首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed ribosomal frameshifting allows one mRNA to encode regulate expression of, multiple open reading frames (ORFs). The polymerase encoded by ORF 2 of Barley yellow dwarf virus (BYDV) is expressed via minus one (-1) frameshifting from the overlapping ORF 1. Previously, this appeared to be mediated by a 116 nt RNA sequence that contains canonical -1 frameshift signals including a shifty heptanucleotide followed by a highly structured region. However, unlike known -1 frameshift signals, the reporter system required the zero frame stop codon and did not require a consensus shifty site for expression of the -1 ORF. In contrast, full-length viral RNA required a functional shifty site for frameshifting in wheat germ extract, while the stop codon was not required. Increasing translation initiation efficiency by addition of a 5' cap on the naturally uncapped viral RNA, decreased the frameshift rate. Unlike any other known RNA, a region four kilobases downstream of the frameshift site was required for frameshifting. This included an essential 55 base tract followed by a 179 base tract that contributed to full frameshifting. The effects of most mutations on frameshifting correlated with the ability of viral RNA to replicate in oat protoplasts, indicating that the wheat germ extract accurately reflected control of BYDV RNA translation in the infected cell. However, the overall frameshift rate appeared to be higher in infected cells, based on immunodetection of viral proteins. These findings show that use of short recoding sequences out of context in reporter constructs may overlook distant signals. Most importantly, the remarkably long-distance interaction reported here suggests the presence of a novel structure that can facilitate ribosomal frameshifting.  相似文献   

2.
Simian immunodeficiency virus (SIV), like its human homologues (HIV-1, HIV-2), requires a -1 translational frameshift event to properly synthesize all of the proteins required for viral replication. The frameshift mechanism is dependent upon a seven-nucleotide slippery sequence and a downstream RNA structure. In SIV, the downstream RNA structure has been proposed to be either a stem-loop or a pseudoknot. Here, we report the functional, structural and thermodynamic characterization of the SIV frameshift site RNA. Translational frameshift assays indicate that a stem-loop structure is sufficient to promote efficient frameshifting in vitro. NMR and thermodynamic studies of SIV RNA constructs of varying length further support the absence of any pseudoknot interaction and indicate the presence of a stable stem-loop structure. We determined the structure of the SIV frameshift-inducing RNA by NMR. The structure reveals a highly ordered 12 nucleotide loop containing a sheared G-A pair, cross-strand adenine stacking, two G-C base-pairs, and a novel CCC triloop turn. The loop structure and its high thermostability preclude pseudoknot formation. Sequence conservation and modeling studies suggest that HIV-2 RNA forms the same structure. We conclude that, like the main sub-groups of HIV-1, SIV and HIV-2 utilize stable stem-loop structures to function as a thermodynamic barrier to translation, thereby inducing ribosomal pausing and frameshifting.  相似文献   

3.
Synthesis of the Gag-Pol protein of the human immunodeficiency virus type 1 (HIV-1) requires a programmed -1 ribosomal frameshifting when ribosomes translate the unspliced viral messenger RNA. This frameshift occurs at a slippery sequence followed by an RNA structure motif that stimulates frameshifting. This motif is commonly assumed to be a simple stem-loop for HIV-1. In this study, we show that the frameshift stimulatory signal is more complex than believed and consists of a two-stem helix. The upper stem-loop corresponds to the classic stem-loop, and the lower stem is formed by pairing the spacer region following the slippery sequence and preceding this classic stem-loop with a segment downstream of this stem-loop. A three-purine bulge interrupts the two stems. This structure was suggested by enzymatic probing with nuclease V1 of an RNA fragment corresponding to the gag/pol frameshift region of HIV-1. The involvement of the novel lower stem in frameshifting was supported by site-directed mutagenesis. A fragment encompassing the gag/pol frameshift region of HIV-1 was inserted in the beginning of the coding sequence of a reporter gene coding for the firefly luciferase, such that expression of luciferase requires a -1 frameshift. When the reporter was expressed in COS cells, mutations that disrupt the capacity to form the lower stem reduced frameshifting, whereas compensatory changes that allow re-formation of this stem restored the frameshift efficiency near wild-type level. The two-stem structure that we propose for the frameshift stimulatory signal of HIV-1 differs from the RNA triple helix structure recently proposed.  相似文献   

