首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriophages infecting the food-borne human pathogen Campylobacter jejuni could potentially be exploited to reduce bacterial counts in poultry prior to slaughter. This bacterium colonizes the intestinal tract of poultry in high numbers, and contaminated poultry meat is regarded as the major source of human campylobacteriosis. In this study, we used phage F336 belonging to the Myoviridae family to select a C. jejuni NCTC11168 phage-resistant strain, called 11168R, with the aim of investigating the mechanisms of phage resistance. We found that phage F336 has reduced adsorption to 11168R, thus indicating that the receptor is altered. While proteinase K-treated C. jejuni cells did not affect adsorption, periodate treatment resulted in reduced adsorption, suggesting that the phage binds to a carbohydrate moiety. Using high-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy, we found that 11168R lacks an O-methyl phosphoramidate (MeOPN) moiety attached to the GalfNAc on the capsular polysaccharide (CPS), which was further confirmed by mass spectroscopy. Sequence analysis of 11168R showed that the potentially hypervariable gene cj1421, which encodes the GalfNAc MeOPN transferase, contains a tract of 10 Gs, resulting in a nonfunctional gene product. However, when 11168R reverted back to phage sensitive, cj1421 contained 9 Gs, and the GalfNAc MeOPN was regained in this strain. In summary, we have identified the phase-variable MeOPN moiety, a common component of the diverse capsular polysaccharides of C. jejuni, as a novel receptor of phages infecting this bacterium.  相似文献   

2.
A recent study that examined multiple strains of Campylobacter jejuni reported that HS:19, a serostrain that has been associated with the onset of Guillain-Barré syndrome, had unidentified labile, capsular polysaccharide (CPS) structures. In this study, we expand on this observation by using current glyco-analytical technologies to characterize these unknown groups. Capillary electrophoresis electrospray ionization MS and NMR analysis with a cryogenically cooled probe (cold probe) of CPS purified using a gentle enzymatic method revealed a hyaluronic acid-type [-4)-beta-D-GlcA6NGro-(1-3)-beta-D-GlcNAc-(1-]n repeating unit, where NGro is 2-aminoglycerol. A labile alpha-sorbofuranose branch located at C2 of GlcA was determined to have the L configuration using a novel pyranose oxidase assay and is the first report of this sugar in a bacterial glycan. A labile O-methyl phosphoramidate group, CH3OP(O)(NH2)(OR) (MeOPN), was found at C4 of GlcNAc. Structural heterogeneity of the CPS was due to nonstoichiometric glycosylation with sorbose at C2 of GlcA and the nonstoichiometric, variably methylated phosphoramidate group. Examination of whole bacterial cells using high-resolution magic angle spinning NMR revealed that the MeOPN group is a prominent feature on the cell surface for this serostrain. These results are reminiscent of those in the 11168 and HS:1 strains and suggest that decoration of CPS with nonstoichiometric elements such as keto sugars and the phosphoramidate is a common mechanism used by this bacterium to produce a structurally complex surface glycan from a limited number of genes. The findings of this work with the HS:19 serostrain now present a means to explore the role of CPS as a virulence factor in C. jejuni.  相似文献   

3.
Campylobacter jejuni produces multiple glycoproteins whose glycans contain 4-amino 6-deoxy sugars or their derivatives, such as diacetamidobacillosamine or pseudaminic acid. Because the proteoglycans contribute to bacterial virulence and their constitutive sugars are not commonly found in humans, inhibitors developed against the enzymes that are responsible for their biosynthesis could be novel therapeutic targets to fight this important food-borne pathogen. The biosynthesis of diacetamidobacillosamine is anticipated to involve a sugar nucleotide C6 dehydratase, a C4 aminotransferase and an acetyltransferase. We have identified a set of genes (cj1293, cj1294, and cj1298) potentially encoding one of each enzymatic activity, and demonstrated earlier that Cj1293 was a UDP-GlcNAc-specific C6 dehydratase. Others have shown that Cj1293 was involved in protein glycosylation. Here, we report on our investigation of the potential activity of Cj1294 as a sugar nucleotide C4 aminotransferase. Our biochemical characterization of overexpressed and purified protein shows that Cj1294 is a pyridoxal phosphate-dependent aminotransferase specific for UDP-4-keto-6-deoxy-GlcNAc that uses preferentially glutamic acid as an amino donor. A detailed physicokinetic study of Cj1294 was performed to determine the K(m) of 1.28 +/- 0.2 mm and k(cat) of 11.5 +/- 1.3 min(-1). Also, two residues essential for protein stability and activity, Arg(228) and Lys(181), respectively, were identified by site-directed mutagenesis. Finally, we demonstrated by NMR analysis of purified reaction product that Cj1294 produces UDP-4-amino-4,6-dideoxy-GalNAc. These results indicate that Cj1294 is involved in the biosynthesis of diacetamidofucosamine, a C4 epimer of diacetamidobacillosamine not yet described in C. jejuni proteoglycans, suggesting that the composition of C. jejuni proteoglycans is more variable than anticipated.  相似文献   

