首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial ATP-regulated potassium (mitoKATP) channels play an important role in cardioprotection. Single channel activity was measured after reconstitution of inner mitochondrial membranes from bovine myocardium into a planar lipid bilayer. After incorporation, the potassium channel was recorded with a mean conductance of 103+/-9 pS. The channel activity was inhibited by ATP/Mg and activated by GDP. Magnesium ions alone affected, in a dose dependent manner, both the channel conductance and the open probability. Magnesium ions regulated the mitoKATP channel only when added to the trans compartment. We conclude that Mg2+ regulates the cardiac mitoKATP channel from the matrix site by affecting both the channel conductance and gating.  相似文献   

2.
D W Jung  L Apel  G P Brierley 《Biochemistry》1990,29(17):4121-4128
The concentration of free Mg2+ in the matrix of isolated heart mitochondria has been monitored by using the fluorescent probe furaptra (mag-fura-2). Beef heart mitochondria respiring in a KCl medium in the absence of external Mg2+ maintain free matrix Mg2+ near 0.50 mM. Addition of Pi under these conditions decreases free Mg2+ by 0.12-0.17 mM depending on the substrate. This decrease in free Mg2+ appears to reflect changing ligand availability in the matrix. The decrease is prevented when the Pi transporter is blocked by mersalyl. Addition of ADP to initiate state 3 respiration causes a marked increase in free matrix Mg2+ (0.1-0.2 mM) that persists as long as ATP formation is taking place; free Mg2+ then returns to the base level. This cyclic change is blocked by oligomycin and carboxyatractyloside and appears to reflect to a large extent the decrease in matrix Pi that accompanies oxidative phosphorylation. Exchange of external ADP for matrix ATP may also contribute to the increase in free matrix Mg2+. Addition of an uncoupler promotes anion efflux and increases free matrix Mg2+. Similar changes in free Mg2+ on addition of Pi, ADP, or uncoupler are seen when extramitochondrial Mg2+ is buffered from 0.5 to 2 mM, but the basal free matrix Mg2+ increases as external Mg2+ concentration increases in this range. Free matrix Mg2+ also increases when total mitochondrial Mg2+ is increased by respiration-dependent uptake in the presence of Pi. It is concluded that matrix free Mg2+ changes significantly with changing ligand availability and that such changes may contribute to the regulation of Mg2(+)-sensitive matrix enzymes and membrane transporters.  相似文献   

3.
The enzyme phosphoglucomutase can be used as a metal ion indicator to measure the concentrations of free Mg2+ and free Zn2+ in physiological fluids. In horse plasma, the concentration of free Mg2+ is close to 0.5 mM, whereas that of free Zn2+ is about 2 X 10(-10) M, although numerous physiological roles for Zn2+ have been postulated that would require free Zn2+ concentration orders of magnitude higher than this. A titration of plasma with Zn2+ shows that the fractional increase in free Zn2+ is essentially the same as the fractional increase in total exchangeable Zn2+, and the results are consistent with a model in which essentially all of the Zn2+ in plasma is bound to albumin. Regardless of the model, the buffering capacity of plasma for free Zn2+ is intrinsically low; however, its capacity relative to the total (exchangeable) Zn2+ present is maximal. The implications of this type of buffering for homeostasis of plasma Zn2+ are considered. Treatment of plasma with a strong reducing agent such as dithiothreitol (0.1 mM) substantially increases the apparent binding of Zn2+ and thus reduces the free Zn2+ concentration. However, the concentration of free Zn2+ appears to be insensitive to decreases in the physiological concentrations of reduced glutathione and cysteine. The concentrations of free Zn2+ and free Mg2+ in plasma are similar to those that have been reported for muscle tissue (rabbit). Their ratio is about 4 X 10(-7). The physiological implications of these concentrations are considered. In some cases, if the Zn2+ and Mg2+ complexes of an uncharacterized vertebrate protein exhibit significantly different properties, their relative importance under physiological conditions can be approximated by evaluating those of the mixed complexes present in a solution that contains the physiological concentration of free Mg2+, plus Zn2+ buffered with histidine, at the appropriate pH and ionic strength. Other metal ion/chelon systems that come close to reproducing the concentrations of free Mg2+ and free Zn2+ in horse plasma also are considered.  相似文献   

