首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work has shown that efficient di- or trimerization of hydrophobic transmembrane helices in detergent micelles or lipid bilayers can be driven by inter-helix hydrogen bonding involving polar residues such as Asn or Asp. Using in vitro translation in the presence of rough microsomes of a model integral membrane protein, we now show that the formation of so-called helical hairpins, two tightly spaced transmembrane helices connected by a short loop, can likewise be promoted by the introduction of Asn-Asn or Asp-Asp pairs in a long transmembrane hydrophobic segment. These observations suggest that inter-helix hydrogen bonds can form within the context of the Sec61 translocon in the endoplasmic reticulum, implying that hydrophobic segments in a nascent polypeptide chain in transit through the Sec61 channel have immediate access to a non-aqueous subcompartment within the translocon.  相似文献   

2.
MscL is a bacterial mechanosensitive channel that is activated directly by membrane stretch. Although the gene has been cloned and the crystal structure of the closed channel has been defined, how membrane tension causes conformational changes in MscL remains largely unknown. To identify the site where MscL senses membrane tension, we examined the function of the mutants generated by random and scanning mutagenesis. In vitro (patch-clamp) and in vivo (hypoosmotic-shock) experiments showed that when a hydrophilic amino acid replaces one of the hydrophobic residues that are thought to make contact with the membrane lipid near the periplasmic end of the M1 or M2 transmembrane domain, MscL loses the ability to open in response to membrane tension. Hydrophilic (asparagine) substitution of the other residues in the lipid-protein interface did not impair the channel's mechanosensitivity. These observations suggest that the disturbance of the hydrophobic interaction between the membrane lipid and the periplasmic rim of the channel's funnel impairs the function of MscL.  相似文献   

3.
Yue QK  Kass IJ  Sampson NS  Vrielink A 《Biochemistry》1999,38(14):4277-4286
Cholesterol oxidase is a monomeric flavoenzyme which catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The enzyme interacts with lipid bilayers in order to bind its steroid substrate. The X-ray structure of the enzyme from Brevibacterium sterolicum revealed two loops, comprising residues 78-87 and residues 433-436, which act as a lid over the active site and facilitate binding of the substrate [Vrielink et al. (1991) J. Mol. Biol. 219, 533-554; Li et al. (1993) Biochemistry 32, 11507-11515]. It was postulated that these loops must open, forming a hydrophobic channel between the membrane and the active site of the protein and thus sequestering the cholesterol substrate from the aqueous environment. Here we describe the three-dimensional structure of the homologous enzyme from Streptomyces refined to 1.5 A resolution. Structural comparisons to the enzyme from B. sterolicum reveal significant conformational differences in these loop regions; in particular, a region of the loop comprising residues 78-87 adopts a small amphipathic helical turn with hydrophobic residues directed toward the active site cavity and hydrophilic residues directed toward the external surface of the molecule. It seems reasonable that this increased rigidity reduces the entropy loss that occurs upon binding substrate. Consequently, the Streptomyces enzyme is a more efficient catalyst. In addition, we have determined the structures of three active site mutants which have significantly reduced activity for either the oxidation (His447Asn and His447Gln) or the isomerization (Glu361Gln). Our structural and kinetic data indicate that His447 and Glu361 act as general base catalysts in association with conserved water H2O541 and Asn485. The His447, Glu361, H2O541, and Asn485 hydrogen bond network is conserved among other oxidoreductases. This catalytic tetrad appears to be a structural motif that occurs in flavoenzymes that catalyze the oxidation of unactivated alcohols.  相似文献   