4.
We have examined the effect of a downstream secondary structure (the stem–loop sequence found downstream on the MMTV gag-pro frameshift site) on frameshifting at a bacterial shifty site (U UUC AUA) that responds strongly to a isoleucine-tRNA limitation. Our findings are as follows: (i) the downstream stem–loop has little effect on frameshifting in growing, unstarved cells; (ii) the stem–loop increases the frameshifting effect of isoleucine-tRNA limitation about fourfold, and this synergism is maximal with a distance of 5–9 nucleotides between the 'hungry' AUA codon and the stem–loop; and (iii) a stem–loop of different sequence at the same position has the same effect.  相似文献   

5.
Ribosomal frameshifting, a translational mechanism used during retroviral replication, involves a directed change in reading frame at a specific site at a defined frequency. Such programmed frameshifting at the mouse mammary tumor virus (MMTV) gag-pro shift site requires two mRNA signals: a heptanucleotide shifty sequence and a pseudoknot structure positioned downstream. Using in vitro translation assays and enzymatic and chemical probes for RNA structure, we have defined features of the pseudoknot that promote efficient frameshifting. Heterologous RNA structures, e.g. a hairpin, a tRNA or a synthetic pseudoknot, substituted downstream of the shifty site fail to promote frameshifting, suggesting that specific features of the MMTV pseudoknot are important for function. Site-directed mutations of the MMTV pseudoknot indicate that the pseudoknot junction, including an unpaired adenine nucleotide between the two stems, provides a specific structural determinant for efficient frameshifting. Pseudoknots derived from other retroviruses (i.e. the feline immunodeficiency virus and the simian retrovirus type 1) also promote frameshifting at the MMTV gag-pro shift site, dependent on the same structure at the junction of the two stems.  相似文献   

6.
The pol gene of all retroviruses is expressed as a gag-pol fusion protein which is proteolytically processed to produce all viral enzymes. In the human immunodeficiency virus (HIV), the gag and pol genes overlap by 241 nucleotides with pol in the -1 phase with respect to gag. The gag-pol fusion is produced via a -1 ribosomal frameshifting event that brings the overlapping, out-of-phase gag and pol genes into translational phase. Frameshifting occurs at a so called 'shift site' 8-10 nucleotides upstream of a hairpin loop which may play a role in the regulation of frameshifting. We have fused this region of HIV-1 to the 5' end of the firefly luciferase reporter gene in order to quantitatively measure ribosomal frameshifting both in cells and by in vitro translation. A series of 2'-O-methyl oligonucleotides was designed to specifically bind the sequences which flank the gag-pol hairpin. Ribosomal frameshifting is enhanced up to 6 fold by those oligonucleotides which bind the area just 3 to the stem. Oligonucleotides which bind 5' to the stem have no effect on frameshift efficiency. In addition, we have constructed a series of fusion genes which mimic the effect of the bound oligonucleotides with intramolecular hairpins. The results suggest that increasing RNA secondary structure downstream of the shift site increases the frequency of ribosomal frameshifting, and that this effect can be mimicked by antisense oligonucleotides.  相似文献   

7.
8.
The pol gene of the human immunodeficiency virus (HIV-1) is expressed as a gag:pol fusion, arising from a ribosomal frameshift that brings the overlapping, out-of-phase gag and pol genes into translational phase. In this study, we show that HIV frameshifting is mediated by a very short sequence in the viral RNA. We demonstrate the importance of a homopolymeric run within this sequence and conclude that HIV frameshifting is not dependent on stem-loop structures downstream from the frameshift site. Our analysis also indicates that the sequence requirements are identical in mammalian and yeast systems.  相似文献   

9.
Kim YG  Maas S  Rich A 《Nucleic acids research》2001,29(5):1125-1131
Human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type II (HTLV-2) use a similar mechanism for –1 translational frameshifting to overcome the termination codon in viral RNA at the end of the gag gene. Previous studies have identified two important RNA signals for frameshifting, the slippery sequence and a downstream stem–loop structure. However, there have been somewhat conflicting reports concerning the individual contributions of these sequences. In this study we have performed a comprehensive mutational analysis of the cis-acting RNA sequences involved in HIV-1 gagpol and HTLV-2 gagpro frameshifting. Using an in vitro translation system we determined frameshifting efficiencies for shuffled HIV-1/HTLV-2 RNA elements in a background of HIV-1 or HTLV-2 sequences. We show that the ability of the slippery sequence and stem–loop to promote ribosomal frameshifting is influenced by the flanking upstream sequence and the nucleotides in the spacer element. A wide range of frameshift efficiency rates was observed for both viruses when shuffling single sequence elements. The results for HIV-1/HTLV-2 chimeric constructs represent strong evidence supporting the notion that the viral wild-type sequences are not designed for maximal frameshifting activity but are optimized to a level suited to efficient viral replication.  相似文献   

