首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutamate carboxypeptidase II (GCPII) haplotypes were found to influence susceptibility to prostate cancer. In the current study, we have elucidated the impact of these haplotypes on the expression of PSMA, BNIP3, Ec-SOD, GSTP1 and RASSF1 genes to understand the epigenetic basis of oxidative stress and prostate cancer risk. Expression analysis was carried out by RT-PCR. Bisulphite treated DNA was subjected to MS-PCR and COBRA for epigenetic studies. Plasma MDA and glutathione levels were measured. In prostate cancer, upregulation of BNIP3 (204.4 ± 23.77 vs. 143.9 ± 16.42 %, p = 0.03); and downregulation of Ec-SOD (105.8 ± 13.69 vs. 176.3 ± 21.1 %, p = 0.027) and RASSF1A (16.67 ± 16.0 vs. 90.8 ± 8.5 %, p = 0.0048) was observed. Hypomethylation of BNIP3 (31.25 ± 16.19 vs. 45.70 ± 2.42 %, p < 0.0001), hypermethylation of Ec-SOD (71.4 ± 6.75 vs. 10.0 ± 3.78 %, p < 0.0001) and RASSF1 (76.25 ± 12.53 vs. 30.0 ± 8.82 %, p = 0.0077) was observed in prostate cancer. The gene expression signature of PSMA, BNIP3, Ec-SOD, GSTP1, clearly demarcated cases and controls (AUC = 0.89 in the ROC curve). D191V variant of GCPII showed positive association with oxidative stress and inverse association with Ec-SOD expression. H475Y variant showed positive association with Ec-SOD expression and inverse association with oxidative stress. R190W variant was found to reduce oxidative stress by increasing glutathione levels. GCPII genetic variants contribute to increased oxidative stress and prostate cancer risk by modulating the CpG island methylation of Ec-SOD.  相似文献   

2.
In view of recent studies highlighting the prognostic relevance of expression and CpG island methylator phenotype (CIMP) of Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) in invasive duct cell carcinoma (IDC), we hypothesized in this article that impaired one-carbon metabolism might influence CIMP phenotype of BNIP3. In order to substantiate the prognostic relevance of BNIP3, we explored its association with 8-oxo-2'deoxyguanosine (8-oxodG), a marker of oxidative stress with prognostic relevance. BNIP3 expression and CIMP phenotype were studied using semi-quantitative RT-PCR and combined bisulfite restriction analysis (COBRA), respectively, in 56 IDC tumors. Eight polymorphisms in one-carbon metabolism were studied using PCR-RFLP and PCR-AFLP approaches. 8-oxodG was measured using competitive ELISA kit. BNIP3 was found to be upregulated in IDC (cases vs. controls: 0.94 ± 0.05 vs. 0.18 ± 0.08, P < 0.0001). COBRA analysis confirmed hypomethylation of BNIP3 promoter CpG island in these cases. CIMP phenotype of BNIP3 showed positive association with tubule formation (P = 0.034) and methionine synthase reductase (MTRR) A66G (P = 0.002); inverse association with cytosolic serine hydroxyl methyltransferase (cSHMT) C1420T (P < 0.005) and 8-oxodG (<10% vs. >10% methylation: 7.24 ± 2.77 ng/ml vs. 4.42 ± 2.93 ng/ml, P < 0.0005); and no association with nuclear pleomorphism or mitotic index or ER, PR, and HER statuses. Synergistic effect of MTR A2756G and MTRR A66G variants on BNIP3 hypermethylator phenotype was clearly evident (P < 0.0007). MTRR A66G and cSHMT C1420T polymorphisms influence CIMP phenotype of BNIP3, thus epigenetically regulating BNIP3 in breast cancer. The linear association between BNIP3 and 8-oxodG substantiates the role of BNIP3 as redox sensor as well as prognostic marker in breast cancer.  相似文献   

3.
Yamamoto M  Hara H  Adachi T 《FEBS letters》2000,486(2):159-162
Homocysteine is known to be a risk factor for several vascular diseases. Previously, we found a significant association between plasma homocysteine and plasma extracellular-superoxide dismutase (EC-SOD) levels. The binding of EC-SOD to human and bovine aortic endothelial cell cultures showed significant decreases after incubation with 10 microM homocysteine, whereas the expression of EC-SOD in fibroblast cell cultures was inhibited with a high concentration (1 mM) of homocysteine. Furthermore, binding of EC-SOD to heparin immobilized on plates was decreased with homocysteine. These observations suggested that homocysteine decreases the binding of EC-SOD to vascular endothelial cell surfaces by degradation of endothelial heparan sulfate proteoglycan, which results in a loss of the ability to protect endothelial cell surfaces from oxidative stress.  相似文献   

