首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, an experimental analysis of overcoming obstacle in human walking is carried out by means of a motion capture system. In the experiment, the lower body of an adult human is divided into seven segments, and three markers are pasted to each segment with the aim to obtain moving trajectory and to calculate joint variation during walking. Moreover, kinematic data in terms of displacement, velocity and acceleration are acquired as well. In addition, ground reaction forces are measured using force sensors. Based on the experimental results, features of overcoming obstacle in human walking are ana- lyzed. Experimental results show that the reason which leads to smooth walking can be identified as that the human has slight movement in the vertical direction during walking; the reason that human locomotion uses gravity effectively can be identified as that feet rotate around the toe joints during toe-off phase aiming at using gravitational potential energy to provide propulsion for swing phase. Furthermore, both normal walking gait and obstacle overcoming gait are characterized in a form that can provide necessary knowledge and useful databases for the implementation of motion planning and gait planning towards overcoming obstacle for humanoid robots.  相似文献   

2.
3.
4.
Evaluating the effects of load carriage on gait balance stability is important in various applications. However, their quantification has not been rigorously addressed in the current literature, partially due to the lack of relevant computational indices. The novel Dynamic Gait Measure (DGM) characterizes gait balance stability by quantifying the relative effects of inertia in terms of zero-moment point, ground projection of center of mass, and time-varying foot support region. In this study, the DGM is formulated in terms of the gait parameters that explicitly reflect the gait strategy of a given walking pattern and is used for computational evaluation of the distinct balance stability of loaded walking. The observed gait adaptations caused by load carriage (decreased single support duration, inertia effects, and step length) result in decreased DGM values (p < 0.0001), which indicate that loaded walking motions are more statically stable compared with the unloaded normal walking. Comparison of the DGM with other common gait stability indices (the maximum Floquet multiplier and the margin of stability) validates the unique characterization capability of the DGM, which is consistently informative of the presence of the added load.  相似文献   

5.
A computer simulation technique was applied to make clear the mechanical characteristics of primate bipedal walking. A primate body and the walking mechanism were modeled mathematically with a set of dynamic equations. Using a digital computer, the following were calculated from these equations by substituting measured displacements and morphological data of each segment of the primate: the acceleration, joint angle, center of gravity, foot force, joint moment, muscular force, transmitted force at the joint, electric activity of the muscle, generated power by the leg and energy expenditure in walking.The model was evaluated by comparing some of the calculated results with the experimental results such as foot force and electromyographic data, and improved in order to obtain the agreement between them.The level bipedal walking of man, chimpanzee and Japanese monkey and several types of synthesized walking were analyzed from the viewpoint of biomechanics.It is concluded that the bipedal walking of chimpanzee is nearer to that of man than to that of the Japanese monkey because of its propulsive mechanism, but it requires large muscular force for supporting the body weight.  相似文献   

6.
7.
Implementing user-driven treadmill control in gait training programs for rehabilitation may be an effective means of enhancing motor learning and improving functional performance. This study aimed to determine the effect of a user-driven treadmill control scheme on walking speeds, anterior ground reaction forces (AGRF), and trailing limb angles (TLA) of healthy adults. Twenty-three participants completed a 10-m overground walking task to measure their overground self-selected (SS) walking speeds. Then, they walked at their SS and fastest comfortable walking speeds on an instrumented split-belt treadmill in its fixed speed and user-driven control modes. The user-driven treadmill controller combined inertial-force, gait parameter, and position based control to adjust the treadmill belt speed in real time. Walking speeds, peak AGRF, and TLA were compared among test conditions using paired t-tests (α = 0.05). Participants chose significantly faster SS and fast walking speeds in the user-driven mode than the fixed speed mode (p > 0.05). There was no significant difference between the overground SS walking speed and the SS speed from the user-driven trials (p < 0.05). Changes in AGRF and TLA were caused primarily by changes in walking speed, not the treadmill controller. Our findings show the user-driven treadmill controller allowed participants to select walking speeds faster than their chosen speeds on the fixed speed treadmill and similar to their overground speeds. Since user-driven treadmill walking increases cognitive activity and natural mobility, these results suggest user-driven treadmill control would be a beneficial addition to current gait training programs for rehabilitation.  相似文献   