4.
Colonization of broiler chickens by the enteric pathogen Campylobacter jejuni is widespread and difficult to prevent. Bacteriophage therapy is one possible means by which this colonization could be controlled, thus limiting the entry of campylobacters into the human food chain. Prior to evaluating the efficacy of phage therapy, experimental models of Campylobacter colonization of broiler chickens were established by using low-passage C. jejuni isolates HPC5 and GIIC8 from United Kingdom broiler flocks. The screening of 53 lytic bacteriophage isolates against a panel of 50 Campylobacter isolates from broiler chickens and 80 strains isolated after human infection identified two phage candidates with broad host lysis. These phages, CP8 and CP34, were orally administered in antacid suspension, at different dosages, to 25-day-old broiler chickens experimentally colonized with the C. jejuni broiler isolates. Phage treatment of C. jejuni-colonized birds resulted in Campylobacter counts falling between 0.5 and 5 log10 CFU/g of cecal contents compared to untreated controls over a 5-day period postadministration. These reductions were dependent on the phage-Campylobacter combination, the dose of phage applied, and the time elapsed after administration. Campylobacters resistant to bacteriophage infection were recovered from phage-treated chickens at a frequency of <4%. These resistant types were compromised in their ability to colonize experimental chickens and rapidly reverted to a phage-sensitive phenotype in vivo. The selection of appropriate phage and their dose optimization are key elements for the success of phage therapy to reduce campylobacters in broiler chickens.  相似文献   

5.
Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, and the capsular polysaccharide (CPS) of this organism is required for persistence and disease. C. jejuni produces over 47 different capsular structures, including a unique O-methyl phosphoramidate (MeOPN) modification present on most C. jejuni isolates. Although the MeOPN structure is rare in nature it has structural similarity to some synthetic pesticides. In this study, we have demonstrated, by whole genome comparisons and high resolution magic angle spinning NMR, that MeOPN modifications are common to several Campylobacter species. Using MeOPN biosynthesis and transferase mutants generated in C. jejuni strain 81–176, we observed that loss of MeOPN from the cell surface correlated with increased invasion of Caco-2 epithelial cells and reduced resistance to killing by human serum. In C. jejuni, the observed serum mediated killing was determined to result primarily from activation of the classical complement pathway. The C. jejuni MeOPN transferase mutant showed similar levels of colonization relative to the wild-type in chickens, but showed a five-fold drop in colonization when co-infected with the wild-type in piglets. In Galleria mellonella waxmoth larvae, the MeOPN transferase mutant was able to kill the insects at wild-type levels. Furthermore, injection of the larvae with MeOPN-linked monosaccharides or CPS purified from the wild-type strain did not result in larval killing, indicating that MeOPN does not have inherent insecticidal activity.  相似文献   

