首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleo-cytoplasmic transport of proteins is mostly mediated by specific interaction between transport receptors of the importin beta family and signal sequences present in their cargo. While several signal sequences, in particular the classical nuclear localization signal (NLS) recognized by the heterodimeric importin alpha/beta complex are well known, the signals recognized by other importin beta-like transport receptors remain to be characterized in detail. Here we present the systematic analysis of the nuclear import of Saccharomyces cerevisiae Asr1p, a nonessential alcohol-responsive Ring/PHD finger protein that shuttles between nucleus and cytoplasm but accumulates in the nucleus upon alcohol stress. Nuclear import of Asr1p is constitutive and mediated by its C-terminal domain. A short sequence comprising residues 243-280 is sufficient and necessary for active targeting to the nucleus. Moreover, the nuclear import signal is conserved from yeast to mammals. In vitro, the nuclear localization signal of Asr1p directly interacts with the importins Kap114p, Kap95p, Pse1p, Kap123p, or Kap104p, interactions that are sensitive to the presence of RanGTP. In vivo, these importins cooperate in nuclear import. Interestingly, the same importins mediate nuclear transport of histone H2A. Based on mutational analysis and sequence comparison with a region mediating nuclear import of histone H2A, we identified a novel type of NLS with the consensus sequence R/KxxL(x)(n)V/YxxV/IxK/RxxxK/R that is recognized by five yeast importins and connects them into a highly efficient network for nuclear import of proteins.  相似文献   

2.
Dengue virus NS5 protein is a multifunctional RNA-dependent RNA polymerase that is essential for virus replication. We have shown previously that the 37- amino acid interdomain spacer sequence (residues (369)X(2)KKX(14)KKKX(11)RKX(3)405) of Dengue2 NS5 contains a functional nuclear localization signal (NLS). In this study, beta-galactosidase fusion proteins carrying point mutations of the positively charged residues or truncations of the interdomain linker region (residues 369-389 or residues 386-405) were analyzed for nuclear import and importin binding activities to show that the N-terminal part of the linker region (residues 369-389, a/bNLS) is critical for nuclear localization and is recognized with high affinity by the conventional NLS-binding importin alpha/beta heterodimeric nuclear import receptor. We also show that the importin beta-binding site (residues 320-368, bNLS) adjacent to the a/bNLS, previously identified by yeast two-hybrid analysis, is functional as an NLS, recognized with high affinity by importin beta, and able to target beta-galactosidase to the nucleus. Intriguingly, the bNLS is highly conserved among Dengue and related flaviviruses, implying a general role for the region and importin beta in the infectious cycle.  相似文献   

3.
Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin alpha and importin beta. Srp1p, the Saccharomyces cerevisiae homologue of importin alpha, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin alpha-importin and beta and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin beta) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin alpha-importin beta complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.  相似文献   

4.
Proteins that contain a classical nuclear localization signal (NLS) are recognized in the cytoplasm by a heterodimeric import receptor composed of importin/karyopherin alpha and beta. The importin alpha subunit recognizes classical NLS sequences, and the importin beta subunit directs the complex to the nuclear pore. Recent work shows that the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding in the absence of importin beta in vitro. To analyze the in vivo functions of the IBB domain, we created a series of mutants in the Saccharomyces cerevisiae importin alpha protein. These mutants dissect the two functions of the N-terminal IBB domain, importin beta binding and auto-inhibition. One of these importin alpha mutations, A3, decreases auto-inhibitory function without impacting binding to importin beta or the importin alpha export receptor, Cse1p. We used this mutant to show that the auto-inhibitory function is essential in vivo and to provide evidence that this auto-inhibitory-defective importin alpha remains bound to NLS-cargo within the nucleus. We propose a model where the auto-inhibitory activity of importin alpha is required for NLS-cargo release and the subsequent Cse1p-dependent recycling of importin alpha to the cytoplasm.  相似文献   

