tended to correlate negatively with the zoobenthic taxa. The most notable single interaction within the benthic community was a tendency for a negative effect of Limecola balthica on the amphipods Monoporeia affinis and Pontoporeia femorata which can help explain the observed decrease in amphipods due to increased competitive interference.  相似文献   

3.
Lathrop  R. C. 《Hydrobiologia》1992,(1):353-361
High densities of zoobenthos inhabited Lake Mendota's profundal zone in the early 1900s through the mid-1940s. Chaoborus punctipennis was the most abundant organism during the winter, along with moderate densities of Chironomus spp., Pisidium sp., oligochaetes, and Procladius sp. By the early 1950s, Chaoborus punctipennis densities had declined to 10% of former levels, while Chironomus increased significantly. However, by the mid-1960s, Chaoborus, Chironomus, and Pisidium densities had decreased to very low population levels. By 1987–89, Pisidium was no longer found. Zoobenthos that had not decreased from earlier surveys were oligochaetes and Procladius, although further sampling of oligochaetes is needed to confirm current densities. These organisms are the most tolerant of severe anoxia.Four possible reasons for this decline were evaluated: (a) decline in food availability, (b) increase in fish predation, (c) use of toxic insecticides in the drainage basin, and (d) changes in the profundal sediment environment. Based on literature information and long-term data for Lake Mendota, a change in the profundal sediment environment is the most likely explanation for the decline in the less-tolerant zoobenthos species. Although the duration and extent of anoxia in the hypolimnion have not changed since the early 1900s, hypolimnetic ammonia and hydrogen sulfide concentrations apparently have increased as Mendota became more eutrophic after the mid-1940s. However, further study is needed to determine if these higher concentrations or other factors were responsible for the dramatic decline in lake Mendota's profundal zoobenthos.  相似文献   

4.
Detailed zooplankton records from a 26-cm sediment core with a time resolution of approximately 3–10 years were obtained from Lake Biwa, Japan, to examine the historical variations in the zooplankton community during the 20th century. In the sediments, selected zooplankton remains have fluctuated over the years. Daphnia – large zooplankton herbivores – did not occur from 1900 to 1920, and formed a very minor component of the zooplankton community in the following 30 years, while Bosmina – small zooplankton herbivores – were common during this period. In the mid-1960s, however, when eutrophication was noticeable in this lake, Daphnia numbers increased dramatically and became the dominant zooplankton thereafter. In contrast, Difflugia brevicolla and D. biwae, two amoeboid protozoans that live in connection with the lake bottom environment, occurred abundantly until the late 1950s, but gradually decreased after the mid-1960s. In particular, D. biwae, a species peculiar to this lake, was not found in sediment dated after 1980, suggesting its extinction. These results indicate that the zooplankton community structure changed greatly in the 1960s, and suggest that the eutrophication occurring at this time altered the relative strength of top-down and bottom-up forces on the zooplankton community in Lake Biwa.  相似文献   

5.
Adult bluegil grew faster in Lake Mendota than in Lake Wingra. Once and two year old fish from both lakes had similar growth patterns and grew at a rate similar to that of fish from other lakes. Small fish from the two lakes (averaging 10 g) had comparable rations in July but larger fish (averaging 50 g) had daily ration of 3% in Lake Mendota compared to 1% for Lake Wingra fish. Mean number of benthic organisms varied from 364 to 80 per m2 in Lake Wingra as opposed to 1560 to 450 organisms per m2 in Lake Mendota. Fish in Lake Wingra fed selectively on Daphnia and Cyclops, which, although small in size, were relatively larger than the other plankton species. Bluegill from Lake Mendota, on the other hand, fed mainly on large macroinvertebrates such as Hyalella and insects.  相似文献   