4.
Our recent study showing association of hyperhomocysteinemia and hypomethioninemia in breast cancer and other studies indicating association of hyperhomocysteinemia with metastasis and development of drug resistance in breast cancer cells treated with homocysteine lead us to hypothesize that homocysteine might modulate the expression of certain tumor suppressors, i.e., RASSF1, RARβ1, CNND1, BRCA1, and p21, and might influence prognostic markers such as BNIP3 by inducing epigenetic alteration. To demonstrate this hypothesis, we have treated MCF-7 and MDA-MB-231 cells with different doses of homocysteine and observed dose-dependent inhibition of BRCA1 and RASSF1, respectively. In breast cancer tissues, we observed the following expression pattern: BNIP3 > BRCA1 > RARβ1 > CCND1 > p21 > RASSF1. Hyperhomocysteinemia was positively associated with BRAC1 hypermethylation both in breast cancer tissue and corresponding peripheral blood. Peripheral blood CpG island methylation of BRCA1 in all types of breast cancer and methylation of RASSF1 in ER/PR-negative breast cancers showed positive correlation with total plasma homocysteine. The methylation of RASSF1 and BRCA1 was associated with breast cancer initiation as well as progression, while BRCA1 methylation was associated with DNA damage. Vitamin B12 showed inverse association with the methylation at both the loci. RFC1 G80A and cSHMT C1420T variants showed positive association with methylation at both the loci. Genetic variants influencing remethylation step were associated positively with BRCA1 methylation and inversely with RASSF1 methylation. GCPII C1561T variant showed inverse association with BRCA1 methylation. We found good correlation of BRAC1 (r = 0.90) and RASSF1 (0.92) methylation pattern between the breast cancer tissue and the corresponding peripheral blood. To conclude, elevated homocysteine influences methionine dependency phenotype of breast cancer cells and is associated with breast cancer progression by epigenetic modulation of RASSF1 and BRCA1 .  相似文献   

5.
Necrotizing enterocolitis (NEC) is characterized by the upregulation of proinflammatory proteins, nitrosative stress, and increased enterocyte apoptosis. We examined the expression and regulation of the Bcl-2/adenovirus EIB 19-kDa-interacting protein 3 (BNIP3), a pro-apoptotic gene regulated by nitric oxide (NO) in hepatocytes, in NEC. Newborn rats subjected to hypoxia and fed a conventional formula by gavage (FFH) developed NEC and demonstrated elevated expression of BNIP3 mRNA and protein in mucosal scrapings of the ileal samples and in the liver. In contrast, control rats [breast-fed (BF) without hypoxia] did not develop NEC or elevated BNIP3 expression in these tissues. BNIP3 expression paralleled the histological manifestation of NEC. Supplementation of the formula with L-Nomega-(1-iminoethyl)lysine, an inducible NO synthase inhibitor, reduced BNIP3 expression in FFH animals to the levels found in BF animals. Both hypoxia and peroxynitrite upregulated BNIP3 protein expression in human intestinal cells. Finally, ileal samples obtained from infants undergoing surgical resection for acute NEC demonstrated higher levels of BNIP3 protein. Because hypoxia and formation of reactive nitrogen species may promote gut barrier failure, we propose that upregulation of the cell death-related protein BNIP3 is one possible mechanism associated with enterocyte cell death observed in the intestine with NEC.  相似文献   

6.
The effect of oxidative stress on the cellular uptake and nuclear translocation of extracellular superoxide dismutase (EC-SOD) was investigated. EC-SOD was incorporated from conditioned medium of stable EC-SOD expressing CHO-EK cells into 3T3-L1 cells within 15 min. The uptake was clearly inhibited by the addition of heparin at a concentration of 0.4 microg/ml. Treatment of the 3T3-L1 cells with H(2)O(2) (5 mM for 5 min), followed by incubation with CHO-EK medium downregulated the uptake of EC-SOD. Nuclear translocation of the incorporated EC-SOD was clearly enhanced by H(2)O(2) treatment following incubation with the CHO-EK medium. EC-SOD is the only anti-oxidant enzyme which is known at this time to be actively transported into nuclei. The results obtained here suggest that the upregulation of the nuclear translocation of EC-SOD by oxidative stress might play a role in the mechanism by which the nucleus is protected against oxidative damage of genomic DNA.  相似文献   

