共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the βγ-crystallins are structural proteins with high intrinsic stability, which gets enhanced by Ca(2+)-binding in microbial members. Functions of most of these proteins are yet to be known. However, a few of them were reported to be involved in Ca(2+)-dependent and stress-related functions. Hahellin, a microbial homolog, is a natively unfolded protein that acquires a well-folded structure upon Ca(2+) binding. Although the structure of βγ-crystallin domains is well understood, the dynamical features are yet to be explored. We have investigated for the first time the equilibrium dynamics, conformational heterogeneity and associated low-lying free-energy states of hahellin in its Ca(2+)-bound form using NMR spectroscopy to understand the dynamics of a βγ-crystallin domain. Hahellin shows large conformational heterogeneity with nearly 40% of the residues, some of which are part of Ca(2+)-binding loops, accessing alternative states. Further, out of the two Greek key motifs, which together constitute the βγ-crystallin domain, the second Greek key motif is floppy as compared to its relatively rigid counterpart. Taken together, we believe that these characteristics might be of importance to understand the stability and functions of βγ-crystallin domains. 相似文献
2.
Venkatraman Ramanujam Sunita Patel Atul K. Srivastava Yogendra Sharma Kandala V. R. Chary 《Biomolecular NMR assignments》2013,7(2):221-224
The sequence specific backbone 1H, 13C and 15N resonance assignments of an intrinsically unstructured βγ-crystallin from Hahella chejuensis are reported. The secondary structure chracterization of the unstructured protein reveals that large fraction of residues exhibits β-strand propensity, as in the case of the Ca2+-bound structured protein. 相似文献
3.
The sequence specific 1H, 13C, and 15N resonance assignments of Hahellin, a putative member of βγ-crystallin family, from Hahella Chejuensis, have been accomplished by NMR spectroscopy. The resonance assignments reveal that the protein adopts predominantly a β-sheet
conformation as in the case of βγ-crystallin folds. 相似文献
4.
βγ-CAT is a naturally existing 72-kDa complex of a non-lens βγ-crystallin (α-subunit, CAT-α) and a trefoil factor (β-subunit, CAT-β) that contains a non-covalently linked form of αβ2 and was isolated from the skin secretions of the toad Bombina maxima. The N-terminal region of CAT-α (CAT-αN, residues 1–170) contains two βγ-crystallin domains while the C-terminal region (CAT-αC) has sequence homology to the membrane insertion domain of the Clostridium perfringens epsilon toxin. To examine the biochemical characteristics of the βγ-crystallin domains of βγ-CAT, CAT-αN, CAT-αC and CAT-β were expressed in Escherichia coli. Co-immunoprecipitation of the naturally assembled βγ-CAT confirmed that the CAT-α and CAT-β complex always exists. Furthermore, recombinant CAT-β bound recombinant CAT-αN. Ca2+-binding motifs were identified in CAT-αN, and recombinant CAT-αN was able to bind the calcium probe terbium. However, the conformation of CAT-αN was not significantly altered upon Ca2+ binding. βγ-CAT possesses strong hemolytic activity toward human erythrocytes, and treatment of erythrocytes with βγ-CAT resulted in a rapid Ca2+ influx, eventually leading to hemolysis. However, in the absence of extracellular Ca2+, no significant hemolysis was detected, even though the binding and oligomerization of βγ-CAT in the erythrocyte membrane was observed. Our data demonstrate the binding of CAT-β (a trefoil factor) to CAT-αN (βγ-crystallin domains) and provide a basis for the formation of a βγ-crystallin and trefoil factor complex in vivo. Furthermore, the βγ-crystallin domains of βγ-CAT are able to bind Ca2+, and βγ-CAT-induced hemolysis is Ca2+ dependent. 相似文献
5.