6.
We sampled chlorophyll a, benthic organic matter, and benthic macroinvertebrates in June 2001 in La Tordera stream (Catalonia, NE Spain), receiving a wastewater treatment plant (WWTP) input. Samples were collected in six equidistant transects in three reaches located upstream (UP), few m below (DW1), and 500 m below the WWTP input (DW2). Our first objective was to assess the effects of the point source on the structure and functional organization of the benthic macroinvertebrate community. Our second objective was to determine if the self-purifying capacity of the stream implied differences between the communities of the DW1 and the DW2 reaches. The WWTP input highly increased discharge, nutrient concentrations, and conductivity and decreased dissolved oxygen. At the DW1 and the DW2 reaches, taxa richness, EPT taxa (Ephemeroptera, Plecoptera, and Trichoptera), and Shannon diversity decreased and gatherer relative density increased relative to the UP reach. At the UP reach, CPOM and FPOM standing crops were similar, whereas at the DW1 and the DW2 reaches CPOM was two times higher than FPOM. Detailed analysis showed that major changes in the benthic community occurred abruptly between 80 and 90 m downstream of the point source (middle of the DW1 reach). At this location, chlorophyll a concentration, density of macroinvertebrates, taxa richness, and scraper relative density increased, whereas gatherer relative percentage decreased. The macroinvertebrate community at the DW2 reach was comparable to that at the second middle of the DW1 reach (DW1B). The macroinvertebrate community at the DW1B and the DW2 reaches were quite similar to that at the UP reach, indicating that the recovery capacity of the stream from nutrient enrichment was high.  相似文献   

7.
Aims Despite wide consensus that ecological patterns and processes should be studied at multiple spatial scales, the temporal component of diversity variation has remained poorly examined. Specifically, rare species may exhibit patterns of diversity variation profoundly different from those of dominant taxa. Location Southern Finland. Methods We used multiplicative partitioning of true diversities (species richness, Shannon diversity) to identify the most important scale(s) of variation of benthic macroinvertebrate communities across several hierarchical scales, from individual samples to multiple littorals, lakes and years. We also assessed the among‐scale variability of benthic macroinvertebrate community composition by using measures of between‐ and within‐group distances at hierarchical scales. Results On average, a single benthic sample contained 23% of the total regional macroinvertebrate species pool. For both species richness and Shannon diversity, beta‐diversity was clearly the major component of regional diversity, with within‐littoral beta‐diversity (β1) being the largest component of gamma‐diversity. The interannual component of total diversity was small, being almost negligible for Shannon index. Among‐sample (within‐littoral) diversity was related to variation of substratum heterogeneity at the same scale. By contrast, only a small proportion of rare taxa was found in an average benthic sample. Thus, dominant species among lakes and years were about the same, whereas rare species were mostly detected in a few benthic samples in one lake (or year). For rare species, the temporal component of diversity was more important than spatial turnover at most scales. Main conclusions While individual species occurrences and abundances, particularly those of rare taxa, may vary strongly through space and time, patterns of dominance in lake littoral benthic communities are highly predictable. Consequently, many rare species will be missed in temporally restricted samples of lake littorals. In comprehensive biodiversity surveys, interannual sampling of littoral macroinvertebrate communities is therefore needed.  相似文献   

8.
An increase in nutrient levels due to eutrophication has considerable effects on lake ecosystems. Cladocerans are intermediate consumers in lake ecosystems; thus, they are influenced by both the bottom‐up and top‐down effects that occur as eutrophication progresses. The long‐term community succession of cladocerans and the effects cladocerans experience through the various eutrophication stages have rarely been investigated from the perspective of the early‐stage cladoceran community assemblage during lake formation. In our research, long‐term cladoceran community succession was examined via paleolimnological analysis in the currently eutrophic Lake Fukami‐ike, Japan. We measured the concentration of total phosphorus and phytoplankton pigments and counted cladoceran and other invertebrate subfossils in all layers of collected sediment cores, and then assessed changes in the factors controlling the cladoceran community over a 354‐year period from lake formation to the present. The cladoceran community consisted only of benthic taxa at the time of lake formation. When rapid eutrophication occurred and phytoplankton increased, the benthic community was replaced by a pelagic community. After further eutrophication, large Daphnia and high‐order consumers became established. The statistical analysis suggested that bottom‐up effects mainly controlled the cladoceran community in the lake''s early stages, and the importance of top‐down effects increased after eutrophication occurred. Total phosphorus and phytoplankton pigments had positive effects on pelagic Bosmina, leading to the replacement of the benthic cladoceran community by the pelagic one. In contrast, the taxa established posteutrophication were affected more by predators than by nutrient levels. A decrease in planktivorous fish possibly allowed large Daphnia to establish, and the subsequent increase in planktivorous fish reduced the body size of the cladoceran community.  相似文献   

