首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Escherichia coli ribosomal protein S4 was subjected to cyanogen bromide cleavage and was found to generate a complete cleavage product capable of rebinding 16S rRNA. This fragment, consisting of residues 1-103, was found to bind with an apparent association constant of 11 microM-1. This fragment was used in place of S4 in an in vitro reconstitution experiment. Although the particles formed had a protein composition not significantly different from reconstituted 30S ribosomal subunits, their sedimentation behavior was more like that of particles reconstituted without S4. These results indicate to us that, although residues 104-203 of S4 are involved in the assembly of the 30S ribosome, they are not necessary for the binding of S4 to 16S RNA. Taken with previous results, the domain of S4 involved in specific binding of 16S RNA can be confined to residues 47-103.  相似文献   

2.
A fragment of the 16 S ribosomal RNA of Escherichia coli that contains the binding sites for proteins S8 and S15 of the 30 S ribosomal subunit has been isolated and characterized. The RNA fragment, which sediments as 5 S, was partially protected from pancreatic RNAase digestion when S15 alone, or S8 and S15 together, were bound to the 16 S RNA. Purified 5 S RNA was shown to reassociate specifically with protein S15 by analysis of binding stoichiometry. Although interaction between the fragment and protein S8 alone could not be detected, the 5 S RNA selectively bound both S8 and S15 when incubated with an unfractionated mixture of 30-S subunit proteins. Nucleotide sequence analysis demonstrated that the 5 S RNA arises from the middle of the 16 S RNA molecule and encompasses approximately 150 residues from Sections C, C'1 and C'2. Section C consists of a long hairpin loop with an extensively hydrogen-bonded stem and is contiguous with Section C'1. Sections C'1 and C'2, although not contiguous, are highly complementary and it is likely that together they comprise the base-paired stem of an adjacent loop.  相似文献   

3.
Escherichia coli ribosomal protein S8 has been subjected to mild proteolytic digestion in order to search for structural domains within the protein [1]. A characteristic fragment produced in high yield after chymotrypsin treatment has been located with the protein sequence. Circular dichroism has shown this domain to be rich in α helix. However, the fragment loses its ability to bind to 16 S rRNA as does a similar fragment produced by trypsin cleavage. The intact protein is required for rRNA binding and is highly protected against proteolytic digestion when bound to the RNA.  相似文献   

4.
5.
6.
Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.  相似文献   

7.
The core ribosomal protein S8 binds to the central domain of 16S rRNA independently of other ribosomal proteins and is required for assembling the 30S subunit. It has been shown with E. coli ribosomes that a short rRNA fragment restricted by nucleotides 588-602 and 636-651 is sufficient for strong and specific protein S8 binding. In this work, we studied the complexes formed by ribosomal protein S8 from Thermus thermophilus and Methanococcus jannaschii with short rRNA fragments isolated from the same organisms. The dissociation constants of the complexes of protein S8 with rRNA fragments were determined. Based on the results of binding experiments, rRNA fragments of different length were designed and synthesized in preparative amounts in vitro using T7 RNA-polymerase. Stable S8–RNA complexes were crystallized. Crystals were obtained both for homologous bacterial and archaeal complexes and for hybrid complexes of archaeal protein with bacterial rRNA. Crystals of the complex of protein S8 from M. jannaschii with the 37-nucleotide rRNA fragment from the same organism suitable for X-ray analysis were obtained.  相似文献   