4.
Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport   总被引:2,自引:0,他引:2  
The effects of the polyamine spermine on the regulation of Ca2+ transport by subcellular organelles from rat liver, heart, and brain were investigated using ion-sensitive minielectrodes and a 45Ca2+ tracer method. Spermine stimulated Ca2+ uptake by mitochondria but not by microsomes. In the presence of spermine, isolated mitochondria could maintain a free extramitochondrial Ca2+ concentration of 0.3-0.2 microM. Stimulation of the initial rates of Ca2+ uptake and 45Ca2+ cycling of mitochondria by spermine shows that this was accomplished through a decrease of the apparent Km for Ca2+ uptake by the Ca2+ uniporter. The half maximally effective concentration of spermine (50 microM) was in the range of physiological concentrations of this polyamine in the cell. Spermidine was five times less effective. Putrescine was ineffective. The stimulation of mitochondrial Ca2+ uptake by spermine was inhibited by Mg2+ in a concentration-dependent manner. However, the diminished contribution of the mitochondria to the regulation of the free extraorganellar Ca2+ concentration could mostly be compensated for by microsomal Ca2+ uptake. Spermine also reversed ruthenium red-induced Ca2+ efflux from mitochondria. It is concluded that spermine is an activator of the mitochondrial Ca2+ uniporter and Mg2+ an antagonist. By this mechanism, the polyamines can confer to the mitochondria an important role in the regulation of the free cytoplasmic Ca2+ concentration in the cell and of the free Ca2+ concentration in the mitochondrial matrix.  相似文献   

5.
Measurements have been made of cytoplasmic pH, (pHi) and free Mg2+ concentration, ( [Mg2+]i), in pig and mouse lymphocytes. pHi was measured in four ways: by a digitonin null-point technique; by direct measurement of the pH of freeze-thawed cell pellets; from the 31P nuclear magnetic resonance (NMR) spectrum of intracellular inorganic phosphate; and by the use of a newly synthesized, intracellularly- trappable fluorescent pH indicator. In HEPES buffered physiological saline with pH 7.4 at 37 degrees C, pHi was close to 7.0. Addition of physiological levels of HCO3- and CO2 transiently acidified the cells by approximately 0.1 U. Mitogenic concentrations of concanavalin A (Con A) had no measurable effect on pH in the first hour. [Mg2+]i was assessed in three ways: (a) from the external Mg2+ null-point at which the ionophore A23187 produced no net movement of Mg2+ or H+; (b) by Mg- sensitive electrode measurements in freeze-thawed pellets; and (c) from the 31P nuclear magnetic resonance spectrum of the gamma-phosphate of intracellular ATP. Total cell Mg2+ was approximately 12 mmol per liter cell water. The NMR data indicated [Mg2+]i greater than 0.5 mM. The null-point method gave [Mg2+]i approximately 0.9 nM. The electrode measurements gave 1.35 mM, which was thought to be an overestimate. Exposure to mitogenic doses of Con A for 1 h gave no detectable change in total or free Mg2+.  相似文献   

6.
7.
High concentrations of either Mg-ATP complex, free ATP, or free Mg2+ ions were inhibitors of the mitochondrial F1-ATPase moiety from Phycomyces blakesleeanus. Free Mg2+ acts as a linear competitive inhibitor with regard to Mg-ATP hydrolysis with a Ki value of 2.8 mM. The inhibition by free ATP was markedly biphasic and thus simple competitive inhibition alone is not sufficient to explain the inhibitory effect. From these results conclusions were drawn about the binding of the substrate, Mg-ATP complex, to the enzyme.  相似文献   

8.
1. Physiological concentrations of either Ca2+ or Mg2+ stimulated L-glycerol 3-phosphate oxidation by intact mitochondria isolated from various mammalian tissues (hamster brown adipose tissue, rat brain, liver of normal and hyperthyroid rats). A higher cation concentration was required for stimulation by Mg2+ than by Ca2+. L-glycerol-3-phosphate dehydrogenase was the target of the stimulation by both cations as revealed by measurements with intact mitochondria as well as with the solubilized enzyme. With different electron acceptors Ca2+ and Mg2+ stimulation occurred at significantly different cation concentrations. 2. Substrate activation of mitochondrial L-glycerol-3-phosphate dehydrogenase was observed in intact mitochondria and with the solubilized enzyme isolated from hyperthyroid rats in the absence of Ca2+ and Mg2+. According to kinetic analysis two independent binding sites, functioning with different turnovers and with different affinities for the substrate, could account for the phenomenon. In the presence of Ca2+ or Mg2+ substrate activation could not be detected; the kinetic parameters apparently correspond to the tight substrate-binding site functioning with high turnover. 3. Thiol group(s), which in the absence of Ca2+ and Mg2+ did not participate in the functioning of the enzyme, played an essential role in the binding of these cations to the enzyme, as shown by chemical modification studies. 4. From the solubilized mitochondrial proteins L-glycerol-3-phosphate dehydrogenase was bound selectively to the hydrophobic phenyl-Sepharose 4B matrix in the presence Ca2+, and the bound enzyme could be eluted with EDTA. This suggests that Ca2+ caused an alteration in the conformation of the enzyme.  相似文献   

