首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》1969,189(3):317-326
1. Pretreatment of sub-mitochondrial particles with cholate results in a change in the curve describing inhibition by antimycin of the succinate-cytochrome c reductase from sigmoidal towards linear. This effect of cholate is reversed by partial removal of the cholate by dialysis, either in the absence or presence of antimycin.

2. Treatment with cholate has the same action on the sigmoidal effect curve of antimycin on the reducibility of cytochrome b. This is also reversed by dialysis.

3. The effect of antimycin on the displacement to the red of the -band of ferrocytochrome b, measured in the presence of succinate, NADH or reduced ubiquinone Q-2, is also described by a sigmoidal curve that is changed to a linear one by addition of cholate.

4. Linear displacement curves are obtained with menaquinol or Na2S2O4.

5. It is proposed that antimycin is an allosteric inhibitor of the respiratory chain. This allosteric effect should be distinguished from the effect of antimycin on the “conformation stability” of Complex III.  相似文献   


2.
《BBA》1969,189(3):327-336
1. Extraction by ether removes only about one-half of antimycin added to sub-mitochondrial particles, independently of the amount of antimycin added up to that necessary for 100% inhibition.

2. The amount of antimycin extractable with ether remains the same even when the antimycin is redistributed between an antimycin-inhibited preparation and an untreated. The antimycin remaining after ether extraction is redistributed between ether-accessible and ether-inaccessible sites when the preparation is incubated on its own or with an untreated preparation.

3. Low concentrations of cholate increase the extractability of the antimycin by ether.

4. Complex III binds antimycin more firmly than sub-mitochondrial particles. However, antimycin is readily extracted by ether, leading to restoration of enzymic activity and cleavage of the complex by bile salts.

5. The results are consistent with an explanation of the sigmoidal inhibition curve with antimycin and preparations of the intact respiratory chain in terms of an allosteric model.  相似文献   


3.
1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutant. A similar reoxidation is observed in the wild type in the presence of low concentrations of antimycin.

2. In contrast to the wild type, inhibition of electron transport in the mutant has a much higher antimycin titre than effects on cytochromes b (viz., aerobic steadystate reduction; reduction in the presence of substrate, cyanide and oxygen; the ‘red shift’ and lowering of E0 of cytochrome b-562). Moreover, the titration curve of electron transport is hyperbolic whereas the curves for the reduction are sigmoidal. The conclusion is, that in both mutant and wild type, the actions of antimycin on electron transport and cytochromes b are separable.

3. The red shift in the mutant is more extensive than in the wild type.

4. Cytochrome b-558 and cytochrome b-566 (that absorbs in mutant and wild type at 564.5 nm) do not respond simultaneously to addition of antimycin, indicating that they are two separate cytochromes.

5. The difference between the effect of antimycin on electron transport and cytochromes b reduction is also found in intact cells of the mutant.

6. A model is suggested for the wild-type respiratory chain in which (i) the cytochromes b lie, in an uncoupled system, out of the main electron-transfer chain, (ii) antimycin induces a conformation change in QH2-cytochrome c reductase resulting in effects on cytochrome b and inhibition of electron transport, (iii) a second antimycinbinding site with low affinity to the antibiotic is present, capable of inhibiting electron transport.  相似文献   


4.
Paul Nijs 《BBA》1967,143(3):454-461
1. A series of eight classical respiratory-chain inhibitors was studied. The slopes of State-3 respiratory rate versus dose plots are convex for antimycin, 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO), rotenone and sulfide, and concave for malonate, Amytal, cyanide and azide.

2. Plots of ADP: O ratio versus dose indicate uncoupling effects at higher concentrations of antimycin, HOQNO, cyanide and azide. On the other hand, sulfide and rotenone have no effect on the phosphorylating efficiency. Malonate increases the ADP: O ratio.

3. Two inhibitors can be combined in such a way that the total inhibition should be equal to the inhibition caused by the single inhibitors if each inhibitor affects respiration independently (additivity of inhibition). In practice, however, antagonism and synergism are also found.

