首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molybdenum cofactor (Moco) is synthesized by an ancient and conserved biosynthetic pathway. In plants, the two-domain protein Cnx1 catalyzes the insertion of molybdenum into molybdopterin (MPT), a metal-free phosphorylated pyranopterin carrying an ene-dithiolate. Recently, we identified a novel biosynthetic intermediate, adenylated molybdopterin (MPT-AMP), which is synthesized by the C-terminal G domain of Cnx1. Here, we show that MPT-AMP and molybdate bind in an equimolar and cooperative way to the other N-terminal E domain (Cnx1E). Tungstate and sulfate compete for molybdate, which demonstrates the presence of an anion-binding site for molybdate. Cnx1E catalyzes the Zn(2+)-/Mg(2+)-dependent hydrolysis of MPT-AMP but only when molybdate is bound as co-substrate. MPT-AMP hydrolysis resulted in stoichiometric release of Moco that was quantitatively incorporated into plant apo-sulfite oxidase. Upon Moco formation AMP is release as second product of the reaction. When comparing MPT-AMP hydrolysis with the formation of Moco and AMP a 1.5-fold difference in reaction rates were observed. Together with the strict dependence of the reaction on molybdate the formation of adenylated molybdate as reaction intermediate in the nucleotide-assisted metal transfer reaction to molybdopterin is proposed.  相似文献   

2.
In almost all biological life forms, molybdenum and tungsten are coordinated by molybdopterin (MPT), a tricyclic pyranopterin containing a cis-dithiolene group. Together, the metal and the pterin moiety form the redox reactive molybdenum cofactor (Moco). Mutations in patients with deficiencies in Moco biosynthesis usually occur in the enzymes catalyzing the first and second steps of biosynthesis, leading to the formation of precursor Z and MPT, respectively. The second step is catalyzed by the heterotetrameric MPT synthase protein consisting of two large (MoaE) and two small (MoaD) subunits with the MoaD subunits located at opposite ends of a central MoaE dimer. Previous studies have determined that the conversion of the sulfur- and metal-free precursor Z to MPT by MPT synthase involves the transfer of sulfur atoms from a C-terminal MoaD thiocarboxylate to the C-1' and C-2' positions of precursor Z. Here, we present the crystal structures of non-thiocarboxylated MPT synthase from Staphylococcus aureus in its apo form and in complex with precursor Z. A comparison of the two structures reveals conformational changes in a loop that participates in interactions with precursor Z. In the complex, precursor Z is bound by strictly conserved residues in a pocket at the MoaE dimer interface in close proximity of the C-terminal glycine of MoaD. Biochemical evidence indicates that the first dithiolene sulfur is added at the C-2' position.  相似文献   

3.
The function of the MoeA protein in the biosynthesis of the molybdenum cofactor (MoCo) was analyzed in vitro, using purified His(6)-MoeA from Escherichia coli, molybdopterin (MPT) isolated from buttermilk xanthine oxidase and molybdate. The formation of MoCo was monitored by the reconstitution of nitrate reductase activity in extracts of the Neurospora crassa nit-1 mutant. Formation of MoCo from MPT and molybdate required MoeA and L-cysteine or glutathione. The reaction proceeded at micromolar molybdate levels and was time- and MoeA concentration-dependent. A physical interaction between MoeA and MPT was demonstrated by HPLC analysis of MoeA-bound MPT.  相似文献   

4.
Biosynthesis of the molybdenum cofactor involves the initial formation of precursor Z, its subsequent conversion to molybdopterin (MPT) by MPT synthase, and attachment of molybdenum to the dithiolene moiety of MPT. The sulfur used for the formation of the dithiolene group of MPT exists in the form of a thiocarboxylate group at the C terminus of the smaller subunit of MPT synthase. Human MPT synthase contains the MOCS2A and MOCS2B proteins that display homology to the Escherichia coli proteins MoaD and MoaE, respectively. MOCS2A and MOCS2B were purified after heterologous expression in E. coli, and the separately purified subunits readily assemble into a functional MPT synthase tetramer. The rate of conversion of precursor Z to MPT by the human enzyme is slower than that of the eubacterial homologue. To obtain insights into the molecular mechanism leading to human molybdenum cofactor deficiency, site-specific mutations identified in patients showing symptoms of molybdenum cofactor deficiency were generated. Characterization of a V7F substitution in MOCS2A, identified in a patient with an unusual mild form of the disease, showed that the mutation weakens the interaction between MOCS2A and MOCS2B, whereas a MOCS2B-E168K mutation identified in a severely affected patient attenuates binding of precursor Z.  相似文献   