9.
The northern section of the Upper Mississippi River supports a diverse macrobenthic assemblage. Distribution of this benthic fauna, benthic community structure, and factors which influences which influence both of these phenomena in these upper pools are reviewed. Dumping of heavy loads of municipal and industrial wastes from the Minneapolis-St. Paul metropolitan area has severely stressed the benthic community. Once abundant, pollution-sensitive mayflies, Hexagenia bilineata and H. limbata, are noticeably absent, replaced by pollution-tolerant oligochaetes and midges (notably Chironomus). Harmful effects of this pollution are not restricted to the area immediately downstream from the Twin Cities. In Lake Pepin, the Hexagenia population has suffered a drastic decline. The benthic community is characterized by low species diversity and a dominant, pollution-tolerant Chironomus plumosus — Oligochaeta — Sphaeriidae — Hirudinea community complex. Farther south, effects of the high organic load which originates approximately 226 km upstream are ameliorated. Inundation of large, diverse land areas contributes to the great ecological diversity in Pools No. 7 and No. 8. In Navigation Pool No. 7, benthic standing crops in the backwater pool areas (biomass range: 2.08–26.96 g m–2) exceed those in the main channel (biomass range: 0.05–1.02 g m–2). Greater numbers of burrowing mayflies and mollusks were found in the pool areas. Of 131 taxa collected from 1976–1977 in Lake Onalaska, which occupies most of Pool No. 7, eight dominant groups — Oligochaeta, Hirudinea, Isopoda, Amphipoda, Lepidoptera, Diptera, Gastropoda, and Pelecypoda — accounted for 90–93% of the macroinvertebrates. In Pool No. 8, over half of the 144 benthic taxa collected during the summer of 1975 were insect nymphs and larvae. Oligochaetes were by far the most ubiquitous and dominant macroinvertebrates. Habitat preferences of particular benthic forms reflected distributional relationships between macroinvertebrates and physical-chemical conditions. Benthic production, in terms of total wet weight m–2 and macroinvertebrate density in each study area, was generally greater in the more eutrophic areas. However, fewer taxa were supported in these areas. These taxa were generally pollution-tolerant organisms, such as oligochaetes and certain chironomids, which were capable of burrowing into depositional-type substrates. More taxa and greater numbers of gill breathers and filter feeders, such as caddisflies, mayflies, stoneflies, and dipterans, were collected from less eutrophic areas.  相似文献   

10.
Changes in benthic community composition in response to reservoir aging   总被引:2,自引:2,他引:0  
The effects of reservoir aging on the benthic macroinvertebrate community in Pawnee Reservoir were documented by comparing species composition and biomass of samples collected from October 1991 through September 1992, to a similar survey conducted in 1968–70 by Hergenrader & Lessig (1980). Filling of the basin with sediment and associated material and the subsequent change in the benthic environment, has resulted in a relatively homogenous bottom substrate at each of the three sampling transects (dam, middle, and inflow). Sediment enrichment has limited the benthic fauna to species tolerant of brief periods of bottom anoxia and increased levels of organic matter, which has resulted in the disappearance of many taxa and a decrease in the abundance of remaining invertebrates. Significant differences in total biomass were found at each transect, as well as for the whole lake, between study periods. The dam, middle, inflow and total biomasses for the 1968–70 study period were 2.4, 1.5, 2.3 and 2.0 g m–2, respectively, compared to 0.2, 0.2, 0.3, and 0.2 g m–2 for the 1991–92 study period. The total disappearance of eight invertebrate taxa, in particular two sphaerid clam species, and significant declines in other dominant taxa such as Chaoborus punctipennis and Chironomus sp. accounted for these major differences in biomass between study periods. Reductions in the number of taxa present has resulted in an increase in benthic faunal similarity at each transect, with tubificid oligochaetes, Coelotanypus sp., C. punctipennis, and Chironomus sp., comprising 90% of both the total density and biomass of benthic invertebrates in Pawnee Reservoir.  相似文献   