4. Additivity of combined inhibition occurs where both inhibitors act on the same enzyme.

5. Antagonism is observed where the two inhibitors act on different enzymes of the same chain.

6. Synergism is found where the two inhibitors act on enzymes in different branches of a forked chain. This turns into normal additivity when the electron flow through both branches is made equal.

7. The results are compatible with the hypothesis that respiratory enzymes are arranged in chains. The possibility that the chains may be cross-linked or branched is discussed.  相似文献   


5.
M  rten K. F. Wikstr  m  Jan A. Berden 《BBA》1972,283(3):403-420
1. The effect of oxidizing equivalents on the redox state of cytochrome b in the presence of antimycin has been studied in the presence and absence of various redox mediators.

2. The antimycin-induced extra reduction of cytochrome b is always dependent on the initial presence of an oxidant such as oxygen. After removal of the oxidant this effect remains or is partially (under some conditions even completely) abolished depending on the redox potential of the substrate used and the leak through the antimycin-inhibited site.

3. The increased reduction of cytochrome b induced by oxidant in the presence of antimycin involves all three spectroscopically resolvable b components (b-562, b-566 and b-558.

4. Redox mediators with an actual redox potential of less than 100–170 mV cause the oxidation of cytochrome b reduced under the influence of antimycin and oxidant.

5. Redox titrations of cytochrome b with the succinate/fumarate couple were performed aerobically in the presence of cyanide. In the presence of antimycin two b components are separated potentiometrically, one with an apparent midpoint potential above 80 mV (at pH 7.0), outside the range of the succinate/fumurate couple, and one with an apparent midpoint potential of 40 mV and an n value of 2. In the absence of antimycin cytochrome b titrates essentially as one species with a midpoint potential of 39 mV (at pH 7.0) and n = 1.14.

6. The increased reducibility of cytochrome b induced by antimycin plus oxidant is considered to be the result of two effects: inhibition of oxidation of ferrocytochrome b by ferricytochrome c1 (the effect of antimycin), and oxidation of the semiquinone form of a two-equivalent redox couple such as ubiquinone/ubiquinol by the added oxidant, leading to a decreased redox potential of the QH2/QH couple and reduction of cytochrome b.  相似文献   


6.
J. A. Berden  E. C. Slater 《BBA》1970,216(2):237-249
1. Succinate-cytochrome c reductase activity was reconstituted by incubating a mixture of succinate dehydrogenase, cytochrome c1, ubiquinone-10, phospholipid and a preparation of cytochrome b, made by the method of .

2. Preparations of cytochrome b active in reconstitution contained 5–28% native cytochrome b, as adjudged by reducibility with succinate in the reconstituted preparation and by lack of reaction with CO. Preparations of cytochrome b containing no native cytochrome b according to this criterion were inactive in reconstitution.

3. With a fixed amount of cytochrome b, the activity of the reconstituted preparation increased with increasing amounts of cytochrome c1 until a ratio of about 2b (total): 1c1 (allowing for the cytochrome c1 present in the cytochrome b preparation) was reached.

4. The amount of antimycin necessary for maximal inhibition of the reconstituted enzyme is a function of the amount of the cytochrome b and is independent of the amount of cytochrome c1. It is equal to about one half the amount of native cytochrome b.

5. Preparations of intact or reconstituted succinate-cytochrome c reductase or of cytochrome b completely quench the fluorescence of added antimycin, until an amount of antimycin equal to onehalf the amount of native cytochrome b present was added. Antimycin added in excess of this amount fluoresces with normal intensity. The quenching is only partial in the presence of Na2S2O4. Denatured cytochrome b does not quench the fluorescence.

6. Since preparations of cytochrome b active in reconstitution contained cytochrome c1 in an amount exceeding one half the amount of native cytochrome b present in the preparation, there is no evidence that native cytochrome b has been resolved from cytochrome c1. The stimulatory action of cytochrome c1 may be due to the restoration of a damaged membrane conformation.