5.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) involves NLS recognition by importin alpha, which associates with importin beta via the IBB domain. Other proteins, including parathyroid hormone-related protein (PTHrP), are imported into the nucleus by direct interaction with importin beta. We solved the crystal structure of a fragment of importin beta-1 (1-485) bound to the nonclassical NLS of PTHrP. The structure reveals a second extended cargo binding site on importin beta distinct from the IBB domain binding site. Using a permeabilized cell import assay we demonstrate that importin beta (1-485) can import PTHrP-coupled cargo in a Ran-dependent manner. We propose that this region contains a prototypical nuclear import receptor domain, which could have evolved into the modern importin beta superfamily.  相似文献   

6.
Protein cargoes that contain a classic nuclear localization signal (NLS) are transported into the nucleus through binding to a heterodimeric receptor comprised of importin/karyopherin alpha and beta. An evolutionarily conserved auto-inhibitory sequence within the N-terminal importin beta binding (IBB) domain of importin alpha regulates NLS-cargo binding to the NLS binding pocket on importin alpha. In this study, we have used site-directed mutagenesis coupled with in vitro binding assays and in vivo analyses to investigate the intramolecular interaction of the N-terminal IBB domain and the NLS binding pocket of Saccharomyces cerevisiae importin alpha, Srp1p. We find that mutations within the IBB domain that decrease the binding affinity of the auto-inhibitory sequence for the NLS binding pocket impact importin alpha function in vivo. In addition, the severity of the in vivo phenotype is directly correlated to the reduction of auto-inhibition measured in vitro, suggesting that the in vivo phenotypes are directly related to the loss of auto-inhibitory function. We exploit a conditional auto-inhibitory mutant, srp1-55, to study the in vivo functional overlap between the N-terminal IBB domain of importin alpha and other factors implicated in NLS-cargo release, Cse1p and Nup2p. We propose that the N-terminal IBB domain of importin alpha and Cse1p function together in NLS-cargo release, whereas Nup2p contributes to cargo release/importin alpha recycling through a distinct mechanism.  相似文献   

7.
8.
9.
Nuclear import of many cellular and viral proteins is mediated by short nuclear localization signals (NLS) that are recognized by intracellular receptor proteins belonging to the importin/karyopherin alpha and beta families. The primary structure of NLS is not well defined, but most contain at least three basic amino acids and harbor the relative consensus sequence K(K/R)X(K/R). We have studied the nuclear import of the Borna disease virus p10 protein that lacks a canonical oligobasic NLS. It is shown that the p10 protein exhibits all characteristics of an actively transported molecule in digitonin-permeabilized cells. Import activity was found to reside in the 20 N-terminal p10 amino acids that are devoid of an NLS consensus motif. Unexpectedly, p10-dependent import was blocked by a peptide inhibitor of importin alpha-dependent nuclear translocation, and the transport activity of the p10 N-terminal domain was shown to correlate with the ability to bind to importin alpha. These findings suggest that nuclear import of the Borna disease virus p10 protein occurs through a nonconventional karyophilic signal and highlight that the cellular importin alpha NLS receptor proteins can recognize nuclear targeting signals that substantially deviate from the consensus sequence.  相似文献   

10.
p27(Kip1) (p27), a CDK inhibitor, migrates into the nucleus, where it controls cyclin-CDK complex activity for proper cell cycle progression. We report here that the classical bipartite-type basic amino-acid cluster and the two downstream amino acids of the C-terminal region of p27 function as a nuclear localization signal (NLS) for its full nuclear import activity. Importin alpha3 and alpha5, but not alpha1, transported p27 into the nucleus in conjunction with importin beta, as evidenced by an in vitro transport assay. It is known that Akt phosphorylates Thr 157 of p27 and this reduces the nuclear import activity of p27. Using a pull-down experiment, 14-3-3 was identified as the Thr157-phosphorylated p27NLS-binding protein. Although importin alpha5 bound to Thr157-phosphorylated p27NLS, 14-3-3 competed with importin alpha5 for binding to it. Thus, 14-3-3 sequestered phosphorylated p27NLS from importin alpha binding, resulting in cytoplasmic localization of NLS-phosphorylated p27. These findings indicate that 14-3-3 suppresses importin alpha/beta-dependent nuclear localization of Thr157-phosphorylated p27, suggesting implications for cell cycle disorder in Akt-activated cancer cells.  相似文献   