SAXS study of the PIR domain from the Grb14 molecular adaptor: a natively unfolded protein with a transient structure primer? 下载免费PDF全文
Moncoq K Broutin I Craescu CT Vachette P Ducruix A Durand D 《Biophysical journal》2004,87(6):4056-4064
Grb14 belongs to the Grb7 family of adapters and was identified as a negative regulator of insulin signal transduction. Between the PH (pleckstrin homology) and SH2 (Src homology 2) domains is a new binding domain implicated in the interaction with receptor tyrosine kinases called PIR (phosphorylated insulin receptor interaction region). Both PIR and SH2 domains interact with the insulin receptor, but their relative role varies considering the member of the Grb7 family and the tyrosine kinase receptor. In the case of Grb14, PIR is the main binding domain and is sufficient to inhibit the insulin receptor kinase activity. We have proposed, on the basis of NMR measurements, that PIR lacks ordered structure and presents a high flexibility, although remaining fully active. To complement this first study, we have used small-angle x-ray scattering in solution together with a modeling approach representing the PIR domain as a chain of pseudo residues. Circular dichroism experiments were also performed in the presence of variable amounts of trifluoroethanol. These observations, together with an ensemble of sequence analyses and previous NMR results, all support the view of PIR as essentially unstructured but with a potentially structured short stretch encompassing residues 399-407. This stretch, which may be only structured transiently in the isolated molecule, could play a major role in Grb14 PIR binding to a biological partner by undergoing a structural transition. 相似文献
6.
Cerminati Sebastián Paoletti Luciana Peirú Salvador Menzella Hugo G. Castelli María Eugenia 《Applied microbiology and biotechnology》2018,102(16):6997-7005
Applied Microbiology and Biotechnology - βγ-crystallin has emerged as a superfamily of structurally homologous proteins with representatives across all domains of life. A major portion of... 相似文献
7.
8.
"Natively unfolded" proteins occupy a unique niche within the protein kingdom in that they lack ordered structure under conditions of neutral pH in vitro. Analysis of amino acid sequences, based on the normalized net charge and mean hydrophobicity, has been applied to two sets of proteins: small globular folded proteins and "natively unfolded" ones. The results show that "natively unfolded" proteins are specifically localized within a unique region of charge-hydrophobicity phase space and indicate that a combination of low overall hydrophobicity and large net charge represent a unique structural feature of "natively unfolded" proteins. 相似文献
9.
βγ-Crystallins are a superfamily of proteins containing crystallin-type Greek key motifs. Some βγ-crystallin domains have been shown to bind Ca2+. Hahellin is a newly identified intrinsically disordered βγ-crystallin domain from Hahella chejuensis. It folds into a typical βγ-crystallin structure upon Ca2+ binding and acts as a Ca2+-regulated conformational switch. Besides Hahellin, another two putative βγ-crystallins from Caulobacter crescentus and Yersinia pestis are shown to be partially disordered in their apo-form and undergo large conformational changes upon Ca2+ binding, although whether they acquire a βγ-crystallin fold is not known. The extent of conformational disorder/order of a protein is determined by its amino acid sequence. To date how this sequence–structure relationship is reflected in the βγ-crystallin superfamily has not been investigated. In this work, we comparatively studied the sequence and structure of Hahellin with those of Protein S, an ordered βγ-crystallin, via various computational biophysical techniques. We found that several factors, including presence of a C-terminal disorder prone region, high content of energetic frustrations, and low contact density, may promote the formation of the disordered state of apo-Hahellin. We also analyzed the disorder propensities for other putative disordered βγ-crystallin domains. This study provides new clues for further understanding the sequence–structure–function relationship of βγ-crystallins. 相似文献
10.
Mishra A Suman SK Srivastava SS Sankaranarayanan R Sharma Y 《Journal of molecular biology》2012,415(1):75-91
Numerous proteins belonging to the recently expanded βγ-crystallin superfamily bind Ca(2+) at the double-clamp N/D-N/D-X(1)-X(2)-S/T-S motif. However, there have been no attempts to understand the intricacies involving Ca(2+) binding, such as the determinants of Ca(2+)-binding affinity and their contributions to gain in stability. This work is an in-depth analysis of understanding the modes and determinants of Ca(2+) binding to βγ-crystallin motifs. We have performed extensive naturally occurring substitutions from related proteins on the βγ-crystallin domains of flavollin, a low-affinity Ca(2+)-binding protein, and clostrillin, a moderate-affinity protein. We monitored the consequences of these modifications on Ca(2)(+) binding by isothermal titration calorimetry, thermal stability and conformational and crystal structure analyses. We demonstrate that Ca(2)(+) binding to the two sites of a βγ-domain is interdependent and that the presence of Arg at the fifth position disables a site. A change from Thr to Ser, or vice versa, influences Ca(2+)-binding affinity, highlighting the basis of diversity found in these domains. A subtle change in the first site has a greater influence on Ca(2)(+) binding than a similar alteration in the second site. Thus, the second site is more variable in nature. Replacing an acidic or hydrophobic residue in a binding site alters the Ca(2+)-binding properties drastically. While it appears from their binding site sequence that these domains have evolved randomly, our examination illustrates the subtlety in the design of these modules. Decoding such design schemes would aid in our understanding of the functional themes underlying differential Ca(2)(+) binding and in predicting these in emerging sequence information. 相似文献
11.