10.
By using a sensitive search program based on hidden Markov models (HMM), we identified 74 viruses carrying frameshift sites among 1500 fully sequenced virus genomes. These viruses are clustered in specific families or genera. Sequence analysis of the frameshift sites identified here, along with previously characterized sites, identified a strong bias toward the two nucleotides 5' of the shifty heptamer signal. Functional analysis in the yeast Saccharomyces cerevisiae demonstrated that high frameshifting efficiency is correlated with the presence of a Psi39 modification in the tRNA present in the E site of the ribosome at the time of frameshifting. These results demonstrate that an extended signal is involved in eukaryotic frameshifting and suggest additional interactions between tRNAs and the ribosome during decoding.  相似文献   

11.
The simian retrovirus-1 (SRV-1) gag-pro frameshift signal was identified in previous work, and the overall structure of the pseudoknot involved was confirmed (ten Dam E, Brierley I, Inglis S, Pleij C, 1994, Nucleic Acids Res 22:2304-2310). Here we report on the importance of specific elements within the pseudoknot. Some mutations in stem S1 that maintain base pairing have reduced frameshift efficiencies. This indicates that base pairing in itself is not sufficient. In contrast, frameshifting correlates qualitatively with the calculated stability of mutations in S2. The stems thus play different roles in the frameshift event. The nature of the base in L1 has little influence on frameshift efficiency. It is however required to bridge S2; deleting it lowers frameshifting from 23 to 9%. In L2, frameshift efficiency was not affected in a mutant that changed 10 to 12 bases. This makes it unlikely that the primary sequence of L2 plays a role in -1 frameshifting, in contrast to readthrough in Moloney murine leukemia virus (Wills N, Gesteland R, Atkins J, 1994, EMBO J 13:4137-4144). Deletions of 2 and 3 bases gave more frameshifting than the wild type, probably reflecting the increased stability of the pseudoknot due to a shorter loop L2. Deleting even more bases reduces frameshifting compared to wild-type levels. At this point, stress will build up in L2, and this will reduce overall pseudoknot stability.  相似文献   

12.
In the Saccharomyces cerevisiae double-stranded RNA virus, programmed -1 ribosomal frameshifting is responsible for translation of the second open reading frame of the essential viral RNA. A typical slippery site and downstream pseudoknot are necessary for this frameshifting event, and previous work has demonstrated that ribosomes pause over the slippery site. The translational intermediate associated with a ribosome paused at this position is detected, and, using in vitro translation and quantitative heelprinting, the rates of synthesis, the ribosomal pause time, the proportion of ribosomes paused at the slippery site, and the fraction of paused ribosomes that frameshift are estimated. About 10% of ribosomes pause at the slippery site in vitro, and some 60% of these continue in the -1 frame. Ribosomes that continue in the -1 frame pause about 10 times longer than it takes to complete a peptide bond in vitro. Altering the rate of translational initiation alters the rate of frameshifting in vivo. Our in vitro and in vivo experiments can best be interpreted to mean that there are three methods by which ribosomes pass the frameshift site, only one of which results in frameshifting.  相似文献   

13.
The ribosomal frameshift signal in the genomic RNA of the coronavirus IBV is composed of two elements, a heptanucleotide "slippery-sequence" and a downstream RNA pseudoknot. We have investigated the kinds of slippery sequence that can function at the IBV frameshift site by analysing the frameshifting properties of a series of slippery-sequence mutants. We firstly confirmed that the site of frameshifting in IBV was at the heptanucleotide stretch UUUAAAC, and then used our knowledge of the pseudoknot structure and a suitable reporter gene to prepare an expression construct that allowed both the magnitude and direction of ribosomal frameshifting to be determined for candidate slippery sequences. Our results show that in almost all of the sequences tested, frameshifting is strictly into the -1 reading frame. Monotonous runs of nucleotides, however, gave detectable levels of a -2/+1 frameshift product, and U stretches in particular gave significant levels (2% to 21%). Preliminary evidence suggests that the RNA pseudoknot may play a role in influencing frameshift direction. The spectrum of slip-sequences tested in this analysis included all those known or suspected to be utilized in vivo. Our results indicate that triplets of A, C, G and U are functional when decoded in the ribosomal P-site following slippage (XXXYYYN) although C triplets were the least effective. In the A-site (XXYYYYN), triplets of C and G were non-functional. The identity of the nucleotide at position 7 of the slippery sequence (XXXYYYN) was found to be a critical determinant of frameshift efficiency and we show that a hierarchy of frameshifting exists for A-site codons. These observations lead us to suggest that ribosomal frameshifting at a particular site is determined, at least in part, by the strength of the interaction of normal cellular tRNAs with the A-site codon and does not necessarily involve specialized "shifty" tRNAs.  相似文献   