4.
The GM2-activator protein (GM2-AP) is a small lysosomal lipid transfer protein essential for the hydrolytic conversion of ganglioside GM2 to GM3 by beta-hexosaminidase A. The crystal structure of human apo-GM2-AP is known to consist of a novel beta-cup fold with a spacious hydrophobic interior. Here, we present two new structures of GM2-AP with bound lipids, showing two different lipid-binding modes within the apolar pocket. The 1.9A structure with GM2 bound shows the position of the ceramide tail and significant conformational differences among the three molecular copies in the asymmetric unit. The tetrasaccharide head group is not visible and is presumed to be disordered. However, its general position could be established through modeling. The structure of a low-pH crystal, determined at 2.5A resolution, has a significantly enlarged hydrophobic channel that merges with the apolar pocket. Electron density inside the pocket and channel suggests the presence of a trapped phospholipid molecule. Structure alignments among the four crystallographically unique monomers provide information on the potential role for lipid binding of flexible chain segments at the rim of the cavity opening. Two discrete orientations of the S130-T133 loop define an open and a closed configuration of the hydrophobic channel that merges with the apolar pocket. We propose: (i) that the low-pH structure represents an active membrane-binding conformation; (ii) that the mobile S130-T133 loop serves as a gate for passage of ligand into the apolar pocket; and (iii) that this loop and the adjacent apolar V59-W63 loop form a surface patch with two exposed tryptophan residues that could interface with lipid bilayers.  相似文献   

5.
The paucity of crystallographic data on the structure of intrinsic membrane proteins necessitates the development of additional techniques to probe their structures. The colicin E1 ion channel domain contains one prominent hydrophobic region near its COOH terminus that has been proposed to be an anchor for the assembly of the channel. Saturation site-directed mutagenesis of the hydrophobic anchor region of the colicin E1 ion channel was used to probe whether it spanned the bilayer once or twice. A nonpolar amino acid was replaced by a charged residue in 29 mutations made at 26 positions in the channel domain. Substitution of the charged amino acid at all positions except those in the center of the hydrophobic region and the periphery of the hydrophobic region caused a large decrease in the cytotoxicity of the purified mutant colicin E1 protein. This result implies that the hydrophobic domain spans the membrane bilayer twice in a helical hairpin loop, with the center of this domain residing in an aqueous or polar phase. The lengths of the trans-membrane helices appear to be approximately 18 and 16 residues. The absence of significant changes in ion selectivity in five of nine mutants indicated that these mutations did not cause a large change in the channel structure. The ion selectivity changes in four mutants and those previously documented for the flanking Lys residues imply that the hydrophobic hairpin is part of the channel lumen. Water may "abhor" the hydrophobic side of the channel, explaining the small effects of residue charge changes on ion selectivity.  相似文献   

6.
During membrane biogenesis, the M13 procoat protein is inserted into the lipid bilayer in a strictly YidC-dependent manner with both the hydrophobic signal sequence and the membrane anchor sequence promoting translocation of the periplasmic loop via a hairpin mechanism. Here, we find that the translocase requirements can be altered for PClep in a predictable manner by changing the polarity and charge of the peptide region that is translocated across the membrane. When the polarity of the translocated peptide region is lowered and the charged residues in this region are removed, translocation of this loop region occurs largely by a YidC- and Sec-independent mechanism. When the polarity is increased to that of the wild-type procoat protein, the YidC insertase is essential for translocation. Further increasing the polarity, by adding charged residues, switches the insertion pathway to a YidC/Sec mechanism. Conversely, we find that increasing the hydrophobicity of the transmembrane segments of PClep can decrease the translocase requirement for translocation of the peptide chain. This study provides a framework to understand why the YidC and Sec machineries exist in parallel and demonstrates that the YidC insertase has a limited capacity to translocate a peptide chain on its own.  相似文献   