7. Based on the assumption that the bc1 segment of the respiratory chain contains 2b:1c1:1 antimycin-binding sites, the specific quenching of antimycin fluorescence by binding to cytochrome b enables an accurate determination of the absorbance coefficients of cytochromes b and c1. These are 25.6 and 20.1 mM−1×cm−1 for the wavelength pairs 563–577 nm and 553–539 nm, respectively, in the difference spectrum reduced minus oxidized.  相似文献   


7.
R.M. Bertina  P.I. Schrier  E.C. Slater 《BBA》1973,305(3):503-518
1. The fluorescence of aurovertin increases about 100-fold on binding to sub-mitochondrial particles.

2. The mitochondrial ATPase (F1) binds one mole aurovertin/mole F1 with a dissociation constant of 6·10−8 M.

3. The fluorescence of mitochondrion-bound aurovertin is maximal during State-3 respiration and is partially quenched on anaerobiosis, addition of respiratory inhibitor, oligomycin or uncoupler, or transition to State 4. This quenching is still present when the binding site is saturated with aurovertin, showing that the quantum yield of fluorescence is lowered.

4. Aurovertin is bound co-operatively to State-3 mitochondria.

5. The curve relating inhibition of State-3 respiration to aurovertin concentration is more sharply sigmoidal than the binding curve.

6. An analysis of the binding and inhibition data leads to the conclusion that aurovertin induces a conformation change in the binding site on F1 in two ways: (i) directly by acting as an allosteric effector of an oligomeric system, (ii) indirectly by inhibiting State-3 respiration which changes the allosteric constant of the oligomeric system.

7. The concentration of the aurovertin-binding site in both rat-liver and rat-heart mitochondria is about the same as that of the antimycin-binding and oligomycin-binding sites.  相似文献   


8.
In this study, we investigated the application of cellulase and protease purified from rumen bacteria as detergent additives. Cellulase and protease were purified from the rumen cellulytic bacteria Fibrobacter succinogenes S85, and Prevotella ruminicola 23, respectively. An inhibitor test indicated that the purified protease belongs to the category of serine proteases and metalloproteases. Both the enzymes were effective at a high temperature (50 degrees C) and neutral pH (pH 7-8), but the protease activity increased with the increase in temperature and pH. The purified protease was treated with ten types of surfactants/detergents; it was found to retain over 60% of its activity in the presence of anionic and nonionic detergents. The cellulose plus protease combination was still effective after treatment with Triton X-100 and Tween 80, but the residual activity was low after treatment with Tween 20 than that after treatment with other nonionic detergents. Washing tests indicated that enzyme addition produced no significant improvement in the removal of grass stains, but individual enzyme addition in surfactants/detergents, especially in nonionic detergents, could improve the washing performance of the detergents by improving its ability to remove blood stains. This suggested that the surfactant/detergent class, enzyme properties, and the mixing ratio of ingredients should be considered simultaneously to enhance the washing performance.  相似文献   

9.
The activity of a sarcosine dehydrogenase isolated from a strain of Pseudomonas is enhanced by the addition of Triton X-100, Brij 35, and Tween 80, and is inhibited by deoxycholate and Sarkosyl NL-97. 2,6-Dichlorophenolindophenol, which is used as the oxidant in the dehydrogenase assay, has also been employed as an indicator in the spectrophotometric determination of the critical micelle concentrations (CMC) of both the nonionic and anionic detergents under conditions optimal for the enzyme analyses. A correlation between the activation or inhibitory activities of the surfactants and their CMC values has been established.  相似文献   

10.
Shigeru Itoh 《BBA》1980,593(2):212-223
1. Electrogenic steps in photosynthetic cyclic electron transport in chromatophore membrane of Chromatium vinosum were studied by measuring absorption changes of added merocyanin dye and of intrinsic carotenoid.