11.
The phytoplankton community structure, in terms of species composition, total standing crop,and abundance of the dominant algal species, at four stations in Donghu Lake, Wuhan, China, was investigated monthly from January 1994 to December 1996. A total of 260 taxa was observed, of which Chlorophyta (106 taxa) contributed the highest portion of the total number of taxa, followed by Bacillariophyta (82 taxa)and Cyanophyta (32 taxa). The total standing crop measured by means of chlorophyll a content, cell density,and cell biovolume, as well as the abundance of the dominant species, declined in the order of Station I to Station Ⅳ. Seasonal changes of the standing crop varied greatly among the four stations. Although the cell density at the four stations showed a single peak within a year, the peak density varied from July to November, dependent on the sampling year and the station. For chlorophyll a content and cell biovolume,multiple peaks were observed at Stations Ⅰ and Ⅱ, but a single peak was found at Stations Ⅲ and Ⅳ. The phytoplankton community structure indicated that the trophic status was the highest at Station Ⅰ (most eutrophic), followed by Station Ⅱ; Stations Ⅲ and Ⅳ were the least trophic areas. The long-term changes in phytoplankton community structure further suggested that changes in phytoplankton community structure were correlated with water quality, and eutrophication of Donghu Lake had been aggravated since the 1950s.  相似文献   

12.
Synopsis The abundance and habitat distribution of littoral zone fishes in two small southern Florida lakes were quantified by underwater censuses. The bluegill (Lepomis macrochirus) and large-mouth bass (Micropterus salmoides) accounted for 75–80% of community biomass in both lakes; important coexisting species were predominantly benthic feeders in Lake Sirena and planktivores in Lake Annie. All species were largely confined to areas of macrovegetation which extended to a depth of 4 m in Lake Annie but only to 1.2 m in Lake Sirena. The differences in community structure were related to differences in habitat and also variation in water levels and benthic production.A comparison of community composition with that of small Michigan lakes indicated that similar numbers of species coexist in the littoral zones, despite a three-fold difference in the size of regional species pools. The majority of families and about 50% of the species were common to lakes in both regions; in addition a number of ecological analogues were noted. A major difference was that the small inshore species were members of the Cyprinodontiformes in Florida and Cyprinidae in Michigan. Together the largemouth bass and bluegill comprise similar community proportions in the two regions as do other major feeding groups. Lakes in the two regions that are similar in amount and distribution of vegetation exhibit greater similarity in fish communities than those within regions that differ in littoral vegetation.  相似文献   

13.
The phytoplankton community structure, in terms of species composition, total standing crop,and abundance of the dominant algal species, at four stations in Donghu Lake, Wuhan, China, was investigated monthly from January 1994 to December 1996. A total of 260 taxa was observed, of which Chlorophyta (106 taxa) contributed the highest portion of the total number of taxa, followed by Bacillariophyta (82 taxa) and Cyanophyta (32 taxa). The total standing crop measured by means of chlorophyll a content, cell density,and cell biovolume, as well as the abundance of the dominant species, declined in the order of Station I to Station IV. Seasonal changes of the standing crop varied greatly among the four stations. Although the cell density at the four stations showed a single peak within a year, the peak density varied from July to November, dependent on the sampling year and the station. For chlorophyll a content and cell biovolume,multiple peaks were observed at Stations I and II, but a single peak was found at Stations III and IV. The phytoplankton community structure indicated that the trophic status was the highest at Station I (most eutrophic), followed by Station II; Stations III and IV were the least trophic areas. The long-term changes in phytoplankton community structure further suggested that changes in phytoplankton community structure were correlated with water quality, and eutrophication of Donghu Lake had been aggravated since the 1950s.  相似文献   

14.
有关云南湖泊的研究长期集中于高原九大湖泊和水体富营养化评价,缺少对中小型水体及多重环境压力胁迫的综合研究.本文以大理西湖为例,结合沉积物记录与现代监测资料,甄别了气候变化和人类活动干扰下硅藻群落结构的长期响应模式及其驱动强度.结果表明: 20世纪50年代以前,大理西湖总体处于自然演化阶段;1950年代开始,围湖造田和流域改造的增强导致了水体营养水平增加、水动力条件改变,硅藻优势种由扁圆卵型藻替代为脆杆藻属;而1997年以来营养水平的快速增加和湖泊水动力的改变,促进了浮游藻类大量生长、底栖硅藻持续减少,同时水生植物快速退化、生态系统稳定性明显降低.因此,在长期流域开发的背景下,对云南中小型高山湖泊的有效保护需要评价流域开发类型、强度及全球变暖的长期影响.  相似文献   