5.
The molybdenum cofactor (Moco) is part of the active site of all molybdenum (Mo)-dependent enzymes, except nitrogenase. Moco consists of molybdopterin (MPT), a phosphorylated pyranopterin with an enedithiolate coordinating Mo and it is synthesized by an evolutionary old multistep pathway. The plant protein Cnx1 from Arabidopsis thaliana catalyzes with its two domains (E and G) the terminal step of Moco biosynthesis, the insertion of Mo into MPT. Recently, the high-resolution MPT-bound structure of the Cnx1 G domain (Cnx1G) has been determined (Kuper, J., Llamas, A., Hecht, H. J., Mendel, R. R., and Schwarz, G. (2004) Nature 430, 803-806). Besides defining the MPT-binding site a novel and unexpected modification of MPT has been identified, adenylated MPT. Here we demonstrate that it is Cnx1G that catalyzes the adenylation of MPT. In vitro synthesized MPT was quantitatively transferred from Escherichia coli MPT synthase to Cnx1G. The subsequent adenylation reaction by Cnx1G was Mg(2+)- and ATP-dependent. Whereas Mn(2+) could partially replace Mg(2+), ATP was the only nucleotide accepted by Cnx1G. Consequently the formation of pyrophosphate was demonstrated, which was dependent on the ability of Cnx1G to bind MPT. Pyrophosphate, either formed in the reaction or added externally, inhibited the Cnx1G-catalyzed MPT adenylation reaction. Catalytically inactive Cnx1G mutant variants showed impaired MPT adenylation confirming that MPT-AMP is the reaction product of Cnx1G. Therefore Cnx1G is a MPT adenylyltransferase catalyzing the activation of MPT, a universal reaction in the Moco synthetic pathway because Cnx1G is able to reconstitute also bacterial and mammalian Moco biosynthesis.  相似文献   

6.
We have previously shown that Escherichia coli MoeA and MogA are required in vivo for the final step of molybdenum cofactor biosynthesis, the addition of the molybdenum atom to the dithiolene of molybdopterin. MoeA was also shown to facilitate the addition of molybdenum in an assay using crude extracts from E. coli moeA(-) cells. The experiments detailed in this report utilized an in vitro assay for MoeA-mediated molybdenum ligation to de novo synthesized molybdopterin using only purified components and monitoring the reconstitution of human aposulfite oxidase. In this assay, maximum activation was achieved by delaying the addition of aposulfite oxidase to allow for adequate molybdenum coordination to occur. Tungsten, which substitutes for molybdenum in hyperthermophilic organisms, could also be ligated to molybdopterin using this system, though not as efficiently as molybdenum. Addition of thiol compounds to the assay inhibited activity. Addition of MogA also inhibited the reaction. However, in the presence of ATP and magnesium, addition of MogA to the assay increased the level of aposulfite oxidase reconstitution beyond that observed with MoeA alone. This effect was not observed in the absence of MoeA. The results presented here demonstrate that MoeA is responsible for mediating molybdenum ligation to molybdopterin, whereas MogA stimulates this activity in an ATP-dependent manner.  相似文献   

7.
Splice-specific functions of gephyrin in molybdenum cofactor biosynthesis   总被引:1,自引:0,他引:1  
Gephyrin is a multifunctional protein involved in the clustering of inhibitory neuroreceptors. In addition, gephyrin catalyzes the last step in molybdenum cofactor (Moco) biosynthesis essential for the activities of Mo-dependent enzymes such as sulfite oxidase and xanthine oxidoreductase. Functional complexity and diversity of gephyrin is believed to be regulated by alternative splicing in a tissue-specific manner. Here, we investigated eight gephyrin variants with combinations of seven alternatively spliced exons located in the N-terminal G domain, the central domain, and the C-terminal E domain. Their activity in Moco synthesis was analyzed in vivo by reconstitution of gephyrin-deficient L929 cells, which were found to be defective in the G domain of gephyrin. Individual domain functions were assayed in addition and confirmed that variants containing either an additional C5 cassette or missing the C6 cassette are inactive in Moco synthesis. In contrast, different alterations within the central domain retained the Moco synthetic activity of gephyrin. The recombinant gephyrin G domain containing the C5 cassette forms dimers in solution, binds molybdopterin, but is unable to catalyze molybdopterin (MPT) adenylylation. Determination of Moco and MPT content in different tissues showed that besides liver and kidney, brain was capable of synthesizing Moco most efficiently. Subsequent analysis of cultured neurons and glia cells demonstrated glial Moco synthesis due to the expression of gephyrins containing the cassettes C2 and C6 with and without C3.1.  相似文献   