Masanori Ogawa Takashi Takabatake Tadashi C. Takahashi K. Takeshima 《Development genes and evolution》1997,206(7):417-424
EP37 is an epidermis-specific protein found in the developing embryo of the Japanese newt, Cynops pyrrhogaster. Our previous study predicted the presence of genes homologous to EP37, which show temporary shared expression at the turn
of metamorphosis. In this study, we isolated and characterized three cDNAs encoding novel EP37 homologues; two from the skin
of an adult newt and the other from swimming larva. Conceptual translation of the open reading frames of these cDNAs predicted
proteins carrying βγ-crystallin motifs and putative calcium-binding sites, both of which are features shared by the originally
identified EP37 (EP37L1), as well as a spore coat protein of Myxococcus
xanthus, protein S. Immunoblot analyses and immunohistochemical studies indicated that two of the EP37 proteins, EP37L1 and EP37L2,
are exclusively expressed in the epidermis (skein cells) including the figures of Eberth at premetamorphic stages. During
and after metamorphosis, the expression of EP37 proteins was mainly observed in cutaneous glands, and a molecular transition
to the adult types of EP37, EP37A1 and EP37A2, occurred. These observations suggest that EP37 proteins play an important role
in construction of integumental tissues and adaptation to the aquatic or amphibious environment.
Received: 6 September 1996 / Accepted: 30 October 1996 相似文献
12.
Ravi P. Barnwal Geetika Agarwal Yogendra Sharma Kandala V. R. Chary 《Biomolecular NMR assignments》2009,3(1):107-110
We report here almost complete backbone assignment of a Ca2+-binding protein of the βγ-crystallin superfamily from Methanosarcina acetivorans, at two denaturant (GdmCl) concentrations, using double and triple resonance experiments. These NMR assignments will be useful
to understand the unfolding path of this protein.
Ravi P. Barnwal and Geetika Agarwal have contributed equally. 相似文献
13.
Wilfried W. de Jong Louis H. Cohen Jack A.M. Leunissen Anneke Zweers 《Biochemical and biophysical research communications》1980,96(2):648-655
αAIns, an elongated α-crystallin A chain previously observed in rat, was present beside the normal αA chain in mouse, gerbil and hamster, which places its origin at least 30 million years ago. Like in rat the sequences of golden hamster αAIns and αA were found to be identical, apart from the internal insertion of 22 residues in αAIns. The hamster chains only differed from the rat chains by a single substitution in the inserted sequence of αAIns. The origin of αAIns, by insertion of 22 residues in an otherwise unchanged αA chain, and its rigid evolutionary conservation are most easily explained by assuming the incomplete removal of a putative intervening sequence from the precursor mRNA of αA, leaving an intracistronic insert of 66 nucleotides in part of the eventually translated mRNA. 相似文献
14.
Ulrike Teichmann Michael E. Ray Jane Ellison Caroline Graham Graeme Wistow Paul S. Meltzer Jeffrey M. Trent William J. Pavan 《Mammalian genome》1998,9(9):715-720
We report the isolation of the murine ortholog of AIM1, a human gene whose expression is associated with the reversal of
tumorigenicity in an experimental model of melanoma. Mouse and human AIM1 are more than 90% identical in amino acid sequence
in the βγ-crystallin repeats and the C-terminal domain, and more than 75% identical in the extended N-terminal domain. Consistent
with the isolated cDNA representing the authentic AIM1 ortholog, linkage analysis localized mouse Aim1 to proximal mouse Chromosome (Chr) 10 in a conserved linkage group with genes localized to human Chr band 6q21. Searches
of EST databases identified a second AIM1-like gene in both mouse and human, suggesting the existence of a gene family. Northern
analysis demonstrates Aim1 is expressed most abundantly in adult skin, lung, heart, liver, and kidney and is temporally regulated during embryogenesis.