6.
Campylobacter jejuni produces glycoproteins that are essential for virulence. These glycoproteins carry diacetamidobacillosamine (DAB), a sugar that is not found in humans. Hence, the enzymes responsible for DAB synthesis represent potential therapeutic targets. We describe the biochemical characterization of Cj1121c, a putative aminotransferase encoded by the general protein glycosylation locus, to assess its role in DAB biosynthesis. By using overexpressed and affinity-purified enzyme, we demonstrate that Cj1121c has pyridoxal phosphate- and glutamate-dependent UDP-4-keto-6-deoxy-GlcNAc C-4 transaminase activity and produces UDP-4-amino-4,6-dideoxy-GlcNAc. This is consistent with a role in DAB biosynthesis and distinguishes Cj1121c from Cj1294, a homologous UDP-2-acetamido-2,6-dideoxy-beta-l-arabino-4-hexulose C-4 aminotransferase that we characterized previously. We show that Cj1121c can also use this 4-keto-arabino sugar indirectly as a substrate, that Cj1121c and Cj1294 are active simultaneously in C. jejuni, and that the activity of Cj1121c is preponderant under standard growth conditions. Kinetic data indicate that Cj1121c has a slightly higher catalytic efficiency than Cj1294 with regard to the 4-keto-arabino substrate. By site-directed mutagenesis, we show that residues Glu-158 and Leu-131 are not essential for catalysis or for substrate specificity contrary to expectations. We further demonstrate that a cj1121c knock-out mutant is impaired for flagella-mediated motility, for invasion of intestinal epithelial cells, and for persistence in the chicken intestine, clearly demonstrating that Cj1121c is essential for host colonization and virulence. Finally, we show that cj1121c is necessary for protein glycosylation by lectin Western blotting. Collectively, these results validate Cj1121c as a promising drug target and provide the means to assay for inhibitors.  相似文献   

7.
The cj0183 and cj0588 genes identified in the Campylobacter jejuni NCTC 11168 genome encode proteins with amino acid sequences predicted to be homologous to other bacterial hemolysins. The Cj0183 protein exhibits homology to Brachyspira hyodysenteriae TlyC protein, whereas the cj0588 gene product is homologous to TlyA proteins Brachyspira hyodysenteriae, Helicobacter pylori, and Mycobacterium tuberculosis, which play a crucial role in bacterial virulence. The aim of our work was to examine the hemolytic activity and determine the role of cj0183- and cj0588-encoded proteins on the adherence of chosen C. jejuni strains to the Caco-2 cell line by constructing deletion mutants in the mentioned genes. We found out there is no difference in hemolytic activity between both mutants in gene cj0183 and cj0588 and the wild strains. However, Cj0588 protein but not Cj0183 is involved in adherence to the Caco-2 cells.  相似文献   

8.
9.
Zhang M  He L  Li Q  Sun H  Gu Y  You Y  Meng F  Zhang J 《PloS one》2010,5(11):e15060
Campylobacter jejuni ICDCCJ07001 (HS:41, ST2993) was isolated from a Guillain-Barré syndrome (GBS) patient during a 36-case GBS outbreak triggered by C. jejuni infections in north China in 2007. Sequence analysis revealed that the ICDCCJ07001 genome consisted of 1,664,840 base pairs (bp) and one tetracycline resistance plasmid of 44,084 bp. The GC content was 59.29% and 1,579 and 37 CDSs were identified on the chromosome and plasmid, respectively. The ICDCCJ07001 genome was compared to C. jejuni subsp. jejuni strains 81-176, 81116, NCTC11168, RM1221 and C. jejuni subsp. doylei 269.97. The length and organization of ICDCCJ07001 was similar to that of NCTC11168, 81-176 and 81-116 except that CMLP1 had a reverse orientation in strain ICDCCJ07001. Comparative genomic analyses were also carried out between GBS-associated C. jejuni strains. Thirteen common genes were present in four GBS-associated strains and 9 genes mapped to the LOS cluster and the ICDCCJ07001_pTet (44 kb) plasmid was mosaic in structure. Thirty-seven predicted CDS in ICDCCJ07001_pTet were homologous to genes present in three virulence-associated plasmids in Campylobacter: 81-176_pTet, pCC31 and 81-176_pVir. Comparative analysis of virulence loci and virulence-associated genes indicated that the LOS biosynthesis loci of ICDCCJ07001 belonged to type A, previously reported to be associated with cases of GBS. The polysaccharide capsular biosynthesis (CPS) loci and the flagella modification (FM) loci of ICDCCJ07001 were similar to corresponding sequences of strain 260.94 of similar serotype as strain ICDCCJ07001. Other virulence-associated genes including cadF, peb1, jlpA, cdt and ciaB were conserved between the C. jejuni strains examined.  相似文献   