8.
It has been shown that conversion of precursor Z to molybdopterin (MPT) by Escherichia coli MPT synthase entails the transfer of the sulfur atom of the C-terminal thiocarboxylate from the small subunit of the synthase to generate the dithiolene group of MPT and that the moeB mutant of E. coli contains inactive MPT synthase devoid of the thiocarboxylate. The data presented here demonstrate that l-cysteine can serve as the source of the sulfur for the biosynthesis of MPT in vitro but only in the presence of a persulfide-containing sulfurtransferase such as IscS, cysteine sulfinate desulfinase (CSD), or CsdB. A fully defined in vitro system has been developed in which an inactive form of MPT synthase can be activated by incubation with MoeB, Mg-ATP, l-cysteine, and one of the NifS-like sulfurtransferases, and the addition of precursor Z to the in vitro system gives rise to MPT formation. The use of radiolabeled l-[(35)S]cysteine has demonstrated that both sulfurs of the dithiolene group of MPT originate from l-cysteine. It was found that MPT can be produced from precursor Z in an E. coli iscS mutant strain, indicating that IscS is not required for the in vivo sulfuration of MPT synthase. A comparison of the ability of the three sulfurtransferases to provide the sulfur for MPT formation showed the highest activity for CSD in the in vitro system.  相似文献   

9.
The molybdenum cofactor (Moco) is a prosthetic group required by a number of enzymes, such as nitrate reductase, sulfite oxidase, xanthine dehydrogenase, and aldehyde oxidase. Its biosynthesis in eukaryotes can be divided into four steps, of which the last three are proposed to occur in the cytosol. Here, we report that the mitochondrial ABC transporter ATM3, previously implicated in the maturation of extramitochondrial iron-sulfur proteins, has a crucial role also in Moco biosynthesis. In ATM3 insertion mutants of Arabidopsis thaliana, the activities of nitrate reductase and sulfite oxidase were decreased to ∼50%, whereas the activities of xanthine dehydrogenase and aldehyde oxidase, whose activities also depend on iron-sulfur clusters, were virtually undetectable. Moreover, atm3 mutants accumulated cyclic pyranopterin monophosphate, the first intermediate of Moco biosynthesis, but showed decreased amounts of Moco. Specific antibodies against the Moco biosynthesis proteins CNX2 and CNX3 showed that the first step of Moco biosynthesis is localized in the mitochondrial matrix. Together with the observation that cyclic pyranopterin monophosphate accumulated in purified mitochondria, particularly in atm3 mutants, our data suggest that mitochondria and the ABC transporter ATM3 have a novel role in the biosynthesis of Moco.  相似文献   

10.
The molybdenum cofactor (Moco) containing enzymes aldehyde oxidase and xanthine dehydrogenase (XDH) require for activity a sulfuration step that inserts a terminal sulfur ligand into Moco. XdhC was shown to be essential for the production of active XDH in Rhodobacter capsulatus but is itself not a subunit of the purified enzyme. XdhC binds stoichiometric amounts of Moco and is further able to transfer its bound Moco to XDH. Previous work suggested that XdhC particularly stabilizes the sulfurated form of Moco before the insertion into XDH. In this work, we identify an R. capsulatus l-cysteine desulfurase, NifS4, which is involved in the formation of the Mo=S ligand of Moco. We show that NifS4 interacts with XdhC and not with XDH. NifS4 mobilizes sulfur from l-cysteine by formation of a protein-bound persulfide intermediate and transfers this sulfur further to Moco. This reaction was shown to be more effective than the chemical sulfuration of Moco using sulfide as sulfur source. Further studies clearly showed that Moco is sulfurated before the insertion into XDH, while it is bound to XdhC. Conclusively, XdhC has a versatile role in R. capsulatus: binding of Moco, interaction with NifS4 for the sulfuration of Moco, protection of sulfurated Moco from oxidation, and further transfer to XDH.  相似文献   