Aim1 is expressed highly in the shaft region of the hair follicles and the presumptive ectoderm, but not at detectable levels
in melanocytes or melanocyte precursor cells.
Received: 18 February 1998 / Accepted: 8 May 1998 相似文献
15.
《Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology》1988,952(2):192-201
Exposure of bovine α-crystallin to 0.1 M glycine at pH 7 decreases the average molar mass of the protein from 700 to 420 kDa. When the pH is lowered to 2.5, in the same buffer, the αB chains specifically dissociate from the aggregates, leaving a particle of 290 kDa containing only αA chains. The decrease in the molar mass corresponds to the mass of the αB chains in the original aggregate. The pH-dependent dissociation is fully reversible. Similar changes were observed with rat and kangaroo α-crystallins but the dogfish protein was not affected. Sedimentation velocity analyses and fluorescence spectroscopy yielded a pK, for the dissociation, of 3.7 for α-crystallin and 4.0 for a homopolymer constructed from purified αB2 polypeptides. An αA2 homopolymer was virtually unaffected by the lowering of pH. The products from the dissociation were isolated and their properties studied by sedimentation analysis and acrylamide quenching of tryptophan fluorescence. The αB chains were found to be completely denatured, whereas the structure of the αA chains, in the 290 kDa, particle, were only slightly altered. Comparisons of the sequences of the various proteins examined suggested that decreased ionization of aspartic acid 127 in the αB chain was responsible for the specific dissociation of this polypeptide. 相似文献
16.
Suman SK Mishra A Ravindra D Yeramala L Sharma Y 《The Journal of biological chemistry》2011,286(51):43891-43901
The topologically similar βγ-crystallins that are prevalent in all kingdoms of life have evolved for high innate domain stability to perform their specialized functions. The evolution of stability and its control in βγ-crystallins that possess either a canonical (mostly from microorganisms) or degenerate (principally found in vertebrate homologues) Ca2+-binding motif is not known. Using equilibrium unfolding of βγ-crystallin domains (26 wild-type domains and their mutants) in apo- and holo-forms, we demonstrate the presence of a stability gradient across these members, which is attained by the choice of residues in the (N/D)(N/D)XX(S/T)S Ca2+-binding motif. The occurrence of a polar, hydrophobic, or Ser residue at the 1st, 3rd, or 5th position of the motif is likely linked to a higher domain stability. Partial conversion of a microbe-type domain (with a canonical Ca2+-binding motif) to a vertebrate-type domain (with a degenerate Ca2+-binding motif) by mutating serine to arginine/lysine disables the Ca2+-binding but significantly augments its stability. Conversely, stability is compromised when arginine (in a vertebrate-type disabled domain) is replaced by serine (as a microbe type). Our results suggest that such conversions were acquired as a strategy for desired stability in vertebrate members at the cost of Ca2+-binding. In a physiological context, we demonstrate that a mutation such as an arginine to serine (R77S) mutation in this motif of γ-crystallin (partial conversion to microbe-type), implicated in cataracts, decreases the domain stability. Thus, this motif acts as a "central tuning knob" for innate as well as Ca2+-induced gain in stability, incorporating a stability gradient across βγ-crystallin members critical for their specialized functions. 相似文献
17.
Amita Mishra Bal KrishnanShanti Swaroop Srivastava Yogendra Sharma 《Progress in biophysics and molecular biology》2014
βγ-Crystallins have emerged as a superfamily of structurally homologous proteins with representatives across the domains of life. A major portion of this superfamily is constituted by members from microorganisms. This superfamily has also been recognized as a novel group of Ca2+-binding proteins with huge diversity. The βγ domain shows variable properties in Ca2+ binding, stability and association with other domains. The various members present a series of evolutionary adaptations culminating in great diversity in properties and functions. Most of the predicted βγ-crystallins are yet to be characterized experimentally. In this review, we outline the distinctive features of microbial βγ-crystallins and their position in the βγ-crystallin superfamily. 相似文献
18.