9.
Pradhan RK  Qi F  Beard DA  Dash RK 《Biophysical journal》2011,101(9):2071-2081
Ca(2+) is an important regulatory ion and alteration of mitochondrial Ca(2+) homeostasis can lead to cellular dysfunction and apoptosis. Ca(2+) is transported into respiring mitochondria via the Ca(2+) uniporter, which is known to be inhibited by Mg(2+). This uniporter-mediated mitochondrial Ca(2+) transport is also shown to be influenced by inorganic phosphate (Pi). Despite a large number of experimental studies, the kinetic mechanisms associated with the Mg(2+) inhibition and Pi regulation of the uniporter function are not well established. To gain a quantitative understanding of the effects of Mg(2+) and Pi on the uniporter function, we developed here a mathematical model based on known kinetic properties of the uniporter and presumed Mg(2+) inhibition and Pi regulation mechanisms. The model is extended from our previous model of the uniporter that is based on a multistate catalytic binding and interconversion mechanism and Eyring's free energy barrier theory for interconversion. The model satisfactorily describes a wide variety of experimental data sets on the kinetics of mitochondrial Ca(2+) uptake. The model also appropriately depicts the inhibitory effect of Mg(2+) on the uniporter function, in which Ca(2+) uptake is hyperbolic in the absence of Mg(2+) and sigmoid in the presence of Mg(2+). The model suggests a mixed-type inhibition mechanism for Mg(2+) inhibition of the uniporter function. This model is critical for building mechanistic models of mitochondrial bioenergetics and Ca(2+) handling to understand the mechanisms by which Ca(2+) mediates signaling pathways and modulates energy metabolism.  相似文献   

10.
11.
The mechanisms and regulation of mitochondrial Ca2+ transport   总被引:4,自引:0,他引:4  
  相似文献   

12.
Matrix free Ca2+ in isolated chromaffin vesicles   总被引:3,自引:0,他引:3  
D Bulenda  M Gratzl 《Biochemistry》1985,24(26):7760-7765
Isolated secretory vesicles from bovine adrenal medulla contain 80 nmol of Ca2+ and 25 nmol of Mg2+ per milligram of protein. As determined with a Ca2+-selective electrode, a further accumulation of about 160 nmol of Ca2+/mg of protein can be attained upon addition of the Ca2+ ionophore A23187. During this process protons are released from the vesicles, in exchange for Ca2+ ions, as indicated by the decrease of the pH in the incubation medium or the release of 9-aminoacridine previously taken up by the vesicles. Intravesicular Mg2+ is not released from the vesicles by A23187, as determined by atomic emission spectroscopy. In the presence of NH4Cl, which causes the collapse of the secretory vesicle transmembrane proton gradient (delta pH), Ca2+ uptake decreases. Under these conditions A23187-mediated influx of Ca2+ and efflux of H+ cease at Ca2+ concentrations of about 4 microM. Below this concentration Ca2+ is even released from the vesicles. At the Ca2+ concentration at which no net flux of ions occurs the intravesicular matrix free Ca2+ equals the extravesicular free Ca2+. In the absence of NH4Cl we determined an intravesicular pH of 6.2. Under these conditions the Ca2+ influx ceases around 0.15 microM. From this value and the known pH across the vesicular membrane an intravesicular matrix free Ca2+ concentration of about 24 microM was calculated. This is within the same order of magnitude as the concentration of free Ca2+ in the vesicles determined in the presence of NH4Cl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Z. Rengel 《Plant and Soil》1990,128(2):185-189
Ammonium acetate and BaCl2-triethanolamine were used to desorb Mg2+ from the root Donnan free space (DFS) of 23-d-old ryegrass (Lolium multiflorum Lam. cvs. Gulf and Wilo). Amounts of desorbed Mg2+ increased with the increase in Mg2+ activity of the nutrient solution. Slightly less Mg2+ was desorbed by Ba2+ than by NH4 +. Previously published data on short-term net Mg2+ uptake by intact 23-d-old ryegrass plants of the two cultivars were linearly related to the amount of exchangeable Mg+ desorbed from the root DFS (r2=0.90 and 0.81 for the desorption by NH4 + and Ba2+, respectively). A sward of Mg2+ ions attracted to the negative charges of the cell surface is suggested to represent a part of a pool of Mg2+ available for active transport through the plasmalemma.  相似文献   