11.
The molybdenum cofactor (Moco) exists in different variants in the cell and can be directly inserted into molybdoenzymes utilizing the molybdopterin (MPT) form of Moco. In bacteria such as Rhodobacter capsulatus and Escherichia coli, MPT is further modified by attachment of a GMP nucleotide, forming MPT guanine dinucleotide (MGD). In this work, we analyzed the distribution and targeting of different forms of Moco to their respective user enzymes by proteins that bind Moco and are involved in its further modification. The R. capsulatus proteins MogA, MoeA, MobA, and XdhC were purified, and their specific interactions were analyzed. Interactions between the protein pairs MogA-MoeA, MoeA-XdhC, MoeA-MobA, and XdhC-MobA were identified by surface plasmon resonance measurements. In addition, the transfer of Moco produced by the MogA-MoeA complex to XdhC was investigated. A direct competition of MobA and XdhC for Moco binding was determined. In vitro analyses showed that XdhC bound to MobA, prevented the binding of Moco to MobA, and thereby inhibited MGD biosynthesis. The data were confirmed by in vivo studies in R. capsulatus cells showing that overproduction of XdhC resulted in a 50% decrease in the activity of bis-MGD-containing Me(2)SO reductase. We propose that, in bacteria, the distribution of Moco in the cell and targeting to the respective user enzymes are accomplished by specific proteins involved in Moco binding and modification.  相似文献   

12.
Escherichia coli MoeA and MogA are required for molybdenum cofactor biosynthesis and are believed to function in the addition of molybdenum to the dithiolene of molybdopterin to form molybdenum cofactor. Here we show that moeA(-) and mogA(-) cells are able to synthesize molybdopterin, but both are deficient in molybdenum incorporation and, as a consequence, are deficient in the formation of molybdopterin-guanine dinucleotide. Human sulfite oxidase expressed in E. coli moeA(-) could be activated in vitro in the presence of MoeA and low concentrations of molybdate. Sulfite oxidase purified from the moeA(-) lysate was also activated, although to a lesser extent than observed in the presence of lysate. MogA was incapable of activating sulfite oxidase expressed in E. coli mogA(-). These results demonstrate that molybdenum insertion into molybdopterin is required for molybdopterin-guanine dinucleotide formation, and that MoeA facilitates molybdenum incorporation at low levels of molybdate, but MogA has an alternative function, possibly as a carrier for molybdopterin during molybdenum incorporation.  相似文献   

13.
Molybdopterin (MPT) is a pyranopterin with a unique dithiolene group coordinating molybdenum (Mo) or tungsten (W) in all Mo- and W-enzymes except nitrogenase. In Escherichia coli, MPT is formed by incorporation of two sulfur atoms into precursor Z, which is catalyzed by MPT synthase. The recently solved crystal structure of MPT synthase (Rudolph, M. J., Wuebbens, M. M., Rajagopalan, K. V., and Schindelin, H. (2000) Nat. Struct. Biol. 8, 42-46) shows the heterotetrameric nature of the enzyme that is composed of two small (MoaD) and two large subunits (MoaE). According to sequence and structural similarities among MoaD, ubiquitin, and ThiS, a thiocarboxylation of the C terminus of MoaD is proposed that would serve as the source of sulfur that is transferred to precursor Z. Here, we describe the in vitro generation of carboxylated and thiocarboxylated MoaD. Both forms of MoaD are monomeric and are able to form a heterotetrameric complex after coincubation in equimolar ratios with MoaE. Only the thiocarboxylated MPT synthase complex was found to be able to convert precursor Z in vitro to MPT. Slight but significant differences between the carboxylated and the thiocarboxylated MPT synthase can be seen using size exclusion chromatography. A two-step reaction of MPT synthesis is proposed where the dithiolene is generated by two thiocarboxylates derived from a single tetrameric MPT synthase.  相似文献   

14.
In the second step of the molybdenum cofactor (Moco) biosynthesis in Escherichia coli, the l-cysteine desulfurase IscS was identified as the primary sulfur donor for the formation of the thiocarboxylate on the small subunit (MoaD) of MPT synthase, which catalyzes the conversion of cyclic pyranopterin monophosphate to molybdopterin (MPT). Although in Moco biosynthesis in humans, the thiocarboxylation of the corresponding MoaD homolog involves two sulfurtransferases, an l-cysteine desulfurase, and a rhodanese-like protein, the rhodanese-like protein in E. coli remained enigmatic so far. Using a reverse approach, we identified a so far unknown sulfurtransferase for the MoeB-MoaD complex by protein-protein interactions. We show that YnjE, a three-domain rhodanese-like protein from E. coli, interacts with MoeB possibly for sulfur transfer to MoaD. The E. coli IscS protein was shown to specifically interact with YnjE for the formation of the persulfide group on YnjE. In a defined in vitro system consisting of MPT synthase, MoeB, Mg-ATP, IscS, and l-cysteine, YnjE was shown to enhance the rate of the conversion of added cyclic pyranopterin monophosphate to MPT. However, YnjE was not an enhancer of the cysteine desulfurase activity of IscS. This is the first report identifying the rhodanese-like protein YnjE as being involved in Moco biosynthesis in E. coli. We believe that the role of YnjE is to make the sulfur transfer from IscS for Moco biosynthesis more specific because IscS is involved in a variety of different sulfur transfer reactions in the cell.  相似文献   