7.
The measurement of the degree of oxidative stress in patients often causes problems because of the lack of useful parameters. Therefore, we used an ELISA technique to evaluate serum protein carbonyls as a parameter of oxidative stress in patients during coronary heart surgery. Protein carbonyls were detected in serum samples of 14 patients undergoing coronary surgery and cardiopulmonary artery bypass grafting. A clear 2- to 3-fold increase in protein carbonyls in serum samples taken from human venous coronary sinus could be detected in the reperfusion period of the heart. We compared these data with markers of oxidative stress previously used, such as the glutathione status and the lipid peroxidation product malondialdehyde (MDA). Strong correlations of the protein carbonyl formation with MDA (r2 = 0.86) and oxidized glutathione (r2 = 0.81) were found in the early reperfusion stage. Increased levels of oxidized glutathione and MDA were detected only in the early reperfusion period. In contrast, the serum protein carbonyl content remained elevated for several hours, indicating a considerably slower serum clearance of oxidized proteins compared with that of lipid peroxidation products and the normalization of the glutathione status. We therefore concluded that the measurement of serum carbonyls by this ELISA technique is suitable to detect oxidative stress in serum samples of patients. The relative stability of the parameter makes the protein carbonyl detection even more valuable for clinical purposes.  相似文献   

8.
Zhang W  Bai M  Xi Y  Hao J  Liu L  Mao N  Su C  Miao J  Li Z 《Free radical biology & medicine》2012,52(8):1443-1452
A large body of evidence has shown that cognitive deficits occur early, before amyloid plaque deposition, suggesting that soluble amyloid-β protein (Aβ) contributes to the development of early cognitive dysfunction in Alzheimer disease (AD). However, the underlying mechanism(s) through which soluble Aβ exerts its neurotoxicity responsible for cognitive dysfunction in the early stage of AD remains unclear so far. In this study, we used preplaque APPswe/PS1dE9 mice ages 2.5 and 3.5 months to examine alterations in cognitive function, oxidative stress, and cholinergic function. We found that only soluble Aβ, not insoluble Aβ, was detected in these preplaque APPswe/PS1dE9 mice. APPswe/PS1dE9 mice 2.5 months of age did not show any significant changes in the measures of cognitive function, oxidative stress, and cholinergic function, whereas 3.5-month-old APPswe/PS1dE9 mice exhibited spatial memory impairment in the Morris water maze, accompanied by significantly decreased acetylcholine (ACh), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) as well as increased malondialdehyde (MDA) and protein carbonyls. In 3.5-month-old preplaque APPswe/PS1dE9 mice, correlational analyses revealed that the performance of impaired spatial memory was inversely correlated with soluble Aβ, MDA, and protein carbonyls, as well as being positively correlated with ACh, ChAT, SOD, and GSH-px; soluble Aβ level was inversely correlated with ACh, ChAT, SOD, and GSH-px, as well as being positively correlated with MDA and protein carbonyls; ACh level showed a significant positive correlation with ChAT, SOD, and GSH-px, as well as a significant inverse correlation with MDA and protein carbonyls. Collectively, this study provides direct evidence that increased oxidative damage and cholinergic dysfunction may be early pathological responses to soluble Aβ and involved in early memory deficits in the preplaque stage of AD. These findings suggest that early antioxidant therapy and improving cholinergic function may be a promising strategy to prevent or delay the onset and progression of AD.  相似文献   