2. The change in dye absorbance was linear with the membrane potential change induced either by light excitation or by application of diffusion potential by adding valinomycin in the presence of K+ concentration gradient.

3. It was estimated that chromatophore membrane became 40–60 mV and 110–170 mV inside positive upon single and multiple excitations with single-turnover flashes, respectively, from the responses of the dye and the carotenoid.

4. Electron transfers between cytochrome c-555 or c-552 and reaction center bacteriochlorophyll dimer (BChl2) and between BChl2 and the primary electron acceptor were concluded to be electrogenic from the redox titration of the dye response.

5. No dye response which corresponded to the change of redox level of cytochrome b was observed in the titration curve. Addition of antimycin A slightly decreased the dye response.

6. The dye response was decreased under phosphorylating conditions.

7. From the results obtained localization of the electron transfer components in chromatophore membrane is discussed.  相似文献   


11.
1. Glucocerebrosidase, extracted from human spleen lysosomal membrane by sodium cholate and recovered in a high speed centrifugation supernatant, aggregated following removal of the detergent. 2. Re-solubilization of the enzymatic activity from the aggregate was achieved by treatment with the non-ionic detergents Triton X-100 and Tween 20. The anionic detergents sodium cholate and sodium taurocholate and the cationic detergents cetyltrimethylammonium bromide and cetylpyridinium chloride were also effective. The solubilizing capacity of the anionic detergents was smaller than that of the nonionic detergents. Quantitative evaluation of the solubilizing capacity of the cationic detergents was not feasible because of their being potent inhibitors of glucocerebrosidase activity. 3. Treatment of the enzyme aggregate with acetone rendered it buffer-soluble. 4. In addition to the above cationic detergents some choline-containing and highly hydrophobic phospholipids were found to inhibit the glucocerebrosidase activity.  相似文献   

12.
1. Reduced ubiquinones-1, -2, -3, -4 and -6 were used as substrates for ubiquinol: cytochrome c oxidoreductase.2. The portion of antimycin-sensitive activity depends on the concentration of ubiquinol and on the pH. Only reduced ubiquinone-2 and reduced ubiquinone-3 show high activities the main part of which is sensitive to antimycin.3. The antimycin effect curve of ubiquinol: cytochrome c oxidoreductase is linear in shape with reduced ubiquinone-2 as substrate but sigmoidal with reduced ubiquinone-3 and succinate. Ubiquinol-3: cytochrome c oxidoreductase activity contains a portion scarcely affected by antimycin. About 300 pmoles of antimycin per mg protein, enough to inhibit succinate, NADH- and reduced ubiquinone-2:cytochrome c oxidoreductase almost totally, affect ubiquinol-3: cytochrome c oxidoreductase to only about 80% and another 300 pmoles of antimycin are needed for the next 10% of inhibition.4. The activities of succinate- and NADH: cytochrome c oxidoreductase are stimulated by ubiquinones-2 and -3. The shapes of the inhibition curves by antimycin of the stimulated activities are sigmoidal. About twice the amount of antimycin is necessary to inhibit stimulated activities to the same value as the unstimulated.5. The non-ionic detergent Lubrol WX is not effective in stimulating enzymatic activities. However, in the presence of 0.6 M sorbitol, it converts the linear antimycin effect curve with reduced ubiquinone-2 as substrate, into sigmoidal.6. NADH- and succinate: cytochrome c oxidoreductase activities and reduced ubiquinone-2 and reduced ubiquinone-3: cytochrome c oxidoreductase activities become deactivated with increasing concentrations of the non-ionic detergent Lubrol WX. The activity with reduced ubiquinone-2 as substrate is less resistant to the action of the detergent than with reduced ubiquinone-3. The b-cytochromes do not become CO-reactive by this treatment.7. Deoxycholate in low concentrations does not stimulate ubiquinol: cytochrome c oxidoreductase activity. It converts the inhibition curve by antimycin from sigmoidal to linear with increasing concentrations of the detergent with all substrates tested. The amount of antimycin needed for 90% inhibition of reduced ubiquinone activities is about the same under these conditions as with succinate, NADH or reduced ubiquinol in untreated particles.8. The results are discussed with respect to the theories of the electron transport mechanism and of the inhibition by antimycin of the electron flow through the bc1-segment of the respiratory chain in beef heart.  相似文献   