11.
The "classical" nuclear protein import pathway depends on importin alpha and importin beta. Importin alpha binds nuclear localization signal (NLS)-bearing proteins and functions as an adapter to access the importin beta-dependent import pathway. In humans, only one importin beta is known to interact with importin alpha, while six alpha importins have been described. Various experimental approaches provided evidence that several substrates are transported specifically by particular alpha importins. Whether the NLS is sufficient to mediate importin alpha specificity is unclear. To address this question, we exchanged the NLSs of two well-characterized import substrates, the seven-bladed propeller protein RCC1, preferentially transported into the nucleus by importin alpha3, and the less specifically imported substrate nucleoplasmin. In vitro binding studies and nuclear import assays revealed that both NLS and protein context contribute to the specificity of importin alpha binding and transport.  相似文献   

12.
Nuclear import of proteins containing a classical nuclear localization signal (NLS) is an energy-dependent process that requires the heterodimer importin alpha/beta. Three to six basic contiguous arginine/lysine residues characterize a classical NLS and are thought to form a basic patch on the surface of the import cargo. In this study, we have characterized the NLS of phospholipid scramblase 1 (PLSCR1), a lipid-binding protein that enters the nucleus via the nonclassical NLS (257)GKISKHWTGI(266). This import sequence lacks a contiguous stretch of positively charged residues, and it is enriched in hydrophobic residues. We have determined the 2.2 A crystal structure of a complex between the PLSCR1 NLS and the armadillo repeat core of vertebrate importin alpha. Our crystallographic analysis reveals that PLSCR1 NLS binds to armadillo repeats 1-4 of importin alpha, but its interaction partially overlaps the classical NLS binding site. Two PLSCR1 lysines occupy the canonical positions indicated as P2 and P5. Moreover, we present in vivo evidence that the critical lysine at position P2, which is essential in other known NLS sequences, is dispensable in PLSCR1 NLS. Taken together, these data provide insight into a novel nuclear localization signal that presents a distinct motif for binding to importin alpha.  相似文献   

13.
14.
The active transport of proteins into and out of the nucleus is mediated by specific signals, the nuclear localization signal (NLS) and nuclear export signal (NES), respectively. The best characterized NLS is that of the SV40 large T antigen, which contains a cluster of basic amino acids. The NESs were first identified in the protein kinase inhibitor (PKI) and HIV Rev protein, which are rich in leucine residues. The SV40 T-NLS containing transport substrates are carried into the nucleus by an importin alpha/beta heterodimer. Importin alpha recognizes the NLS and acts as an adapter between the NLS and importin beta, whereas importin beta interacts with importin alpha bound to the NLS, and acts as a carrier of the NLS/importin alpha/beta trimer. It is generally thought that importin alpha and beta are part of a large protein family. The leucine rich NES-containing proteins are exported from the nucleus by one of the importin beta family molecules, CRM1/exportin 1. A Ras-like small GTPase Ran plays a crucial role in both import/export pathways and determines the directionality of nuclear transport. It has recently been demonstrated in living cells that Ran actually shuttles between the nucleus and the cytoplasm and that the recycling of Ran is essential for the nuclear transport. Furthermore, it has been shown that nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. This review largely focuses on the issue concerning the functional divergence of importin alpha family molecules and the role of Ran in nucleocytoplasmic protein transport.  相似文献   