8.
The co-operative interaction of 30 S ribosomal subunit proteins S6, S8, S15 and S18 with 16 S ribosomal RNA from Escherichia coli was studied by (1) determining how the binding of each protein is influenced by the others and (2) characterizing a series of protein-rRNA fragment complexes. Whereas S8 and S15 are known to associate independently with the 16 S rRNA, binding of S18 depended upon S8 and S15, and binding of S6 was found to require S8, S15 and S18. Ribonucleoprotein (RNP) fragments were derived from the S8-, S8/S15- and S6/S8/S15/S18-16 S rRNA complexes by partial RNase hydrolysis and isolated by electrophoresis through Mg2+-containing polyacrylamide gels or by centrifugation through sucrose gradients. Identification of the proteins associated with each RNP by gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated the presence of S8, S8 + S15 and S6 + S8 + S15 + S18 in the corresponding fragment complexes. Analysis of the rRNA components of the RNP particles confirmed that S8 was bound to nucleotides 583 to 605 and 624 to 653, and that S8 and S15 were associated with nucleotides 583 to 605, 624 to 672 and 733 to 757. Proteins S6, S8, S15 and S18 were shown to protect nucleotides 563 to 605, 624 to 680, 702 to 770, 818 to 839 and 844 to 891, which span the entire central domain of the 16 S rRNA molecule (nucleotides 560 to 890). The binding site for each protein contains helical elements as well as single-stranded internal loops ranging in size from a single bulged nucleotide to 20 bases. Three terminal loops and one stem-loop structure within the central domain of the 16 S rRNA were not protected in the four-protein complex. Interestingly, bases within or very close to these unprotected regions have been shown to be accessible to chemical and enzymatic probes in 30 S subunits but not in 70 S ribosomes. Furthermore, nucleotides adjacent to one of the unprotected loops have been cross-linked to a region near the 3' end of 16 S rRNA. Our observations and those of others suggest that the bases in this domain that are not sequestered by interactions with S6, S8, S15 or S18 play a role involved in subunit association or in tertiary interactions between portions of the rRNA chain that are distant from one-another in the primary structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
10.
D Barritault  D H Hayes 《Biochimie》1977,59(5-6):463-472
Analyses of the T1 ribonuclease-alkaline phosphatase fingerprint of a continuous fragment of the 16S rRNA, 170-230 nucleotides long, isolated from the products of autodigestion of 30S ribosome subunits show that it contains a sequence near the 5'-phosphate terminus of intact 16S rRNA and corresponds to segment H'-M of this molecule as defined by Ehresmann et al [29]. Incubation of this fragment with total 30S ribosomal proteins under reconstitution conditions leads to the formation of a complex containing proteins S4, S20, and one or both of proteins S16 and S17. The stoichiometry of these proteins in the complex is discussed.  相似文献   

11.
12.
M A Peters  T A Walker  N R Pace 《Biochemistry》1982,21(10):2329-2335
Limited digestion of mouse 5.8S ribosomal RNA (rRNA) with RNase T2 generates 5'- and 3'-terminal "half-molecules". These fragments are capable of independently and specifically binding to 28S rRNA, so there exist at least two contacts in the 5.8S rRNA for the 28S rRNA. The dissociation constants for the 5.8S/28S, 5' 5.8S fragment/28S, and 3' 5.8S fragment/28S complexes are 9 x 10(-8) M, 6 x 10(-8) M, and 13 x 10(-8) M, respectively. Thus, each of the fragment binding sites contributes about equally to the overall binding energy of the 5.8S/28S rRNA complex, and the binding sites act independently, rather than cooperatively. The dissociation constants suggest that the 5.8S rRNA termini from short, irregular helices with 28S rRNA. Thermal denaturation data on complexes containing 28S rRNA and each of the half-molecules of 5.8S rRNA indicate that the 5'-terminal binding site(s) exist(s) in a single conformation while the 3'-terminal site exhibits two conformational alternatives. The functional significance of the different conformational states is presently indeterminate, but the possibility they may represent alternative forms of a conformational switch operative during ribosome function is discussed.  相似文献   

13.
14.
15.
The primary structure of rat ribosomal protein S7   总被引:1,自引:0,他引:1  
K Suzuki  J Olvera  I G Wool 《FEBS letters》1990,271(1-2):51-53
The amino acid sequence of the rat 40S ribosomal subunit protein S7 was deduced from the sequence of nucleotides in two recombinant cDNAs and confirmed from the amino acid sequence of a cyanogen bromide peptide obtained from the protein. Ribosomal protein S7 has 194 amino acids and has a molecular mass of 22,113. Hybridization of the cDNA to digest of nuclear DNA suggests that there are 14-16 copies of the S7 gene. The mRNA for the protein is about 725 nucleotides in length. Rat S7 is homologous with Xenopus laevis S8. The protein contains a possible internal duplication of 10 residues.  相似文献   