8.
9.
10.
Lake models that predict phosphorus (P) concentrations from P-loading have provided important knowledge enabling successful restoration of many eutrophic lakes during the last decades. However, the first-generation (static) models were rather imprecise and some nutrient abatement programs have therefore produced disappointingly modest results. This study compares 12 first-generation models with three newer ones. These newer models are dynamic (time-dependent), and general in the sense that they work without any further calibration for lakes from a wide limnological domain. However, static models are more accessible to non-specialists. Predictions of P concentrations were compared with empirical long-term data from a multi-lake survey, as well as to data from transient conditions in six lakes. Dynamic models were found to predict P concentrations with much higher certainty than static models. One general dynamic model, LakeMab, works for both deep and shallow lakes and can, in contrast to static models, predict P fluxes and particulate and dissolved P, both in surface waters and deep waters. PCLake, another general dynamic model, has advantages that resemble those of LakeMab, except that it needs three or four more input variables and is only valid for shallow lakes.  相似文献   

11.
12.
We collected high-resolution plantar pressure distributions of seven bonobos during terrestrial bipedal and quadrupedal locomotion (N = 146). Functional foot length, degree of hallux abduction, and total contact time were determined, and plots, showing pressure as a function of time for six different foot regions, were generated. We also studied five adult humans for comparison (N = 13). Both locomotion types of the bonobo show a large variation in plantar pressure distributions, which could be due to the interference of instantaneous behavior with locomotion and differences in walking speed and body dimensions. The heel and the lateral midfoot typically touch down simultaneously at initial ground contact in bipedal and quadrupedal walking of bonobos, in contrast with the typical heel-strike of human bipedalism. The center of pressure follows a curved course during quadrupedalism, as a consequence of the medial weight transfer during mid-stance. Bipedal locomotion of bonobos is characterized by a more plantar positioning of the feet and by a shorter contact time than during quadrupedal walking, according to a smaller stride and step length at a higher frequency. We observed a varus position of the foot with an abducted hallux, which likely possesses an important sustaining and stabilizing function during terrestrial locomotion.  相似文献   

13.
Locomotion arises from the complex and coordinated function of limb muscles. Yet muscle function is dynamic over the course of a single stride and between strides for animals moving at different speeds or on variable terrain. While it is clear that motor unit recruitment can vary between and within muscles, we know little about how work is distributed within and between muscles under in vivo conditions. Here we show that the lateral gastrocnemius (LG) of helmeted guinea fowl (Numida meleagris) performs considerably more work than its synergist, the medial gastrocnemius (MG) and that the proximal region of the MG (pMG) performs more work than the distal region (dMG). Positive work done by the LG was approximately twice that of the proximal MG when the birds walked at 0.5 ms -1, and four times when running at 2.0 m s-1. This is probably due to different moments at the knee, as well as differences in motor unit recruitment. The dMG performed less work than the pMG because its apparent dynamic stiffness was greater, and because it exhibited a greater recruitment of slow-twitch fibres. The greater compliance of the pMG leads to increased stretch of its fascicles at the onset of force, further enhancing force production. Our results demonstrate the capacity for functional diversity between and within muscle synergists, which increases with changes in gait and speed.  相似文献   

14.
The skeleton of Australopithecus afarensis (A.L. 288-1, better known as "Lucy") is by far the most complete record of locomotor morphology of early hominids currently available. Even though researchers agree that the postcranial skeleton of Lucy shows morphological features indicative of bipedality, only a few studies have investigated Lucy's bipedal locomotion itself. Lucy's energy expenditure during locomotion has been the topic of much speculation, but has not been investigated, except for several estimates derived from experimental data collected on other animals. To gain further insights into how Lucy may have walked, we generated a full three-dimensional (3D) reconstruction and forward-dynamic simulation of upright bipedal locomotion of this ancient human ancestor. Laser-scanned 3D bone geometries were combined with state-of-the-art neuromusculoskeletal modeling and simulation techniques from computational biomechanics. A detailed full 3D neuromusculoskeletal model was developed that encompassed all major bones, joints (10), and muscles (52) of the lower extremity. A model of muscle force and heat production was used to actuate the musculoskeletal system, and to estimate total energy expenditure during locomotion. Neural activation profiles for each of the 52 muscles that produced a single step of locomotion, while at the same time minimizing the energy consumed per meter traveled, were searched through numerical optimization. The numerical optimization resulted in smooth locomotor kinematics, and the predicted energy expenditure was appropriate for upright bipedal walking in an individual of Lucy's body size.  相似文献   