14.
RNA pseudoknot structural motifs could have implications for a wide range of biological processes of RNAs. In this study, the potential RNA pseudoknots just downstream from the known and suspected retroviral frame-shift sites were predicted in the Rous sarcoma virus, primate immunodeficiency viruses (HIV-1, HIV-2, and SIV), equine infectious anemia virus, visna virus, bovine leukemia virus, human T-cell leukemia virus (types I and II), mouse mammary tumor virus, Mason-Pfizer monkey virus, and simian SRV-1 type-D retrovirus. Also, the putative RNA pseudoknots were detected in the gag-pol overlaps of two retrotransposons of Drosophila, 17.6 and gypsy, and the mouse intracisternal A particle. For each sequence, the thermodynamic stability and statistical significance of the secondary structure involved in the predicted tertiary structure were assessed and compared. Our results show that the stem-loop structures in the pseudoknots are both thermodynamically highly stable and statistically significant relative to other such configurations that potentially occur in the gag-pol or gag-pro and pro-pol junction domains of these viruses (300 nucleotides upstream and downstream from the possible frameshift sites are included). Moreover, the structural features of the predicted pseudoknots following the frameshift site of pro-pol overlaps of the HTLV-1 and HTLV-2 retroviruses are structurally well conserved. The occurrence of eight compensatory base changes in the tertiary interaction of the two related sequences allow the conservation of their tertiary structures in spite of the sequence divergence. The results support the possible control mechanism for frameshifting proposed by Brierley et al. and Jacks et al.  相似文献   

15.
The human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion polyprotein is produced via ribosomal frameshifting. Previous studies in vitro and in Saccharomyces cerevisiae have argued against a significant role for RNA secondary structure 3' of the shift site, in contrast with other systems, in which such structure has been shown to be required. Here we show, by expressing the HIV-1 gag-pol domain in cultured vertebrate cells, that a stem-loop structure 3' of the HIV-1 shift site is indeed important for wild-type levels of frameshifting in vivo.  相似文献   

16.
A Gramstat  D Prüfer    W Rohde 《Nucleic acids research》1994,22(19):3911-3917
The genes for the capsid protein CP and the nucleic acid-binding 12K protein (pr12) of potato virus M (PVM) constitute the 3' terminal gene cluster of the PVM RNA genome. Both proteins are presumably translated from a single subgenomic RNA. We have identified two translational strategies operating in pr12 gene expression. Internal initiation at the first and the second AUG codon of the pr12 coding sequence results in the synthesis of the 12K protein. In addition the protein is produced as a CP/12K transframe protein by ribosomal frameshifting. For these studies parts of the CP and pr12 coding sequences including the putative frameshift region were introduced into an internal position of the beta-glucuronidase gene. Mutational analyses in conjunction with in vitro translation experiments identified a homopolymeric string of four adenosine nucleotides which together with a 3' flanking UGA stop codon were required for efficient frameshifting. The signal AAAAUGA is the first frameshift signal with a shifty stop codon to be analyzed in the eukaryotic system. Substitution of the four consecutive adenosine nucleotides by UUUU increased the efficiency of frameshifting, while substitution by GGGG or CCCC dramatically reduced the synthesis of the transframe protein. Also, UAA and UAG could replace the opal stop codon without effect on the frameshifting event, but mutation of UGA to the sense codon UGG inhibited transframe protein formation. These findings suggest that the mechanism of ribosomal frameshifting at the PVM signal is different from the one described by the 'simultaneous slippage' model in that only the string of four adenosine nucleotides represents the slippery sequence involved in a -1 P-site slippage.  相似文献   

17.
HIV-1 uses a programmed -1 ribosomal frameshift to synthesize the precursor of its enzymes, Gag-Pol. The frameshift efficiency that is critical for the virus replication, is controlled by an interaction between the ribosome and a specific structure on the viral mRNA, the frameshift stimulatory signal. The rate of cap-dependent translation initiation is known to be altered by the TAR RNA structure, present at the 5′ and 3′ end of all HIV-1 mRNAs. Depending upon its concentration, TAR activates or inhibits the double-stranded RNA-dependent protein kinase (PKR). We investigated here whether changes in translation initiation caused by TAR affect HIV-1 frameshift efficiency. CD4+ T cells and 293T cells were transfected with a dual-luciferase construct where the firefly luciferase expression depends upon the HIV-1 frameshift. Translation initiation was altered by adding TAR in cis or trans of the reporter mRNA. We show that HIV-1 frameshift efficiency correlates negatively with changes in the rate of translation initiation caused by TAR and mediated by PKR. A model is presented where changes in the rate of initiation affect the probability of frameshifting by altering the distance between elongating ribosomes on the mRNA, which influences the frequency of encounter between these ribosomes and the frameshift stimulatory signal.  相似文献   