15.
Parathyroid hormone-related protein (PTHrP), expressed in a range of tumors, has endocrine, autocrine/paracrine, and intracrine actions, some of which relate to its ability to localize in the nucleus. Here we show for the first time that extracellularly added human PTHrP (amino acids 1-108) can be taken up specifically by receptor-expressing UMR106.01 osteogenic sarcoma cells and accumulate to quite high levels in the nucleus and nucleolus within 40 min. Quantitation of recognition by the nuclear localization sequence (NLS)-binding importin subunits indicated that in contrast to proteins containing conventional NLSs, PTHrP is recognized exclusively by importin beta and not by importin alpha. The sequence of PTHrP responsible for binding was mapped to amino acids 66-94, which includes an SV40 large tumor-antigen NLS-like sequence, although sequence determinants amino-terminal to this region were also necessary for high affinity binding (apparent dissociation constant of approximately 2 nM for importin beta). Nuclear import of PTHrP was assessed in vitro using purified components, demonstrating that importin beta, together with the GTP-binding protein Ran, was able to mediate efficient nuclear accumulation in the absence of importin alpha, whereas the addition of nuclear transport factor NTF2 reduced transport. The polypeptide ligand PTHrP thus appears to be accumulated in the nucleus/nucleolus through a novel, NLS-dependent nuclear import pathway independent of importin alpha and perhaps also of NTF2.  相似文献   

16.
17.
The dengue virus NS5 RNA-dependent RNA polymerase has been detected in the nucleus of virus-infected mammalian cells. We demonstrate here for the first time using in vitro and in vivo assay systems that the 37-amino-acid linker interdomain of NS5 (residues 369 to 405) contains a nuclear localization sequence (NLS) which is capable of targeting b-galactosidase to the nucleus. Further, we show that the linker is recognized by subunits of the NLS-binding importin complex with an affinity similar to that of the bipartite NLS of the retinoblastoma protein and, in analogous fashion to proteins such as the SV40 large tumor antigen, contains a functional protein kinase CK2 phosphorylation site (threonine 395). Interestingly, this site appears to inhibit NS5 nuclear targeting, probably through a cytoplasmic retention mechanism. The linker may have an important role in targeting NS5 to the nucleus in a regulated manner during the dengue virus infectious cycle.  相似文献   

18.
19.
We have developed a quantitative in vitro steady-state fluorescence depolarization assay to measure the interaction of a nuclear localization signal (NLS) substrate with its receptors. This assay relies on the change in fluorescence depolarization of an NLS fused to the green fluorescent protein upon binding to receptor. No binding is observed in the absence of a functional NLS, and binding affinities measured correlate with previous in vivo studies of NLS function. We have used this assay to test an auto-inhibitory model for the interaction of an NLS with the NLS receptor complex. This model suggests that NLS binding to importin alpha is modulated by an auto-inhibitory sequence within the N terminus of importin alpha, which is displaced by importin beta binding. Consistent with this model, NLS substrates bind tightly to an N-terminally truncated importin alpha lacking the auto-inhibitory domain (K(d) approximately 10 nm), but measurable binding to full-length importin alpha is only observed upon addition of importin beta. Our quantitative results support the auto-inhibitory model and suggest a mechanism for a switch between a cytoplasmic, high affinity and a nuclear, low affinity NLS receptor. This predicted mode of interaction would facilitate binding of substrate in the cytoplasm and its subsequent release into the nucleus.  相似文献   

20.
The vertebrate glucocorticoid receptor (GR) is cytoplasmic without hormone and localizes to the nucleus after hormone binding. GR has two nuclear localization signals (NLS): NL1 is similar in sequence to the SV40 NLS; NL2 is poorly defined, residing in the ligand-binding domain. We found that GR displayed similar hormone-regulated compartmentalization in Saccharomyces cerevisiae and required the Sxm1 nuclear import receptor for NL2-mediated import. Two metazoan homologues of Sxm1, importin 7 and importin 8, bound both NL1 and NL2, whereas importin alpha selectively bound NL1. In an in vitro nuclear import assay, both importin 7 and the importin alpha-importin beta heterodimer could import a GR NL1 fragment. Under these conditions, full-length GR localized to nuclei in the presence but not absence of an unidentified component in cell extracts. Interestingly, importin 7, importin 8, and importin alpha bound GR even in the absence of hormone; thus, hormonal control of localization is exerted at a step downstream of import receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号