15.
Lacking an external shell and a rigid endoskeleton, octopuses exhibit a remarkable flexibility in their movements. Bipedal locomotion is perhaps the most iconic example in this regard. Until recently, this peculiar mode of locomotion had been observed only in two species of tropical octopuses: Amphioctopus marginatus and Abdopus aculeatus. Yet, recent evidence indicates that bipedal walking is also part of the behavioral repertoire of the common octopus, Octopus vulgaris. Here we report a further observation of a defense behavior that encompasses both postural and locomotory elements of bipedal locomotion in this cephalopod. By highlighting differences and similarities with the other recently published report, we provide preliminary considerations with regard to bipedal locomotion in the common octopus.  相似文献   

16.
This study involved examining the ability of a postadoption intervention to reduce returns of newly adopted dogs to shelters by encouraging physical activity between adopters and their dogs. Guardians in the intervention group received emails with dog behavior and human activity advice as well as invitations to join weekly dog walks. Both the intervention and control groups completed surveys regarding outdoor activity with their dogs, their dog-walking habits, and perceptions of their dogs’ behaviors. Adopter–dog pairs in the intervention group were not significantly more active than those in the control group, nor did they show a reduced incidence of returning their dogs. Guardians in both groups who reported higher obligation and self-efficacy in their dog walking were more active regardless of experimental condition; however, obligation, dog-walking self-efficacy, and perceptions about their dogs’ on-leash behaviors did not predict rates of return to the shelter. These findings add to the understanding of shelter dog re-relinquishment and the effective utilization of resources postadoption, and they indicate further research is needed to address the complexities of this newly forming human–dog relationship.  相似文献   

17.
18.
基于PCR的染色体步移技术研究进展   总被引:1,自引:0,他引:1  
基于PCR的染色体步移技术主要用于分离已知序列侧翼的未知序列,为分离基因、步移调控区域及填补基因组测序的空隙提供极大便利。基于PCR的染色体步移技术依照原理可分成依赖连接介导PCR法和不需要酶切连接PCR法。综述了近年来以PCR为基础的染色体步移技术,比较了这些方法的原理及操作步骤,同时总结了依赖连接介导PCR法和不需要酶切连接PCR法的优点与缺点,以期对研究起到借鉴作用。  相似文献   

19.
Clinical gait analysis allows the measurement and assessment of walking biomechanics, which facilitates the identification of abnormal characteristics and the recommendation of treatment alternatives. The predominant methods for this analysis currently include the tracking of external markers placed on the patient, the monitoring of patient/ground interaction (e.g. ground reaction forces), and the recording of muscle electromyographic (EMG) activity, all during gait. These data allow the computation of stride and temporal parameters, joint/segment kinematics, joint kinetics, and EMG plots that are used to gain a better understanding of a patient's walking difficulties. Gait interpretation involves a systemic evaluation of each of these types of data, noting both corroborating and conflicting information while identifying functionally significant deviations from the normal. Understanding the etiology of these abnormalities allows the formulation of a treatment plan that may involve physical therapy, bracing, and/or surgery. This process is challenging because of the complexity of the motion, neuromuscular involvement of the patient (e.g. dynamic spasticity), variability of treatment outcome, and on occasion, uncertainty about the quality of the gait data. The experience of the interpretation team with respect to gait biomechanics, a particular patient population, and the effectiveness of different treatment modalities is the principal determinant of the success of this approach. The clinical gait analysis process continues to evolve positively. It has become more comprehensive and meaningful because of an improved understanding of normal gait biomechanics and more rigorous data collection/reduction protocols that complement accumulated clinically relevant experience.  相似文献   

20.
Whether humans minimize metabolic energy in gait is unknown. Gradient-based optimization could be used to predict gait without using walking data but requires a twice differentiable metabolic energy model. Therefore, the metabolic energy model of Umberger et al. (2003 Umberger BR, Gerritsen KG, Martin PE. 2003. A model of human muscle energy expenditure. Comput Methods Biomech Biomed Eng. 6(2):99111.[Taylor &; Francis Online] [Google Scholar]) was adapted to be twice differentiable. Predictive simulations of a reaching task and gait were solved using this continuous model and by minimizing effort. The reaching task simulation showed that energy minimization predicts unrealistic movements when compared to effort minimization. The predictive gait simulations showed that objectives other than metabolic energy are also important in gait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号