16.
17.
The majority of constitutive proteins in the bacterial 30S ribosomal subunit have orthologues in Eukarya and Archaea. The eukaryotic counterparts for the remainder (S6, S16, S18 and S20) have not been identified. We assumed that amino acid residues in the ribosomal proteins that contact rRNA are to be constrained in evolution and that the most highly conserved of them are those residues that are involved in forming the secondary protein structure. We aligned the sequences of the bacterial ribosomal proteins from the S20p, S18p and S16p families, which make multiple contacts with rRNA in the Thermus thermophilus 30S ribosomal subunit (in contrast to the S6p family), with the sequences of the unassigned eukaryotic small ribosomal subunit protein families. This made it possible to reveal that the conserved structural motifs of S20p, S18p and S16p that contact rRNA in the bacterial ribosome are present in the ribosomal proteins S25e, S26e and S27Ae, respectively. We suggest that ribosomal protein families S20p, S18p and S16p are homologous to the families S25e, S26e and S27Ae, respectively.  相似文献   

18.
19.
The mechanism of 16 S ribosomal RNA folding into its compact form in the native 30 S ribosomal subunit of Escherichia coli was studied by scanning transmission electron microscopy and circular dichroism spectroscopy. This approach made it possible to visualize and quantitatively analyze the conformational changes induced in 16 S rRNA under various ionic conditions and to characterize the interactions of ribosomal proteins S4, S8, S15, S20, S17 and S7, the six proteins known to bind to 16 S rRNA in the initial assembly steps. 16 S rRNA and the reconstituted RNA-protein core particles were characterized by their mass, morphology, radii of gyration (RG), and the extent and stability of 16 S rRNA secondary structure. The stepwise binding of S4, S8 and S15 led to a corresponding increase of mass and was accompanied by increased folding of 16 S rRNA in the core particles, as evident from the electron micrographs and from the decrease of RG values from 114 A and 91 A. Although the binding of S20, S17 and S7 continued the trend of mass increase, the RG values of these core particles showed a variable trend. While there was a slight increase in the RG value of the S20 core particles to 94 A, the RG value remained unchanged (94 A) with the further addition of S17. With subsequent addition of S7 to the core particles, the RG values showed an increase to 108 A. Association with S7 led to the formation of a globular mass cluster with a diameter of about 115 A and a mass of about 300 kDa. The rest of the mass (about 330 kDa) remained loosely coiled, giving the core particle a "medusa-like" appearance. Morphology of the 16 S rRNA and 16 S rRNA-protein core particles, even those with all six proteins, does not resemble the native 30 S subunit, contrary to what has been reported by others. The circular dichroism spectra of the 16 S rRNA-protein complexes and of free 16 S rRNA indicate a similarity of RNA secondary structure in the core particles with the first four proteins, S4, S8, S15, S20. The circular dichroism melting profiles of these core particles show only insignificant variations, implying no obvious changes in the distribution or the stability of the helical segments of 16 S rRNA. However, subsequent binding of proteins S17 and S7 affected both the extent and the thermal stability of 16 S rRNA secondary structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
16S rRNA reacted with the furocoumarin 4,5',8-trimethylpsoralen (trioxsalen) and 360-nm light showed a number of chemical and physical differences from untreated RNA. After extensive irradiation, five molecules of trioxsalen were bound per molecule of RNA. The trioxsalen-treated RNA had an altered ultraviolet absorption spectrum and a distinctive fluorescence emission spectrum. The modified RNA was significantly more resistant to T1 ribonuclease digestion than was control RNA. Treated RNA, when mixed with purified ribosomal proteins, was not functional in the in vitro reconstitution of 30S subunits and yielded more slowly sedimenting particles which were inactive in protein synthesis assays. By contrast, 16S rRNA within the 30S subunit structure did not exhibit these changes when reacted with the same dose of trioxsalen and light, suggesting that the ribosomal proteins were effective in protecting the RNA from interaction with the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号