10.
11.
12.
A putative iron- and Fur-regulated hemin uptake gene cluster, composed of the transport genes chuABCD and a putative heme oxygenase gene (Cj1613c), has been identified in Campylobacter jejuni NCTC 11168. Mutation of chuA or Cj1613c leads to an inability to grow in the presence of hemin or hemoglobin as a sole source of iron. Mutation of chuB, -C, or -D only partially attenuates growth where hemin is the sole iron source, suggesting that an additional inner membrane (IM) ABC (ATP-binding cassette) transport system(s) for heme is present in C. jejuni. Genotyping experiments revealed that Cj1613c is highly conserved in 32 clinical isolates. One strain did not possess chuC, though it was still capable of using hemin/hemoglobin as a sole iron source, supporting the hypothesis that additional IM transport genes are present. In two other strains, sequence variations within the gene cluster were apparent and may account for an observed negative heme utilization phenotype. Analysis of promoter activity within the Cj1613c-chuA intergenic spacer region revealed chuABCD and Cj1613c are expressed from separate iron-repressed promoters and that this region also specifically binds purified recombinant Fur(Cj) in gel retardation studies. Absorbance spectroscopy of purified recombinant His(6)-Cj1613c revealed a 1:1 heme:His(6)-Cj1613c binding ratio. The complex was oxidatively degraded in the presence of ascorbic acid as the electron donor, indicating that the Cj1613c gene product functions as a heme oxygenase. In conclusion, we confirm the involvement of Cj1613c and ChuABCD in heme/hemoglobin utilization in C. jejuni.  相似文献   

13.
Cecum-colonizing bacteria were isolated from Campylobacter jejuni-free White Leghorn (Gallus domesticus) laying hens and screened for the ability to produce anti-C. jejuni metabolites. Nine isolates were obtained that possessed this characteristic. The peroral administration of the nine isolates as a mixture (ca. 10(9) per chick) to 1-day-old chicks was followed 1 week later by peroral inoculation of Campylobacter jejuni (ca. 10(9) per chick) to determine if the cecal isolates could protect chicks from colonization by campylobacters. The nine-strain mixture of cecal bacteria provided from 41 to 85% protection from C. jejuni colonization. The protective bacteria were reduced to a mixture of three strains on the basis of their ability to utilize mucin as a sole substrate for growth. These strains included Klebsiella pneumoniae 23, Citrobacter diversus 22, and Escherichia coli (O13:H-) 25. Four feeding trials with this three-strain mixture provided from 43 to 100% (average, 78%) protection from C. jejuni colonization. The dominant cecal bacterium of chicks treated with the three-strain mixture was consistently E. coli O13:H-. Similarly, three trials with only E. coli 25 used as the protective bacterium resulted in 49 to 72% (average, 59%) protection from C. jejuni colonization, with E. coli O13:H- being the dominant cecal bacterium in all cases. Although not completely effective, E. coli 25 substantially reduced the incidence of C. jejuni colonization of chicks. For all trials, fewer C. jejuni were present in the ceca of colonized chicks receiving the protective bacteria before exposure to C. jejuni than in chicks receiving only C. jejuni.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Cecum-colonizing bacteria were isolated from Campylobacter jejuni-free White Leghorn (Gallus domesticus) laying hens and screened for the ability to produce anti-C. jejuni metabolites. Nine isolates were obtained that possessed this characteristic. The peroral administration of the nine isolates as a mixture (ca. 10(9) per chick) to 1-day-old chicks was followed 1 week later by peroral inoculation of Campylobacter jejuni (ca. 10(9) per chick) to determine if the cecal isolates could protect chicks from colonization by campylobacters. The nine-strain mixture of cecal bacteria provided from 41 to 85% protection from C. jejuni colonization. The protective bacteria were reduced to a mixture of three strains on the basis of their ability to utilize mucin as a sole substrate for growth. These strains included Klebsiella pneumoniae 23, Citrobacter diversus 22, and Escherichia coli (O13:H-) 25. Four feeding trials with this three-strain mixture provided from 43 to 100% (average, 78%) protection from C. jejuni colonization. The dominant cecal bacterium of chicks treated with the three-strain mixture was consistently E. coli O13:H-. Similarly, three trials with only E. coli 25 used as the protective bacterium resulted in 49 to 72% (average, 59%) protection from C. jejuni colonization, with E. coli O13:H- being the dominant cecal bacterium in all cases. Although not completely effective, E. coli 25 substantially reduced the incidence of C. jejuni colonization of chicks. For all trials, fewer C. jejuni were present in the ceca of colonized chicks receiving the protective bacteria before exposure to C. jejuni than in chicks receiving only C. jejuni.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We recently demonstrated that Campylobacter jejuni produces a capsular polysaccharide (CPS) that is the major antigenic component of the classical Penner serotyping system distinguishing Campylobacter into >60 groups. Although the wide variety of C. jejuni serotypes are suggestive of structural differences in CPS, the genetic mechanisms of such differences are unknown. In this study we sequenced biosynthetic cps regions, ranging in size from 15 to 34 kb, from selected C. jejuni strains of HS:1, HS:19, HS:23, HS:36, HS:23/36 and HS:41 serotypes. Comparison of the determined cps sequences of the HS:1, HS:19 and HS:41 strains with the sequenced strain, NCTC11168 (HS:2), provides evidence for multiple mechanisms of structural variation including exchange of capsular genes and entire clusters by horizontal transfer, gene duplication, deletion, fusion and contingency gene variation. In contrast, the HS:23, HS:36 and HS:23/36 cps sequences were highly conserved. We report the first detailed structural analysis of 81-176 (HS:23/36) and G1 (HS:1) and refine the previous structural interpretations of the HS:19, HS:23, HS:36 and HS:41 serostrains. For the first time, we demonstrate the commonality and function of a second heptose biosynthetic pathway for Campylobacter CPS independent of the pathway for lipooligosaccharide (LOS) biosynthesis and identify a novel heptosyltransferase utilized by this alternate pathway. Furthermore, we show the retention of two functional heptose isomerases in Campylobacter and the sharing of a phosphatase for both LOS and CPS heptose biosynthesis.  相似文献   