β-Crystallins are the major structural proteins in mammalian lens, and their stability is critical in maintaining the transparency and refraction index of the lens. Among the seven β-crystallins, βA3-crystallin and βB1-crystallin, an acidic and a basic β-crystallin, respectively, can form heteromers in vivo. However, the physiological roles of the heteromer have not been fully elucidated. In this research, we studied whether the basic β-crystallin facilitates the folding of acidic β-crystallin. Equilibrium folding studies revealed that the βA3-crystallin and βB1-crystallin homomers and the βA3/βB1-crystallin heteromer all undergo similar five-state folding pathways which include one dimeric and two monomeric intermediates. βA3-Crystallin was found to be the most unstable among the three proteins, and the transition curve of βA3/βB1-crystallin was close to that of βB1-crystallin. The dimeric intermediate may be a critical determinant in the aggregation process and thus is crucial to the lifelong stability of the β-crystallins. A comparison of the Gibbs free energy of the equilibrium folding suggested that the formation of heteromer contributed to the stabilization of the dimer interface. On the other hand, βA3-crystallin, the only protein whose refolding is challenged by serious aggregation, can be protected by βB1-crystallin in a dose-dependent manner during the kinetic co-refolding. However, the protection is not observed in the presence of the pre-existed well-folded βB1-crystallin. These findings suggested that the formation of β-crystallin heteromers not only stabilizes the unstable acidic β-crystallin but also protects them against aggregation during refolding from the stress-denatured states. 相似文献
19.
Background
In vertebrates, non-lens βγ-crystallins are widely expressed in various tissues, but their functions are unknown. The molecular mechanisms of trefoil factors, initiators of mucosal healing and being greatly involved in tumorigenesis, have remained elusive.Principal Findings
A naturally existing 72-kDa complex of non-lens βγ-crystallin (α-subunit) and trefoil factor (β-subunit), named βγ-CAT, was identified from frog Bombina maxima skin secretions. Its α-subunit and β-subunit (containing three trefoil factor domains), with a non-covalently linked form of αβ2, show significant sequence homology to ep37 proteins, a group of non-lens βγ-crystallins identified in newt Cynops pyrrhogaster and mammalian trefoil factors, respectively. βγ-CAT showed potent hemolytic activity on mammalian erythrocytes. The specific antiserum against each subunit was able to neutralize its hemolytic activity, indicating that the two subunits are functionally associated. βγ-CAT formed membrane pores with a functional diameter about 2.0 nm, leading to K+ efflux and colloid-osmotic hemolysis. High molecular weight SDS-stable oligomers (>240-kDa) were detected by antibodies against the α-subunit with Western blotting. Furthermore, βγ-CAT showed multiple cellular effects on human umbilical vein endothelial cells. Low dosages of βγ-CAT (25–50 pM) were able to stimulate cell migration and wound healing. At high concentrations, it induced cell detachment (EC50 10 nM) and apoptosis. βγ-CAT was rapidly endocytosed via intracellular vacuole formation. Under confocal microscope, some of the vacuoles were translocated to nucleus and partially fused with nuclear membrane. Bafilomycin A1 (a specific inhibitor of the vacuolar-type ATPase) and nocodazole (an agent of microtuble depolymerizing), while inhibited βγ-CAT induced vacuole formation, significantly inhibited βγ-CAT induced cell detachment, suggesting that βγ-CAT endocytosis is important for its activities.Conclusions/Significance
These findings illustrate novel cellular functions of non-lens βγ-cyrstallins and action mechanism via association with trefoil factors, serving as clues for investigating the possible occurrence of similar molecules and action mechanisms in mammals. 相似文献20.
Bacteriophage Qβ is a small RNA virus that infects Escherichia coli. The virus particle contains a few copies of the minor coat protein A1, a C‐terminally prolonged version of the coat protein, which is formed when ribosomes occasionally read‐through the leaky stop codon of the coat protein. The crystal structure of the read‐through domain from bacteriophage Qβ A1 protein was determined at a resolution of 1.8 Å. The domain consists of a heavily deformed five‐stranded β‐barrel on one side of the protein and a β‐hairpin and a three‐stranded β‐sheet on the other. Several short helices and well‐ordered loops are also present throughout the protein. The N‐terminal part of the read‐through domain contains a prominent polyproline type II helix. The overall fold of the domain is not similar to any published structure in the Protein Data Bank. 相似文献