18.
The human immunodeficiency virus of type 1 (HIV-1) uses a programmed -1 ribosomal frameshift to produce the precursor of its enzymes, and changes in frameshift efficiency reduce replicative fitness of the virus. We used a fluorescent two-reporter system to screen for peptides that reduce HIV-1 frameshift in bacteria, knowing that the frameshift can be reproduced in Escherichia coli. Expression of one reporter, the green fluorescent protein (GFP), requires the HIV-1 frameshift, whereas the second reporter, the red fluorescent protein (RFP), is used to assess normal translation. A peptide library biased for RNA binding was inserted into the sequence of the protein thioredoxin and expressed in reporter-containing bacteria, which were then screened by fluorescence-activated cell sorting (FACS). We identified peptide sequences that reduce frameshift efficiency by over 50% without altering normal translation. The identified sequences are also active against different frameshift stimulatory signals, suggesting that they bind a target important for frameshifting in general, probably the ribosome. Successful transfer of active sequences to a different scaffold in a eukaryotic test system demonstrates that the anti-frameshift activity of the peptides is neither due to scaffold-dependent conformation nor effects of the scaffold protein itself on frameshifting. The method we describe identifies peptides that will provide useful tools to further study the mechanism of frameshift and may permit the development of lead compounds of therapeutic interest.  相似文献   

19.
The full-length human immunodeficiency virus type 1 (HIV-1) mRNA encodes two precursor polyproteins, Gag and GagProPol. An infrequent ribosomal frameshifting event allows these proteins to be synthesized from the same mRNA in a predetermined ratio of 20 Gag proteins for each GagProPol. The RNA frameshift signal consists of a slippery sequence and a hairpin stem-loop whose thermodynamic stability has been shown in in vitro translation systems to be critical to frameshifting efficiency. In this study we examined the frameshift region of HIV-1, investigating the effects of altering stem-loop stability in the context of the complete viral genome and assessing the role of the Gag spacer peptide p1 and the GagProPol transframe (TF) protein that are encoded in this region. By creating a series of frameshift region mutants that systematically altered the stability of the frameshift stem-loop and the protein sequences of the p1 spacer peptide and TF protein, we have demonstrated the importance of stem-loop thermodynamic stability in frameshifting efficiency and viral infectivity. Multiple changes to the amino acid sequence of p1 resulted in altered protein processing, reduced genomic RNA dimer stability, and abolished viral infectivity. The role of the two highly conserved proline residues in p1 (position 7 and 13) was also investigated. Replacement of the two proline residues by leucines resulted in mutants with altered protein processing and reduced genomic RNA dimer stability that were also noninfectious. The unique ability of proline to confer conformational constraints on a peptide suggests that the correct folding of p1 may be important for viral function.  相似文献   

20.
Regulated ribosomal frameshifting by an RNA-protein interaction.   总被引:3,自引:0,他引:3       下载免费PDF全文
Ribosomal frameshifting is a translational mechanism used as an essential step in the replication cycle of retroviruses. Programmed frameshifting in retroviral translation involves two sequence elements: A heptanucleotide slippery sequence which induces a low basal level of frameshifting and a downstream RNA structure as an enhancer of the process. The precise mechanism of function of these downstream elements is still unclear, but their effect does not solely depend on their stability. Likewise, the possibility that frameshifting could be controlled by specific proteins that bind to these elements and enable or modulate their effects has yet not been substantiated. The RNA hairpin of the HIV-1 gag-pol frameshift cassette was replaced by the iron-responsive element (IRE) from ferritin mRNA, a stem-loop structure that binds iron regulatory proteins (IRPs) in dependence of the iron status of the cell. When a lacZ/luciferase reporter construct was expressed in transfected BHK-21 cells, the IRE or a point-mutated version that is unable to bind IRPs were found to functionally substitute for the HIV-1 hairpin. When cells were treated with the iron chelator desferrioxamine to stimulate IRP binding to the wild-type IRE, frameshift activity was specifically and strongly augmented by protein binding Our data establish that frameshifting can be regulated in a reversible fashion by mRNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号