15.
Molybdenum Metabolism in Plants   总被引:1,自引:0,他引:1  
Abstract: Among the micronutrients essential for plant growth and for microsymbionts, Mo is required in minute amounts. However, since Mo is often sequestered by Fe- or Al-oxihydrox-ides, especially in acidic soils, the concentration of the water-soluble molybdate anion available for uptake by plants may be limiting for the plant, even when the total Mo content of the soil is sufficient. In contrast to bacteria, no specific molybdenum uptake system is known for plants, but since molybdate and sulfate behave similarly and have similar structure, uptake of molybdate could be mediated unspecifically by one of the sulfate transporters. Transport into the different plant organs proceeds via xylem and phloem. A pterin-bound molybdenum is the cofactor of important plant enzymes involved in redox processes: nitrate reductase, xanthine dehydrogenase, aIdehyde oxidase, and probably sulfite oxidase. Biosynthesis of the molybdenum cofactor (Moco) starts with a guanosine-X-phos-phate. Subsequently, a sulfur-free pterin is synthesized, sulfur is added, and finally molybdenum is incorporated. In addition to the molybdopterin enzymes, small molybdopterin binding proteins without catalytic function are known and are probably involved in the storage of Moco. In symbiotic systems the nitrogen supply of the host plant is strongly influenced by the availability of Mo in soil, since both bacterial nitrogenase and NADPH-dependent nitrate reductase of mycorrhizal fungi are Mo enzymes.  相似文献   

16.
Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea and eukaryotes, including humans. Genetic deficiencies of enzymes involved in Moco biosynthesis in humans lead to a severe and usually fatal disease. Moco contains a tricyclic pyranopterin, termed molybdopterin (MPT), that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of MPT is generated by MPT synthase, which consists of a large and small subunits. The 1.45 A resolution crystal structure of MPT synthase reveals a heterotetrameric protein in which the C-terminus of each small subunit is inserted into a large subunit to form the active site. In the activated form of the enzyme this C-terminus is present as a thiocarboxylate. In the structure of a covalent complex of MPT synthase, an isopeptide bond is present between the C-terminus of the small subunit and a Lys side chain in the large subunit. The strong structural similarity between the small subunit of MPT synthase and ubiquitin provides evidence for the evolutionary antecedence of the Moco biosynthetic pathway to the ubiquitin dependent protein degradation pathway.  相似文献   

17.
Methods have been devised to examine the spectral properties and state of reduction of the pterin ring of molybdopterin (MPT) in milk xanthine oxidase and the Mo-containing domain of rat liver sulfite oxidase. The absorption spectrum of the native pterin was visualized by difference spectroscopy of each protein, denatured anaerobically in 6 M guanidine hydrochloride (GdnHCl), versus a sample containing the respective apoprotein and other necessary components. The state of reduction of MPT was also probed using 2,6-dichlorobenzenoneindophenol (DCIP) to measure reducing equivalents/MPT, after anaerobic denaturation of the protein in GdnHCl in the presence or absence of Hg2+. In the case of xanthine oxidase the data indicate that the terminal sulfide ligand of Mo causes the reduction of a native dihydro form of MPT to the tetrahydro level. This reduction does not occur if Hg2+ is added prior to denaturation of the protein. Based on its observed behavior, the native MPT in the Mo cofactor of xanthine oxidase is postulated to exist as a quinonoid dihydropterin. Quantitation of DCIP reduction by MPT of Mo fragment of sulfite oxidase showed a two-electron oxidation of MPT, even when the Mo fragment was denatured in the presence of Hg2+ to prevent internal reduction reactions due to sulfhydryls or sulfide. Difference spectra of DCIP-treated versus untreated Mo fragment showed that MPT had been fully oxidized. These data indicate that the native MPT in sulfite oxidase must be a dihydro isomer different from that in xanthine oxidase.  相似文献   