13.
1. The lipid dependence of mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was investigated. With submitochondrial particles digestion of phospholipids by phospholipases A and C led to a partial inhibition that could not be readily reversed by phospholipids.

2. Extraction of neutral lipids including ubiquinone from lyophilized submitochondrial particles with pentane did not inhibit the transhydrogenase, whereas further extraction with water/acetone led to a complete and apparently irreversible inhibition.

3. A partially purified preparation of transhydrogenase, depleted of lipids (and inactivated) by treatment with cholate and ammonium sulphate, was reactivated by various purified phospholipids but not by detergents or triacylglycerols.

4. It is concluded that mitochondrial transhydrogenase, catalyzing the non-energy-linked transhydrogenase reaction, requires phospholipids specifically for its catalytic activity and not as dispersing agents. A mixture of phospholipids appears to fulfill this requirement better than the individual phospholipids.  相似文献   


14.
Large amounts (66-97%) of marker enzymes such as alkaline phosphatase, 5'-nucleotidase, phosphodiesterase I, and gamma-glutamyl transpeptidase of bovine milk fat globule membrane (MFGM) were selectively solubilized by nonionic detergents such as Triton X-100, Tween 20, Nonidet P-40, Liponox NCK, and Emulgen 109-P. On the other hand, the extractability of MFGM protein with these detergents was less than 50%. Judging from the recovery of total activity, it is likely that alkaline phosphatase, phosphodiesterase I, and gamma-glutamyl transpeptidase are activated by nonionic detergents, whereas 5'-nucleotidase is somewhat inhibited by the detergents, except for Tween 20, and acid phosphatase is strongly inhibited by all detergents. In addition, solubilization of the protein with the nonionic detergents was found to be somewhat selective by SDS-polyacrylamide gel electrophoresis. There was no appreciable difference between the five brands of nonionic detergents used as regards the extractability of protein and the enzymatic activity of the extracted marker enzymes of MFGM, except that the solubilizing ability of Tween 20 was relatively low.  相似文献   

15.
The enzyme guanylate cyclase is present in both particulate and soluble form in rat lung homogenates. As previously reported, the soluble enzyme can be activated by preincubation in the presence of O2. The inactive (nonactivated) soluble enzyme is also stimulated by nonionic detergents, in the order Tween 20 > Lubrol PX > Triton X-67 > Triton X-100. The activated enzyme, however, was inhibited by these detergents in the reverse order. Sodium deoxycholate and lysolecithin were potent inhibitors of both inactive and activated enzyme. The activity of the particulate enzyme was stimulated by Lubrol PX > Triton X-100 > Triton X-67 > Tween 20. At a low concentration of lysolecithin or deoxycholate the particulate activity was increased; however, when detergent/protein > 1, inhibition was seen. In the case of deoxycholate, the inhibition could be reversed if excess deoxycholate was removed either by chromatography or by forming mixed micelles with Lubrol PX; however, deoxycholate inhibition of the soluble enzyme was irreversible. The stimulation by detergents of the particulate enzyme was apparently the result of solubilization. The effects upon the activity of the soluble enzyme were interpreted in terms of a model which assumes two hydrophobic regions on the enzyme surface. The two regions differ in hydrophobicity with the more hydrophobic region only being exposed as a result of activation. Interaction of a nonionic detergent with the less hydrophobic region stimulates activity, while interaction with the more hydrophobic region results in inhibition.  相似文献   