9.
In view of growing body of evidence favouring the association of aberrations in one-carbon metabolism and oxidative stress in the aetiology of coronary artery disease (CAD), we investigated the risk associated with polymorphisms regulating the folate uptake and transport such as the glutamate carboxypeptidase II (GCPII) C1561T, reduced folate carrier 1 (RFC1) G80A and cytosolic serine hydroxymethyltransferase (cSHMT) C1420T. We further evaluated the impact of seven putatively functional polymorphisms of this pathway on oxidative stress markers. Genotyping was performed on 288 CAD cases and 266 healthy controls along with the dietary folate assessment. GCPII C1561T polymorphism was found to be an independent risk factor (OR 2.71, 95% CI 1.47–4.98) for CAD, whereas cSHMT C1420T conferred protection (OR 0.51, 95% CI 0.37–0.70). Oxidative stress markers like the plasma levels of malondialdehyde, protein carbonyls and 8-oxo-deoxyguanosine were significantly increased and total glutathione was significantly decreased in CAD cases. Elevated oxidative stress was observed in subjects carrying GCPII 1561T and MTRR 66A-variant alleles and low oxidative stress was observed in the subjects carrying cSHMT 1420T and TYMS 5′-UTR 2R allele. GCPII C1561T, MTHFR C677T and MTRR A66G polymorphisms were observed to influence the homocysteine levels (P < 0.05). SHMT and TYMS variants were found to decrease oxidative stress by increasing the folate pool (r = 0.38, P = 0.003) and also by increasing the antioxidant status (r = 0.28, P = 0.03). Influence of dietary folate status was not observed. Overall, this study revealed elevated oxidative stress that was associated with the aberrations in one-carbon metabolism which could possibly influence the CAD risk.  相似文献   

10.
Cicer arietinum (gram) is an important protein-rich pulse crop in Indian subcontinent, the Mediterranean region, Ethiopia, and Mexico. We studied the effects of different salt concentrations on radicle growth and different markers of oxidative stress, e.g., superoxide radical, MDA, protein carbonyls, as well as antioxidant compounds. Physiological and biochemical parameters were assessed in the radicles of germinating gram seeds after 1 and 7 days of treatments with 15, 30, 45, and 60 mM NaCl. The results showed that salt exerted a stronger effect (17-fold) on radicle length than on their dry weight (5-fold). This growth decrease was accompanied by an excessive (3-fold) accumulation of ROS and resulting protein carbonyl and MDA formation (3–6-fold). As to the responses of antioxidant compounds to salinity of the growing medium, all the enzymatic molecules (SOD, CAT, POX, and APX) showed significant (4–6-fold) reductions in their activities. Our results suggest that under salinity substantially higher amounts of oxidative stress markers (superoxide, MDA, and protein carbonyls) in collaboration with suppression of the ROS detoxification system ultimately led to gram radicle growth inhibition and severe oxidative stress.  相似文献   

11.
Extracellular-superoxide dismutase (EC-SOD) is a major SOD isozyme mainly present in the vascular wall and plays an important role in normal redox homeostasis. We previously showed the significant reduction or induction of EC-SOD during human monocytic U937 or THP-1 cell differentiation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively; however, its cell-specific expression and regulation have not been fully elucidated. It has been reported that epigenetic factors, such as DNA methylation and histone modification, are involved in several kinds of gene regulation. In this study, we investigated the involvement of epigenetic factors in EC-SOD expression and determined high levels of DNA methylation within promoter and coding regions of EC-SOD in THP-1 cells compared to those in U937 cells. Moreover, treatment with a DNA methyltransferase inhibitor, 5-azacytidine, significantly induced the expression of EC-SOD in THP-1 cells, indicating the importance of DNA methylation in the suppression of EC-SOD expression; however, the DNA methylation status did not change during THP-1 cell differentiation induced by TPA. On the other hand, we detected histone H3 and H4 acetylation during differentiation. Further, pretreatment with histone acetyltransferase inhibitors, CPTH2 or garcinol, significantly suppressed the TPA-inducible EC-SOD expression. We also determined the epigenetic suppression of EC-SOD in peripheral blood mononuclear cells. Treatment with granulocyte macrophage colony-stimulating factor (GM-CSF)/granulocyte-CSF induced that expression. Overall, these findings provide novel evidence that cell-specific and TPA-inducible EC-SOD expression are regulated by DNA methylation and histone H3 and H4 acetylation in human monocytic cells.  相似文献   