7.
Jung HJ  Lee JY  Kim SH  Eu YJ  Shin SY  Milescu M  Swartz KJ  Kim JI 《Biochemistry》2005,44(16):6015-6023
VSTx1 is a voltage sensor toxin from the spider Grammostola spatulata that inhibits KvAP, an archeabacterial voltage-activated K(+) channel whose X-ray structure has been reported. Although the receptor for VSTx1 and the mechanism of inhibition are unknown, the sequence of the toxin is related to hanatoxin (HaTx) and SGTx, two toxins that inhibit eukaryotic voltage-activated K(+) channels by binding to voltage sensors. VSTx1 has been recently shown to interact equally well with lipid membranes that contain zwitterionic or acidic phospholipids, and it has been proposed that the toxin receptor is located within a region of the channel that is submerged in the membrane. As a first step toward understanding the inhibitory mechanism of VSTx1, we determined the three-dimensional solution structure of the toxin using NMR. Although the structure of VSTx1 is similar to HaTx and SGTx in terms of molecular fold and amphipathic character, the detailed positions of hydrophobic and surrounding charged residues in VSTx1 are very different than what is seen in the other toxins. The amphipathic character of VSTx1, notably the close apposition of basic and hydrophobic residues on one face of the toxin, raises the possibility that the toxin interacts with interfacial regions of the membrane. We reinvestigated the partitioning of VSTx1 into lipid membranes and find that VSTx1 partitioning requires negatively charged phospholipids. Intrinsic tryptophan fluorescence and acrylamide quenching experiments suggest that tryptophan residues on the hydrophobic surface of VSTx1 have a diminished exposure to water when the toxin interacts with membranes. The present results suggest that if membrane partitioning is involved in the mechanism by which VSTx1 inhibits voltage-activated K(+) channels, then binding of the toxin to the channel would likely occur at the interface between the polar headgroups and the hydrophobic phase of the membrane.  相似文献   

8.
Powl AM  Wright JN  East JM  Lee AG 《Biochemistry》2005,44(15):5713-5721
The hydrophobic thickness of a membrane protein is an important parameter, defining how the protein sits within the hydrocarbon core of the lipid bilayer that surrounds it in a membrane. Here we show that Trp scanning mutagenesis combined with fluorescence spectroscopy can be used to define the hydrophobic thickness of a membrane protein. The mechanosensitive channel of large conductance (MscL) contains two transmembrane alpha-helices, of which the second (TM2) is lipid-exposed. The region of TM2 that spans the hydrocarbon core of the bilayer when MscL is reconstituted into bilayers of dioleoylphosphatidylcholine runs from Leu-69 to Leu-92, giving a hydrophobic thickness of ca. 25 A. The results obtained using Trp scanning mutagenesis were confirmed using Cys residues labeled with the N-methyl-amino-7-nitroben-2-oxa-1,3-diazole [NBD] group; both fluorescence emission maxima and fluorescence lifetimes for the NBD group are sensitive to solvent dielectric constant over the range (2-40) thought to span the lipid headgroup region of a lipid bilayer. Changing phospholipid fatty acyl chain lengths from C14 and C24 results in no significant change for the fluorescence of the interfacial residues, suggesting very efficient hydrophobic matching between the protein and the surrounding lipid bilayer.  相似文献   

9.
OmpG, a monomeric pore-forming protein from Escherichia coli outer membranes, was refolded from inclusion bodies and crystallized in two different conformations. The OmpG channel is a 14-stranded beta-barrel, with short periplasmic turns and seven extracellular loops. Crystals grown at neutral pH show the channel in the open state at 2.3 A resolution. In the 2.7 A structure of crystals grown at pH 5.6, the pore is blocked by loop 6, which folds across the channel. The rearrangement of loop 6 appears to be triggered by a pair of histidine residues, which repel one another at acidic pH, resulting in the breakage of neighbouring H-bonds and a lengthening of loop 6 from 10 to 17 residues. A total of 151 ordered LDAO detergent molecules were found in the 2.3 A structure, mostly on the hydrophobic outer surface of OmpG, mimicking the outer membrane lipid bilayer, with three LDAO molecules in the open pore. In the 2.7 A structure, OmpG binds one OG and one glucose molecule as sugar substrates in the closed pore.  相似文献   