16.
Mogensen JE  Sehgal P  Otzen DE 《Biochemistry》2005,44(5):1719-1730
Lipases catalyze the hydrolysis of triglycerides and are activated at the water-lipid interface. Thus, their interaction with amphiphiles such as detergents is relevant for an understanding of their enzymatic mechanism. In this study, we have characterized the effect of nonionic, anionic, cationic, and zwitterionic detergents on the enzymatic activity and thermal stability of Thermomyces lanuginosus lipase (TlL). For all detergents, low concentrations enhance the activity of TlL toward p-nitrophenyl butyrate by more than an order of magnitude; at higher detergent concentrations, the activity declines, leveling off close to the value measured in the absence of detergent. Surprisingly, these phenomena mainly involve monomeric detergent, as activation and inhibition occur well below the cmc for the nonionic and zwitterionic detergents. For anionic and cationic detergents, activation straddles the monomer-micelle transition. The data can be fitted to a three state interaction model, comprising free TlL in the absence of detergent, an activated complex with TlL at low detergent concentrations, and an enzyme-inhibiting complex at higher concentrations. For detergents with the same headgroup, there is an excellent correspondence between carbon chain length and ability to activate and inhibit TlL. However, the headgroup and number of chains also modulate these effects, dividing the detergents overall into three broad groups with rising activation and inhibition ability, namely, anionic and cationic detergents, nonionic and single-chain zwitterionic detergents, and double-chain zwitterionic detergents. As expected, only anionic and cationic detergents lead to a significant decrease in lipase thermal stability. Since nonionic detergents activate TlL without destabilizing the protein, activation/inhibition and destabilization must be independent processes. We conclude that lipase-detergent interactions occur at many independent levels and are governed by a combination of general and structurally specific interactions. Furthermore, activation of TlL by detergents apparently does not involve the classical interfacial activation phenomenon as monomeric detergent molecules are in most cases responsible for the observed increase in activity.  相似文献   

17.
Rat hepatic asialoglycoprotein receptors (ASGP-Rs) bind terminalclustered galactosyl or N-acetylgalactosaminyl residues withhigh affinity. The affinity-purified ASGP-R consists of threesubunits designated RHL1, RHL2, and RHL3. The ligand-bindingactivity of individual subunits was investigated by ligand blotting,after separation of subunits by SDS-PAGE under nonreducing conditions,electrotransfer to nitrocellulose, and incubation with 125I-asialo-orosomucoid(ASOR). No ligand-binding to any subunits could be detectedwhen proteins such as BSA, casein, gelatin, or fat-free drymilk were used as blocking agents. However, subsequent incubationof BSA-blocked nitrocellulose blots with some nonionic detergentsresulted in renaturation of RHL1. 125I-ASOR-binding to RHL2or RHL3 was weaker and could be detected only after longer exposure.Similarly, direct use of detergents such as Tween 20, NonidetP-40, or Triton X-100 as blocking agents also preserved theASOR-binding activity of RHL1. Ionic detergents tested did notshow any ability to renature the ligand-binding activity ofRHL subunits. Among nonionic detergents tested, Tween 20, Tween85, Lubrol PX, Nonidet P-40, and Triton X-100 were more effectivethan Tween 40, Tween 65, Tween 80, or Brij 35, whereas SPAN,digito-nin, or octyl-glucoside showed no effect. Weak 125I-ASORbinding to RHL2 or RHL3 could be detected only when the Tweenseries or Lubrol PX were used. Incubation of blots with dithiothreitolcaused a dose-dependent loss of binding activity. The carbohydraterecognition domain (CRD) of RHL1, isolated after subtilisindigestion of ASGP-R bound to ASOR-Sepharose, retained ligand-bindingactivity as assessed by its binding to ASOR-Sepharose and byligand blotting. 125I-ASOR binding to electroblotted CRD afterSDS-PAGE was also dependent on the presence of nonionic detergents.We conclude that restoration of ligand-binding activity of RHL1after SDS-PAGE by some nonionic detergents is not dependenton the presence of the cytoplasmic, transmembrane, or stalkdomains of this subunit. asialoglycoprotein receptor Ligand blotting detergent renaturation RHL1  相似文献   

18.
F. J. Ruzicka  F. L. Crane 《BBA》1971,226(2):221-233
1. Enzymatic reduction of 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone) by NADH can be used in an assay procedure for the NADH dehydrogenase. The reduction of this quinone occurs in the region of the electron transport system between the primary dehydrogenase and the cytochrome system as defined by the almost complete loss of reductase activity following piericidin A treatment.