14.
Summary In internodal cells ofLamprothamnium succinctum, turgor regulation in response to hypotonie treatment is inhibited by lowering external Ca2+ concentration ([Ca2+]e) from 3.9 (normal) to 0.01 (low) mM. In order to clarify whether a change in the cytoplasmic free Ca2+ concentration ([Ca2+]c) is involved in turgor regulation, the Ca2+ sensitive protein aequorin was injected into the cytoplasm of internodal cells. A large transient light emission was observed upon hypotonic treatment under normal [Ca2+]e but not under low [Ca2+]e. Thus hypotonic treatment induces a transient increase in [Ca2+]c under normal [Ca2+]e but not under low [Ca2+]e.Abbreviations ASW artificial sea water - i cellular osmotic pressure - [Ca2+]c cytoplasmic free Ca2+ concentration - EDTA ethylenediamine-tetraacetic acid - EGTA ethylenglycol-bis(-aminoethyl ether(N,N-tetraacetic acid - [Ca2+]e external Ca2+ concentration - e external osmotic pressure - GM glass micropipette - GP glass plate - HEPES N-2-hydroxyethylpiperazine-N-2-ethansulfonic acid - MS microscope stage - OL objective lens - PIPES piperazine-N-N-bis(2-ethanesulfonic acid) - W Weight  相似文献   

15.
The intracellular Ca2+ content of nontransformed Balb/c3T3 cells is two to three times higher than that of a spontaneously transformed derivative. Depriving either cell type of extracellular Mg2+ causes a 2- to 3-fold increase in their Ca2+ content over a 24-hr period. Restoring Mg2+ to the medium decreases the Ca2+ content of the cells to their original values in about the same time. The increase in Ca2+ content is not blocked by cycloheximide suggesting that normal rates of protein synthesis are not required to produce this effect. Mg2+ deprivation also decreases the initial rate of Ca2+ efflux from the transformed cells and increases the size of the slowly exchanging fraction of Ca2+ to the levels found in the nontransformed cells. Since Mg2+ deprivation normalizes the appearance and growth behavior of the transformed cells, the possible intermediary role of Ca2+ in this normalization was studied. Large changes in extracellular Ca2+ produced large changes in the Ca2+ content of the transformed cells with little change in appearance or thymidine incorporation rate. Ca2+ deprivation did inhibit thymidine incorporation in early passage nontransformed cells; however with repeated passage, this effect decreased, as did the Ca2+ content of these cells. The possible role of Mg2+ in regulating cellular Ca2+ content and distribution is discussed, as is the relation of Ca2+ content and distribution to the development of the transformed state.  相似文献   

16.
Free Mg(2+) in chloroplasts may contribute to the regulation of photosynthetic enzymes, but adequate methodology for the determination of free Mg(2+) concentration ([Mg(2+)]) in chloroplasts has been lacking. We measured internal chloroplast [Mg(2+)] by using a Mg-sensitive fluorescent indicator, mag-fura-2. In intact, dark-kept spinach chloroplasts, internal [Mg(2+)] was estimated to be 0.50 mM, and illumination caused an increase in [Mg(2+)] to 2.0mM in the stroma. The light-induced increase in [Mg(2+)] was inhibited by a blocker of driven electron transport and uncouplers. The K(+)-specific ionophore valinomycin inhibited the [Mg(2+)] increase in the absence of external K(+), and addition of KCl restored the [Mg(2+)] increase. NH(4)Cl, which induces stromal alkalinization, enhanced the [Mg(2+)] increase. A Ca(2+)-channel blocker, ruthenium red, inhibited the [Mg(2+)] increase, but LaCl(3) had no effect. These results indicate that stromal alkalinization is essential for light-induced increase in [Mg(2+)]. This system for measuring internal chloroplast [Mg(2+)] might provide a suitable system for assay of Mg(2+) transport activity of chloroplast membranes.  相似文献   

17.
When pig liver phosphorylase kinase was assayed at various concentrations of Mg2+, about 2-fold stimulation was observed around 2-3 mM Mg2+ (Mg2+/ATP ratio, 20-30) compared with the activity at 0.3 mM Mg2+ (Mg2+/ATP ratio, 3). This stimulation was specific for Mg2+ among the divalent cations tested and the process was reversible. Km values for ATP and phosphorylase b were decreased 3.6- and 9.5-fold, respectively, at 3 mM Mg2+ compared with those obtained at 0.3 mM Mg2+. These results indicate that the activity of liver phosphorylase kinase is influenced by free Mg2+.  相似文献   

18.
The influence of Mg2+ on the reaction catalyzed by human erythrocyte phosphofructokinase has been investigated using kinetic methods. The catalytic activity of PFK is dependent upon the presence of Mg2+ which constitutes with ATP the true Mg-ATP2- substrate. Free Mg2+ has no influence on the affinity of the enzyme for Mg-ATP2- substrate. Erythrocyte PFK is more inhibited by ATP4- and uncomplexed citrate than it is by Mg-ATP2- and Mg-citrate. Free Mg2+ relieves the MgATP2- and Mg-citrate inhibition under conditions where free ATP4-is negligible. We can assume that uncomplexed Mg2+ acts as positive effector by direct binding to the enzyme. These results emphasize the role of Mg2+ in the regulation of PFK activity in the erythrocyte.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号