10.
Membrane contact sites, where two organelles are in close proximity, are critical regulators of cellular membrane homeostasis, with roles in signaling, lipid metabolism, and ion dynamics. A growing catalog of specialized lipid transfer proteins carry out lipid exchange at these sites. Currently characterized eukaryotic lipid transport proteins are shuttles that typically extract a single lipid from the membrane of the donor organelle, solubilize it during transport through the cytosol, and deposit it in the acceptor organelle membrane. Here, we highlight the recently identified chorein_N family of lipid transporters, including the Vps13 proteins and the autophagy protein Atg2. These are elongated proteins that, distinct from previously characterized transport proteins, bind tens of lipids at once. They feature an extended channel, most likely lined with hydrophobic residues. We discuss the possibility that they are not shuttles but instead are bridges between membranes, with lipids traversing the cytosol via the hydrophobic channel.  相似文献   

11.
Mutations that alter the phenotypic behavior of the Escherichia coli mechanosensitive channel of small conductance (MscS) have been identified; however, most of these residues play critical roles in the transition between the closed and open states of the channel and are not directly involved in lipid interactions that transduce the tension response. In this study, we use molecular dynamic simulations to predict critical lipid interacting residues in the closed state of MscS. The physiological role of these residues was then investigated by performing osmotic downshock assays on MscS mutants where the lipid interacting residues were mutated to alanine. These experiments identified seven residues in the first and second transmembrane helices as lipid-sensing residues. The majority of these residues are hydrophobic amino acids located near the extracellular interface of the membrane. All of these residues interact strongly with the lipid bilayer in the closed state of MscS, but do not face the bilayer directly in structures associated with the open and desensitized states of the channel. Thus, the position of these residues relative to the lipid membrane appears related to the ability of the channel to sense tension in its different physiological states.  相似文献   

12.
The initial stages of the gating of the mechanoselective channel of large conductance from Mycobacterium tuberculosis have been studied in atomic detail using molecular dynamics simulation techniques. A truncated form of the protein complex embedded in a palmitoyloleoylphosphatidylcholine lipid bilayer and surrounded by explicit water was simulated under different pressure conditions to mimic the effects of tension and compression within the membrane on the protein. As a direct result of lateral tension being applied to the membrane, an increase in the tilt of a subset of the transmembrane helices was observed. This in turn led to the enlargement of the pore and the disruption of the hydrophobic gate consisting of residues Ile-14 and Val-21. The simulations suggest that opening occurs in a sequential staged process. Such a mechanism could explain the partial opening or staged conductance observed in patch-clamp experiments using related large conductance mechanosensitive channel complexes.  相似文献   

13.
The pleckstrin homology (PH) domain of the general receptor for phosphoinositides 1 (GRP1) exhibits specific, high-affinity, reversible binding to phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P(3)) at?the plasma membrane, but the nature and extent of the interaction between this bound complex and the surrounding membrane environment remains unclear. Combining equilibrium and nonequilibrium molecular dynamics (MD) simulations, NMR spectroscopy, and monolayer penetration experiments, we characterize the membrane-associated state of?GRP1-PH. MD simulations show loops flanking the binding site supplement the interaction with PI(3,4,5)P(3) through multiple contacts with the lipid bilayer. NMR data show large perturbations in chemical shift for these loop regions on binding to PI(3,4,5)P(3)-containing DPC micelles. Monolayer penetration experiments and further MD simulations demonstrate that mutating hydrophobic residues to polar residues in the flanking loops reduces membrane penetration. This supports a "dual-recognition" model of binding, with specific GRP1-PH-PI(3,4,5)P(3) interactions supplemented by interactions of loop regions with the lipid bilayer.  相似文献   

14.
Multilayer interactions determine the Golgi localization of GRIP golgins   总被引:1,自引:0,他引:1  
Golgin-97, RanBP2alpha, Imh1p and p230/golgin-245 (GRIP) domain golgins are targeted to the Golgi membrane through their GRIP domains. By analyzing more than 30 mutants of golgin-97 and golgin-245 GRIP domains for their properties of dimerization, interaction with ARF like protein 1 (Arl1)-GTP and Golgi targeting, we found hierarchically organized three-tier interactions governing the Golgi targeting of GRIP domain golgins. GRIP domain self-dimerization is necessary for bivalent interaction with Arl1-GTP. Unexpectedly, however, these two interactions are not sufficient for Golgi targeting, as a third group of residues, including positive-charged arginine between alpha1 and alpha2 and hydrophobic residues C-terminal to the GRIP domain, turn out to be essential. Surface plasmon resonance analysis indicates that GRIP domain interacts directly with membrane lipid, partially through the third group of residues such as W744 of golgin-97. This third tier of interaction with the membrane could be mediated by non-specific hydrophobic and electrostatic forces.  相似文献   