2. Duroquinone reduction can be distinguished from ubiquinone 2 reduction by the marked inhibition of the former following phospholipase C, poly- -lysine, or chloroquine diphosphate treatment. In addition, duroquinone reduction requires the presence of endogenous ubiquinone 10 specifically whereas ubiquinone 2 reduction does not require the presence of endogenous quinone. These observations are consistent with the nonequivalency of the reduction sites of duroquinone and ubiquinone 2.

3. Duroquinol can be utilized as an electron donor for the energy-linked reduction, of NAD+. Duroquinol reduction of NAD+ is dependent upon the presence of ATP, is inhibited by oligomycin, carbonyl cyanide p-trifluoro methoxyphenylhydrazone and piericidin A, and is not inhibited by antimycin A at levels which inhibit electron transport.

4. Duroquinone reduction as well as ubiquinone 2 reduction are inhibited almost completely by phospholipase A, p-chloromercuribenzoate, o-phenanthroline, and Triton X100 treatments.  相似文献   


19.
S.C. Huber  G.E. Edwards   《BBA》1976,449(3):420-433
1. Cyclic photophosphorylation driven by white light, as followed by 14CO2 fixation by mesophyll chloroplast preparations of the C4 plant Digitaria sanguinalis, was specifically inhibited by disalicylidenepropanediamine (DSPD), antimycin A, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIb), 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDAC), and KCN suggesting that ferredoxin, cytochrome b563, plastoquinone, cytochrome f, and plastocyanin are obligatory intermediates of cyclic electron flow. It was found that 0.2 μM DCMU and 40 μM o-phenanthroline blocked noncyclic electron flow, stimulated cyclic photophosphorylation, and caused a partial reversal (40–100%) of the inhibition by DBMIB and antimycin A, but not DSPD.

2. Cyclic photophosphorylation could also be activated using only far-red illumination. Under this condition, however, cyclic photophosphorylation was much less sensitive to the inhibitors DBMIB, EDAC and antimycin A, but remained completely sensitive to DSPD and KCN. Inhibition in far-red light was not increased by preincubating the chloroplasts with the various inhibitors for several minutes in white light.

3. The striking correspondence between the effects of photosystem II inhibitors, DCMU and o-phenanthroline, on cyclic photophosphorylation under white light and cyclic photophosphorylation under far-red light (in the absence of photosystem II inhibitors) suggests that electrons flowing from photosystem II may regulate the pathway of cyclic electron flow.  相似文献   


20.
表面活性剂对分枝杆菌KR2菌株降解菲的影响   总被引:2,自引:0,他引:2  
采用同位素示踪方法,从表面活性剂的浓度、离子类型和直链长度三方面研究了表面活性剂对分枝杆菌KR2菌株降解菲的影响。结果表明,表面活性剂的存在不能促进KR2菌对菲的降解;高浓度表面活性剂(≥20mg·L-1)的存在,使菲的降解出现延迟期,非离子表面活性剂Tween80在低浓度时(≤10mg·L-1)可以优先作为营养基质被分枝杆菌KR2菌株利用,表面活性剂的离子类型对菲降解的抑制作用的顺序为阳离子表面活性剂TDTMA>阴离子表面活性剂LAS>非离子表面活性剂Tween80,表面活性剂的直链长度对菲降解的影响为直链越短,对微生物的毒性越大,菲降解得越不完全。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号