16.
The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal concentrations of TSP. Preexposure of C. jejuni to TSP resulted in a significant increase in heat sensitivity, suggesting that a combined heat and TSP treatment may increase reduction of C. jejuni. A microarray analysis identified a limited number of genes that were differently expressed after sublethal TSP exposure; however, the response was mainly associated with ion transport processes. C. jejuni NCTC11168 nhaA1 (Cj1655c) and nhaA2 (Cj1654c), which encode orthologues to the Escherichia coli NhaA cation/proton antiporter, were able to partially restore TSP, alkaline, and sodium resistance phenotypes to an E. coli cation/proton antiporter mutant. In addition, inhibition of resistance-nodulation-cell division (RND) multidrug efflux pumps by the inhibitor PaβN (Phe-Arg β-naphthylamide dihydrochloride) decreased tolerance to sublethal TSP. Therefore, we propose that NhaA1/NhaA2 cation/proton antiporters and RND multidrug efflux pumps function in tolerance to sublethal TSP exposure in C. jejuni.  相似文献   

17.
Ganglioside mimicry by Campylobacter jejuni lipo-oligosaccharide (LOS) is thought to be a critical factor in the triggering of the Guillain-Barré and Miller-Fisher syndrome neuropathies after C. jejuni infection. The combination of a completed genome sequence and a ganglioside GM1-like LOS structure makes C. jejuni NCTC 11168 a useful model strain for the identification and characterization of the genes involved in the biosynthesis of ganglioside-mimicking LOS. Genome analysis identified a putative LOS biosynthetic cluster and, from this, we describe a putative gene (ORF Cj1139c), which we have termed wlaN, with a significant level of similarity to a number of bacterial glycosyltransferases. Mutation of this gene in C. jejuni NCTC 11168 resulted in a LOS molecule of increased electrophoretic mobility, which also failed to bind cholera toxin. Comparison of LOS structural data from wild type and the mutant strain indicated lack of a terminal beta-1,3-linked galactose residue in the latter. The wlaN gene product was demonstrated unambiguously as a beta-1,3 galactosyltransferase responsible for converting GM2-like LOS structures to GM1-like by in vitro expression. We also show that the presence of an intragenic homopolymeric tract renders the expression of a functional wlaN gene product phase variable, resulting in distinct C. jejuni NCTC 11168 cell populations with alternate GM1 or GM2 ganglioside-mimicking LOS structures. The distribution of wlaN among a number of C. jejuni strains with known LOS structure was determined and, for C. jejuni NCTC 12500, similar wlaN gene phase variation was shown to occur, so that this strain has the potential to synthesize a GM1-like LOS structure as well as the ganglioside GM2-like LOS structure proposed in the literature.  相似文献   