15.
Kir channels are important in setting the resting membrane potential and modulating membrane excitability. A common feature of Kir2 channels and several other ion channels that has emerged in recent years is that they are regulated by cholesterol, a major lipid component of the plasma membrane whose excess is associated with multiple pathological conditions. Yet, the mechanism by which cholesterol affects channel function is not clear. We have recently shown that the sensitivity of Kir2 channels to cholesterol depends on residues in the CD loop of the cytosolic domain of the channels with one of the mutations, L222I, abrogating cholesterol sensitivity of the channels completely. Here we show that in addition to Kir2 channels, members of other Kir subfamilies are also regulated by cholesterol. Interestingly, while similarly to Kir2 channels, several Kir channels, Kir1.1, Kir4.1 and Kir6.2Delta36 were suppressed by an increase in membrane cholesterol, the function of Kir3.4* and Kir7.1 was enhanced following cholesterol enrichment. Furthermore, we show that independent of the impact of cholesterol on channel function, mutating residues in the corresponding positions of the CD loop in Kir2.1 and Kir3.4*, inhibits cholesterol sensitivity of Kir channels, thus extending the critical role of the CD loop beyond Kir2 channels.  相似文献   

16.
Modeling the ion channel structure of cecropin.   总被引:11,自引:0,他引:11       下载免费PDF全文
Atomic-scale computer models were developed for how cecropin peptides may assemble in membranes to form two types of ion channels. The models are based on experimental data and physiochemical principles. Initially, cecropin peptides, in a helix-bend-helix motif, were arranged as antiparallel dimers to position conserved residues of adjacent monomers in contact. The dimers were postulated to bind to the membrane with the NH2-terminal helices sunken into the head-group layer and the COOH-terminal helices spanning the hydrophobic core. This causes a thinning of the top lipid layer of the membrane. A collection of the membrane bound dimers were then used to form the type I channel structure, with the pore formed by the transmembrane COOH-terminal helices. Type I channels were then assembled into a hexagonal lattice to explain the large number of peptides that bind to the bacterium. A concerted conformational change of a type I channel leads to the larger type II channel, in which the pore is formed by the NH2-terminal helices. By having the dimers move together, the NH2-terminal helices are inserted into the hydrophobic core without having to desolvate the charged residues. It is also shown how this could bring lipid head-groups into the pore lining.  相似文献   

17.
Mihajlovic M  Lazaridis T 《Proteins》2008,70(3):761-778
Aggregation and fibrillation of alpha-synuclein bound to membranes are believed to be involved in Parkinson's and other neurodegenerative diseases. On SDS micelles, the N-terminus of alpha-synuclein forms two curved helices linked by a short loop. However, its structure on lipid bilayers has not been experimentally resolved. Using MD simulations with an implicit membrane model we show here that, on a planar mixed membrane, the truncated alpha-synuclein (residues 1-95) forms a bent helix. Bending of the helix is not due to the protein sequence or membrane binding, but to collective motions of the long helix. The backbone of the helix is approximately 2.5 A above the membrane surface, with some residues partially inserted in the membrane core. The helix periodicity is 11/3 (11 residues complete three full turns) as opposed to 18/5 periodicity of an ideal alpha-helix, with hydrophobic residues towards the membrane, negatively charged residues towards the solvent and lysines on the polar/nonpolar interface. A series of threonines, which are characteristic for alpha-synuclein and perhaps a phosphorylation site, is also located at the hydrophobic/hydrophilic interface with their side chain often hydrogen bonded to the main-chain atom. The calculations show that the energy penalty for change in periodicity from the 18/5 to 11/3 on the anionic membrane is overcome by favorable solvation energy. The binding of truncated alpha-synuclein to membranes is weak. It prefers anionic membranes but it also binds marginally to a neutral membrane, via its C-terminus. Dimerization of helical monomers on the mixed membrane is energetically favorable. However, it slightly interferes with membrane binding. This might promote lateral diffusion of the protein on the membrane surface and facilitate assembly of oligomers that precede fibrillation.  相似文献   