12.
Many cardiac patients undergo exercise conditioning with or without medication. Therefore, we investigated the interaction of exercise training and chronic nitroglycerin treatment on blood pressure (BP), aortic nitric oxide (NO), oxidants and antioxidants in rats. Fisher 344 rats were divided into four groups and treated as follows: (1) sedentary control, (2) exercise training (ET) for 8 weeks, (3) nitroglycerin (15 mg/kg, s.c. for 8 weeks) and (4) ET+nitroglycerin. BP was monitored with tail-cuff method. The animals were sacrificed 24 h after the last treatments and thoracic aorta was isolated and analyzed. Exercise training on treadmill for 8 weeks significantly increased respiratory exchange ratio (RER), aortic NO levels, and endothelial nitric oxide synthase (eNOS) protein expression. Training significantly enhanced aortic glutathione (GSH), reduced to oxidized glutathione (GSH/GSSG) ratio, copper/zinc-superoxide dismutase (CuZn-SOD), Mn-SOD, catalase (CAT), glutathione peroxidase (GSH-Px) glutathione disulfide reductase (GR) activities and protein expressions. Training significantly depleted aortic malondialdehyde (MDA) and protein carbonyls without change in BP. Nitroglycerin administration for 8 weeks significantly increased aortic NO levels and eNOS protein expression. Nitroglycerin significantly enhanced aortic Mn-SOD, CAT, GR and glutathione-S-transferase (GST) activities and protein expressions with decreased MDA levels, protein carbonyls and BP. Interaction of training and nitroglycerin treatment significantly increased aortic NO levels, eNOS protein expression, GSH/GSSG ratio, antioxidant enzymes and normalized BP. The data suggest that the interaction of training and nitroglycerin maintained BP by up-regulating the aortic NO and antioxidants and reducing the oxidative stress in rats.  相似文献   

13.
14.
Hyperglycemia-mediated oxidative stress plays a crucial role in the progression of diabetic nephropathy. Hence, the present study was hypothesized to explore the renoprotective nature of resveratrol by assessing markers of oxidative stress, proinflammatory cytokines and antioxidant competence in streptozotocin-nicotinamide-induced diabetic rats. Oral administration of resveratrol to diabetic rats showed a significant normalization on the levels of creatinine clearance, plasma adiponectin, C-peptide and renal superoxide anion, hydroxyl radical, nitric oxide, TNF-α, IL-1β, IL-6 and NF-κB p65 subunit and activities of renal aspartate transaminase, alanine transaminase and alkaline phosphatase in comparison with diabetic rats. The altered activities of renal aldose reductase, sorbitol dehydrogenase and glyoxalase-I and elevated level of serum advanced glycation end products in diabetic rats were also reverted back to near normalcy. Further, resveratrol treatment revealed a significant improvement in superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities and vitamins C and E, and reduced glutathione levels, with a significant decline in lipid peroxides, hydroperoxides and protein carbonyls levels in diabetic kidneys. Similarly, mRNA and protein analyses substantiated that resveratrol treatment notably normalizes the renal expression of Nrf2/Keap1and its downstream regulatory proteins in the diabetic group of rats. Histological and ultrastructural observations also evidenced that resveratrol effectively protects the kidneys from hyperglycemia-mediated oxidative damage. These findings demonstrated the renoprotective nature of resveratrol by attenuating markers of oxidative stress in renal tissues of diabetic rats.  相似文献   

15.
An HJ  Lee H  Paik SG 《Molecules and cells》2011,31(6):579-583
We have previously shown that Ras mediates NO-induced BNIP3 expression via the MEK-E RK-HIF-1 pathway i n mouse macrophages, and that NO-induced death results at least in part from the induction of BNIP3. In the present study, we describe another aspect of Ras regulation of BNIP3 expression in pancreatic cancer cells. Human BNIP3 promoter-driven luciferase activity was efficiently induced by activated Ras in AsPC-1, Miapaca-2, PK-1 and PANC-1 cells. However, expression of endogenous BNIP3 was not induced, and BNIP3 up-regulation by hypoxia was also inhibited. Treatment of the cells with the DNMT inhibitor, 5-aza-2-deoxycytidine, restored BNIP3 induction, indicating that DNA methylation of the BNIP3 promoter was responsible for the inhibition of BNIP3 induction. Furthermore, inhibition of the MEK pathway with U0126 reduced DNMT1 expression, but not that of DNMT3a and 3b, and restored the hypoxia-inducibility of BNIP3, suggesting that the DNA methylation of the BNIP3 promoter was mediated by DNMT1 via the MEK pathway.  相似文献   

16.