18.
Jeon B  Zhang Q 《Journal of bacteriology》2007,189(20):7399-7407
Campylobacter jejuni is an important bacterial pathogen causing gastroenteritis in humans. C. jejuni is capable of natural transformation, which is considered a major mechanism mediating horizontal gene transfer and generating genetic diversity. Despite recent efforts to elucidate the transformation mechanisms of C. jejuni, the process of DNA binding and uptake in this organism is still not well understood. In this study, we report a previously unrecognized DNA-binding protein (Cj0011c) in C. jejuni that contributes to natural transformation. Cj0011c is a small protein (79 amino acids) with a partial sequence homology to the C-terminal region of ComEA in Bacillus subtilis. Cj0011c bound to both single- and double-stranded DNA. The DNA-binding activity of Cj0011c was demonstrated with a variety of DNAs prepared from C. jejuni or Escherichia coli, suggesting that the DNA binding of Cj0011c is not sequence dependent. Deletion of the cj0011c gene from C. jejuni resulted in 10- to 50-fold reductions in the natural transformation frequency. Different from the B. subtilis ComEA, which is an integral membrane protein, Cj0011c is localized in the periplasmic space of C. jejuni. These results indicate that Cj0011c functions as a periplasmic DNA receptor contributing to the natural transformation of C. jejuni.  相似文献   

19.
Campylobacter jejuni is a major cause of diarrheal disease and food-borne gastroenteritis. The main reservoir of C. jejuni in poultry is the cecum, with an estimated content of 6 to 8 log10 CFU/g. If a flock is infected with C. jejuni, the majority of the birds in that flock will harbor the bacterium. Diagnostics at the flock level could thus be an important control point. The aim of the work presented here was to develop a complete quantitative PCR-based detection assay for C. jejuni obtained directly from cecal contents and fecal samples. We applied an approach in which the same paramagnetic beads were used both for cell isolation and for DNA purification. This integrated approach enabled both fully automated and quantitative sample preparation and a DNA extraction method. We developed a complete quantitative diagnostic assay through the combination of the sample preparation approach and real-time 5'-nuclease PCR. The assay was evaluated both by spiking the samples with C. jejuni and through the detection of C. jejuni in naturally colonized chickens. Detection limits between 2 and 25 CFU per PCR and a quantitative range of >4 log10 were obtained for spiked fecal and cecal samples. Thirty-one different poultry flocks were screened for naturally colonized chickens. A total of 262 (204 fecal and 58 cecal) samples were analyzed. Nineteen of the flocks were Campylobacter positive, whereas 12 were negative. Two of the flocks contained Campylobacter species other than C. jejuni. There was a large difference in the C. jejuni content, ranging from 4 to 8 log10 CFU/g of fecal or cecal material, for the different flocks tested. Some issues that have not yet promoted much attention are the prequantitative differences in the ability of C. jejuni to colonize poultry and the importance of these differences for causing human disease through food contamination. Understanding the colonization kinetics in poultry is therefore of great importance for controlling human infections by this bacterium.  相似文献   

20.
Recently, the CPS biosynthetic loci for several strains of Campylobacter jejuni were sequenced and revealed evidence for multiple mechanisms of structural variation. In this study, the CPS structure for the HS:1 serostrain of C. jejuni was determined using mass spectrometry and NMR at 600 MHz equipped with an ultra-sensitive cryogenically cooled probe. Analysis of CPS purified using a mild enzymatic method revealed a teichoic acid-like [-4)-alpha-d-Galp-(1-2)-(R)-Gro-(1-P](n), repeating unit, where Gro is glycerol. Two branches at C-2 and C-3 of galactose were identified as beta-d-fructofuranoses substituted at C-3 with CH(3)OP(O)(NH(2))(OR) groups. Structural heterogeneity was due to nonstoichiometric glycosylation at C-3 of galactose and variable phosphoramidate groups. Identical structural features were found for cell-bound CPS on intact cells using proton homonuclear and (31)P heteronuclear two-dimensional HR-MAS NMR at 500 MHz. In contrast, spectroscopic data acquired for hot water/phenol purified CPS was complicated by the hydrolysis and subsequent loss of labile groups during extraction. Collectively, the results of this study established the importance of using sensitive isolation techniques and HR-MAS NMR to examine CPS structures in vivo when labile groups are present. This study uncovered how incorporation of variable O-methyl phosphoramidate groups on nonstoichiometric fructose branches is used in C. jejuni HS:1 as a strategy to produce a highly complex polysaccharide from its small CPS biosynthetic locus and a limited number of sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号