18.
Human monoamine oxidase A that had been synthesized in a reticulocyte lysate translation system was capable of binding to and inserting into either rat liver mitochondria or isolated mitochondrial outer membranes. The inserted form was as resistant to proteinase K as endogenous mitochondrial monoamine oxidase A. The insertion, but not the binding, of monoamine oxidase A was prevented by depleting the reaction mixture of either ATP (with apyrase) or ubiquitin (with purified antibodies against this polypeptide). Addition of ATP or ubiquitin, respectively, to these depleted mixtures restored the insertion of the enzyme. In the absence of mitochondria, in vitro synthesized monoamine oxidase A did not catalyze its own alkylation by the mechanism-based inhibitor, [3H]clorgyline. However, both monoamine oxidase A that had been membrane-inserted in vitro and monoamine oxidase A that had been bound to the mitochondria under conditions of ATP depletion catalyzed adduct formation. Furthermore, reaction of either clorgyline or another mechanism-based inhibitor, pargyline, with the membrane-bound enzyme during ATP depletion inhibited the insertion of monoamine oxidase A when ATP was restored. These observations indicate that monoamine oxidase A acquired a catalytically active conformation on interaction with the mitochondrial outer membranes prior to its ATP and ubiquitin-dependent insertion into the membrane.  相似文献   

19.
Molybdenum insertion into the dithiolene group on the 6-alkyl side-chain of molybdopterin is a highly specific process that is catalysed by the MoeA and MogA proteins in Escherichia coli. Ligation of molybdate to molybdopterin generates the molybdenum cofactor, which can be inserted directly into molybdoenzymes binding the molybdopterin form of the molybdenum cofactor, or is further modified in bacteria to form the dinucleotide form of the molybdenum cofactor. The ability of various metals to bind tightly to sulfur-rich sites raised the question of whether other metal ions could be inserted in place of molybdenum at the dithiolene moiety of molybdopterin in molybdoenzymes. We used the heterologous expression systems of human sulfite oxidase and Rhodobacter sphaeroides dimethylsulfoxide reductase in E. coli to study the incorporation of different metal ions into the molybdopterin site of these enzymes. From the added metal-containing compounds Na(2)MoO(4), Na(2)WO(4), NaVO(3), Cu(NO(3))(2), CdSO(4) and NaAsO(2) during the growth of E. coli, only molybdate and tungstate were specifically inserted into sulfite oxidase and dimethylsulfoxide reductase. Other metals, such as copper, cadmium and arsenite, were nonspecifically inserted into sulfite oxidase, but not into dimethylsulfoxide reductase. We showed that metal insertion into molybdopterin occurs beyond the step of molybdopterin synthase and is independent of MoeA and MogA proteins. Our study shows that the activity of molybdoenzymes, such as sulfite oxidase, is inhibited by high concentrations of heavy metals in the cell, which will help to further the understanding of metal toxicity in E. coli.  相似文献   

20.
In vitro system for molybdopterin biosynthesis.   总被引:8,自引:6,他引:2  
A high-Mr fraction present in chl+ and chlA1 strains of Escherichia coli synthesizes molybdopterin (MPT) from the low-Mr fraction of several MPT-deficient mutants. Using this in vitro complementation as an assay, we have partially characterized the high-Mr fraction as a protein, termed MPT converting factor, of Mr 45,000, distinguishable from the Mo cofactor carrier protein of similar Mr by its absolute requirement for the low-Mr fraction of a non-chlA1 mutant in the nit-1 reconstitution assay. MPT converting factor was rapidly inactivated in the absence of a reduced sulfhydryl compound. Anaerobic incubation of MPT converting factor with trypsin destroyed its activity. High-performance liquid chromatographic analysis of alkaline KMnO4 oxidation products demonstrated that the factor did not contain any bound pterin. Since mutants lacking MPT converting factor are not auxotrophs for folate or riboflavin, the factor appears to be distinct from known pteridine biosynthetic enzymes in E. coli. We have partially purified and characterized the low-Mr fractions as probable MPT precursors. Several distinct precursors were separable by high-performance liquid chromatography. Like MPT activity, precursor activity was oxygen sensitive. Precursor activity was not correlated with levels of L-threo-neopterin, a major pterin of unknown function in E. coli. Precursor activity was correlated with levels of a new 6-alkylpterin, compound Z, produced by acidic iodine oxidation. Compound Z has the properties expected of an oxidized MPT precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号