18.
《Journal of molecular biology》2019,431(17):3339-3352
All membrane proteins have dynamic and intimate relationships with the lipids of the bilayer that may determine their activity. Mechanosensitive channels sense tension through their interaction with the lipids of the membrane. We have proposed a mechanism for the bacterial channel of small conductance, MscS, that envisages variable occupancy of pockets in the channel by lipid chains. Here, we analyze protein–lipid interactions for MscS by quenching of tryptophan fluorescence with brominated lipids. By this strategy, we define the limits of the bilayer for TM1, which is the most lipid exposed helix of this protein. In addition, we show that residues deep in the pockets, created by the oligomeric assembly, interact with lipid chains. On the cytoplasmic side, lipids penetrate as far as the pore-lining helices and lipid molecules can align along TM3b perpendicular to lipids in the bilayer. Cardiolipin, free fatty acids, and branched lipids can access the pockets where the latter have a distinct effect on function. Cholesterol is excluded from the pockets. We demonstrate that introduction of hydrophilic residues into TM3b severely impairs channel function and that even “conservative” hydrophobic substitutions can modulate the stability of the open pore. The data provide important insights into the interactions between phospholipids and MscS and are discussed in the light of recent developments in the study of Piezo1 and TrpV4.  相似文献   

19.
Chitin synthases are vital for growth in certain oomycetes as chitin is an essential component in the cell wall of these species. In Saprolegnia monoica, two chitin synthases have been found, and both contain a Microtubule Interacting and Trafficking (MIT) domain. The MIT domain has been implicated in lipid interaction, which in turn may be of significance for targeting of chitin synthases to the plasma membrane. In this work we have investigated the lipid interacting properties of the MIT domain from chitin synthase 1 in Saprolegnia monoica. We show by fluorescence spectroscopy techniques that the MIT domain interacts preferentially with phosphatidic acid (PA), while it does not interact with phosphatidylglycerol (PG) or phosphatidylcholine (PC). These results strongly suggest that the specific properties of PA are required for membrane interaction of the MIT domain. PA is negatively charged, binds basic side chains with high affinity and its small headgroup gives rise to membrane packing defects that enable intercalation of hydrophobic amino acids. We propose a mode of lipid interaction that involves a combination of basic amino acid residues and Trp residues that anchor the MIT domain specifically to bilayers that contain PA.  相似文献   

20.
Voltage-dependent orientation of membrane proteins   总被引:1,自引:0,他引:1  
In order to study the influence of electrostatic forces on the disposition of proteins in membranes, we have examined the interaction of a receptor protein and of a membrane-active peptide with black lipid membranes. In the first study we show that the hepatic asialoglycoprotein receptor can insert spontaneously into lipid bilayers from the aqueous medium. Under the influence of a trans-positive membrane potential, the receptor, a negatively charged protein, appears to change its disposition with respect to the membrane. In the second study we consider melittin, an amphipathic peptide containing a generally hydrophobic stretch of 19 amino acids followed by a cluster of four positively charged residues at the carboxy terminus. The hydrophobic region contains two positively charged residues. In response to trans-negative electrical potential, melittin appears to assume a transbilayer position. These findings indicate that electrostatic forces can influence the disposition, and perhaps the orientation, of membrane proteins. Given the inside-negative potential of most or all cells, we would expect transmembrane proteins to have clusters of positively charged residues adjacent to the cytoplasmic ends of their hydrophobic transmembrane segments, and clusters of negatively charged residues just to the extracytoplasmic side. This expectation has been borne out by examination of the few transmembrane proteins for which there is sufficient information on both sequence and orientation. Surface and dipole potentials may similarly affect the orientation of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号