Depletion of S-adenosyl methionine and 5-methyltetrahydrofolate; and elevation of total plasma homocysteine were documented in CAD patients, which might modulate the gene-specific methylation status and alter their expression. In this study, we have aimed to delineate CAD-specific epigenetic signatures by investigating the methylation and expression of 11 candidate genes i.e. ABCG1, LIPC, PLTP, IL-6, TNF-α, CDKN2A, CDKN2B, F2RL3, FGF2, P66 and TGFBR3. The methylation-specific PCR and qRT-PCR were used to assess the methylation status and the expression of candidate genes, respectively. CAD patients showed the upregulation of IL-6, TNF-α, CDKN2A, CDKN2B, F2RL3, FGF2, P66, and TGFBR3. Hypomethylation of CDKN2A loci was shown to increase risk for CAD by 1.79-folds (95% CI 1.22–2.63). Classification and regression tree (CART) model of gene expression showed increased risk for CAD with F2RL3?>?3.4-fold, while demonstrating risk reduction with F2RL3?<?3.4-fold and IL-6?<?7.7-folds. This CAD prediction model showed the excellent sensitivity (0.98, 95% CI 0.88–1.00), specificity (0.91, 95% CI 0.86–0.92), positive predictive value (0.82, 95% CI 0.75–0.84), and negative predictive value (0.99, 95% CI 0.94–1.00) with an overall accuracy of 92.8% (95% CI 87.0–94.1%). Folate and B12 deficiencies were observed in CAD cases, which were shown to contribute to hypomethylation and upregulation of the prime candidate genes i.e. CDKN2A and F2RL3. Early onset diabetes was associated with IL-6 and TNF-α hypomethylation and upregulation of CDKN2A. The expression of F2RL3 and IL-6 (or) hypomethylation status at CDKN2A locus are potential biomarkers in CAD risk prediction. Early epigenetic imprints of CAD were observed in early onset diabetes. Folate and B12 deficiencies are the contributing factors to these changes in CAD-specific epigenetic signatures.

  相似文献   

17.
The aim of this study was to investigate the possible relationship between serum total sialic acid (TSA) concentration, recently shown to be a cardiovascular risk factor, and lipid and protein oxidation and antioxidant status and the severity of coronary artery disease (CAD) according to the obstructive vessel number in patients. The study was carried out on a total of 200 patients (142 men and 58 women) who were hospitalized for elective coronary angiographic evaluation with complaint of typical angina pectoris. According to the results of angiography, 150 patients had angiographically proven CAD (CAD group) and 50 patients had a history suggestive of angina pectoris but normal coronary angiograms (control group). The CAD group was further divided into single-, double- and triple-vessel disease groups according to the number of vessels involved. Lipid parameters were determined by routine laboratory methods. Plasma malondialdehyde (MDA) and vitamin E concentrations were determined by high-performance liquid chromatography. TSA and other oxidant and antioxidant parameters were studied spectrophotometrically. Our results demonstrated significant increases both in TSA levels and in indicators of oxidative stress in the patients with CAD compared with the controls. However, antioxidant parameters were decreased in the patients with CAD. We found strong positive correlations between TSA and plasma MDA, Delta-MDA which represents the degree of oxidative modification of apolipoprotein B-containing lipoproteins, serum protein carbonyls and apolipoprotein B and weak correlations between TSA and low density lipoprotein cholesterol, triacylglycerol, paraoxonase, glutathione peroxidase (GPx), vitamin C and vitamin E. In conclusion, TSA is related to markers of lipid and protein oxidation, paraoxonase and GPx activities, vitamin C and E levels and the severity of CAD.  相似文献   

18.
19.
20.
There are many potential sources of reactive oxidants around the time of birth and pre-term infants are considered to be particularly vulnerable to oxidative injury. To gain insight into these processes, we have measured biomarkers of lipid and protein oxidation in umbilical cord plasma and related concentrations to mode of delivery and gestational age. Protein carbonyls were measured by ELISA and malondialdehyde (MDA) by HPLC after reaction with thiobarbituric acid, for 54 pre-term (< or = 36 weeks gestational age) and 43 term infants. Protein carbonyls were significantly lower in pre-term (median for < 32 weeks gestational age 0.048nmol/mg protein) than in term infants (0.105 nmol/mg, p = 0.004), and were unrelated to mode of delivery. In contrast, MDA concentrations were higher in the very pre-term (<32 weeks gestation) group (2.47 compared with 1.83 microM for term infants, p < 0.0001). MDA concentrations were higher in infants who were born with labour compared with elective caesarean section. Pre-eclampsia in the mother was associated with higher cord blood MDA concentrations. The MDA results are consistent with other studies of this marker and could be interpreted as indicating increased oxidative stress associated with prematurity and labour. However, the lower protein carbonyls in pre-term infants would lead to an opposite interpretation. More information is needed on the source and fate of these and other biomarkers before drawing strong conclusions on how they reflect oxidative stress in this and other clinical situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号