15.
In contrast to the relatively well documented impact of particulate-feedingfish on zooplankton communities, little attention has been devotedto the impact of filter-feeding fish. Filter-feeding silverand bighead carp are the most intensively cultured fish speciesin Asia and comprise much of the production of Chinese aquaculture.However, little information is known about the impact of eitherfish on the zooplankton community. Long-term changes in theCopepoda community (1957–1996) were studied at two samplingstations of a subtropical Chinese lake (Lake Donghu) dominatedby silver and bighead carp. For both calanoids and cyclopoids,the littoral station (I) was much more resource profitable thanthe pelagic station (II). There has been a tremendous increasein the annual fish catch over the past 30 years due to the increasedstocking with fingerlings of the two carp species. There wasa notably higher fish density at Station I than at Station II.Cyclopoid abundance was notably higher at Station I than atStation II during the 1950s to the 1980s, while the reversebecame true in the 1990s. This is probably because when fishabundance increased to an extremely high level, the impact offish predation on the cyclopoids became more important thanthat of food resources at the littoral station. At both stations,cyclopoid abundance was relatively low in spite of the presenceof abundant prey. Similarly, calanoid density did not differsignificantly between the two stations in the 1950s and 1960s,but was significantly lower at Station I than at Station IIduring the 1980s and 1990s. Such changes are attributed to thegradient of fish predation between the stations and an increasingpredation pressure by the fish. The increased fish predationalso correlated with a shift in summer-dominant calanoids fromlarger species to smaller ones. In conclusion, the predaceouscyclopoids are affected by fish predation to a much lesser extentthan the herbivorous calanoids, and therefore increased predationby filter-feeding fish results in a definite increase in thecyclopoid/calanoid ratio. Predation by filter-feeding fish hasbeen a driving force in shaping the copepod community structureof Lake Donghu during the past decades.  相似文献   

16.
滇池大型无脊椎动物的群落演变与成因分析   总被引:3,自引:0,他引:3  
Wang CM  Xie ZC  Song LR  Xiao BD  Li GB  Li L 《动物学研究》2011,32(2):212-221
该文综合滇池大型无脊椎动物的历史资料,并结合2009—2010年的现场调查数据,对其群落演替进行了研究,并对群落衰退的成因进行了探讨。物种数下降明显,由20世纪80年代的57种降为现在的32种,群落的物种损失率高达44%。其中软体动物损失率高达75%:其次是水生昆虫(39%)。滇池全湖底栖动物密度为1776ind/m2(其中寡毛类1706ind/m2;摇蚊科68ind/m2)。近20年滇池全湖底栖动物的丰度比较发现,寡毛类的密度和生物量呈一种先急剧上升,而后明显下降的过程,而摇蚊科的密度和生物量呈现出减少的趋势。寡毛类中的耐污种相对丰度增加,如霍甫水丝蚓(Limnodrilus hoffmeisteri)成为绝对优势种,其平均相对丰度达到了74.1%。摇蚊科相对丰度减少,以前广泛分布的异腹鳃摇蚊(Einfeldiasp.)基本消失,取而代之的是羽摇蚊(Chironomus plumosus)、细长摇蚊(Ch.attenuatus)、中国长足摇蚊(Tanypus chinensis)等耐污种;软体动物种类变得单一,许多高原湖泊特有的软体动物均已消失,螺蛳(Margarya melanioides)、牟氏螺蛳(M.mondi)、光肋螺蛳(M.mansugi)在2009年被世界自然保护联盟列入了极危物种,滇池圆田螺(Cipangopaludina dianchiensis)也被列入了濒危物种。滇池的Shannon-Wiener多样性指数显著降低,尤其是草海物种多样性从20世纪50年代的2.70降到现在的0.30。半个多世纪以来总氮、总磷与物种数和多样性呈现显著负相关。底栖动物群落衰退的成因主要是生境破坏、水质恶化、蓝藻爆发、沉水植物消失、种质库匮乏等。  相似文献   

17.
草藻型稳态转换对湖泊微生物结构及其碳循环功能的影响   总被引:9,自引:0,他引:9  
湖泊是地球表层系统中水、土、气等各个圈层相互作用的联结点,对区域物质如碳等元素循环具有重要影响.微生物是湖泊等水生态系统中的重要组成部分,是湖泊等生态系统中碳等元素物质循环的主要驱动者,是深入了解湖泊碳循环过程的关键.受人类活动等影响,湖泊生态系统,尤其是浅水湖泊生态系统往往表现出以高等水生植物(草型)为主要初级生产者的清水稳定态和以浮游藻类(藻型)为主要初级生产者的浊水稳定态,而随着湖泊营养负荷和湖泊环境条件的变化,这两个不同的稳定态之间可以发生转换或者剧变,这种剧变不仅影响湖泊生态系统中的微生物结构,而且对湖泊中有机碳的形成、循环过程及其微生物驱动机制产生重大影响.本文重点就湖泊生态系统中有机碳的转换与微生物关系以及草藻型稳定态的转换对微生物结构及其碳循环功能的影响等进行综述,进一步分析其中的关键科学问题,以期为深入了解湖泊生态系统中碳等元素循环的微生物驱动过程与机制提供帮助.  相似文献   

18.
From 1955 to the mid 1980s the loads of both nitrogen and phosphorus from the river Rhine to the Dutch coastal area, the Wadden Sea included, increased. Since 1985 the phosphorus loads has decreased significantly, while the nitrogen load remained about the same.Annual primary production in the western Dutch Wadden Sea has increased fromc. 40 g C m–2 (1950) to 150 (mid 1960s) and over 500 g C m–2 (1986). The biomass of macrozoobenthos has more than doubled since 1970. Simultaneously, the meat yield of cultured blue mussels (Mytilus edulis), has increased since the 1960s. Previously, it was indicated that the increase in primary production of the phytoplankton over the period 1950 to 1986 was stimulated by the load of dissolved inorganic phosphate from Lake IJssel, a reservoir supplied by Rhine water. Since 1990, however, primary production has been higher than was expected from decreased phosphate loads from Lake IJssel. It is argued that this lack of response may have been caused by increased concentrations of dissolved inorganic phosphate at sea originating from increased inflow from a.o. the Strait of Dover, which compensate for the decrease in phosphate from the rivers, possibly in combination with a significant improvement of the light conditions of the water in the Wadden Sea.  相似文献   

19.
Ecological communities can undergo sudden and dramatic shifts between alternative persistent community states. Both ecological prediction and natural resource management rely on understanding the mechanisms that trigger such shifts and maintain each state. Differentiating between potential mechanisms is difficult, however, because shifts are often recognized only in hindsight and many occur on such large spatial scales that manipulative experiments to test their causes are difficult or impossible. Here we use an approach that focuses first on identifying changes in environmental factors that could have triggered a given state change, and second on examining whether these changes were sustained (and thus potentially maintained the new state) or transitory (explaining the shift but not its persistence). We use this approach to evaluate a community shift in which a benthic marine species of filter feeding sea cucumber (Pachythyone rubra) suddenly came to dominate subtidal rocky reefs that had previously supported high abundances of macroalgae, persisted for more than a decade, then abruptly declined. We found that a sustained period without large wave events coincided with the shift to sea cucumber dominance, but that the sea cucumbers persisted even after the end of this low wave period, indicating that different mechanisms maintained the new community. Additionally, the period of sea cucumber dominance occurred when their predators were rare, and increases in the abundance of these predators coincided with the end of sea cucumber dominance. These results underscore the complex nature of regime shifts and illustrate that focusing separately on the causes and maintenance of state change can be a productive first step for analyzing these shifts in a range of systems.  相似文献   

20.
A survey was undertaken in 1985 to assess spatial and temporal trends in the benthic community structure in relation to sediment contamination and wastewater sources at 70 stations between Whitefish Bay and lower Lake George in the St. Marys River. Cluster analysis identified seven benthic communities. Three were identified as pollution impacted, based on a preponderance of tubificids and nematodes, usually at high densities (up to 259 000 m-2), but sometimes at low densities (< 100 m-2) at individual stations. Impacted communities occurred downstream of industrial and municipal sources and in depositional areas, and were confined mainly to Canadian waters. Unimpacted communities had greater numbers of taxa, and occurred upstream of point sources, along the U.S. shoreline, and in most areas of downstream lakes. Impacted and unimpacted communities were separated along particle size and contaminant gradients in river sediments. Despite recent reductions in pollutant loadings and improvements in sediment quality, no major changes were apparent in the status of the benthic community from earlier surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号