首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cotton is unusual among major crop plants in that two cross-fertile species are widely cultivated for a common economic product, fiber. Both historical evidence and classical genetic studies suggest that many improved forms of Gossypium barbadense (Sea Island, Egyptian, and Pima cottons) may include chromatin derived from G. hirsutum. Using 106 restriction fragment length polymorphism (RFLP) loci well distributed across the cotton genome, we revealed the amount and genomic distribution of G. hirsutum chromatin in 54 G. barbadense collections from around the world. The average G. barbadense collection was comprised of 8.9% alleles apparently derived from G. hirsutum. Pima cultivars (7.3 %) had fewer G. hirsutum alleles than Sea Island (9.0%) or Egyptian (9.6%) cultivars. G. hirsutum alleles were not randomly distributed, as 57.5% of the total introgression observed was accounted for by five specific chromosomal regions that span less than 10% of the genome. The average length of an introgressed chromosome segment was 12.9 cM. Overlap of introgressed chromatin in different breeding programs hints that retention of these G. hirsutum chromosomal segments may impart a selective advantage to G. barbadense genotypes. Although cluster analysis generally grouped germ plasm from common classes and/or breeding programs together, no 2 genotypes were identical — thus differences in the length and repertoire of introgressed chromosome segments also permit DNA fingerprinting of G. barbadense cultivars.  相似文献   

2.
3.
Genetic markers were mapped in segregating progeny from a cross between two soybean (Glycine max (L.) Merr.) cultivars: Minsoy (PI 27.890) and Noir 1 (PI 290.136). A genetic linkage map was constructed (LOD 3), consisting of 132 RFLP, isozyme, morphological, and biochemical markers. The map defined 1550cM of the soybean genome comprising 31 linkage groups. An additional 24 polymorphic markers remained unlinked. A family of RFLP markers, identified by a single probe (hybridizing to an interspersed repeated DNA sequence), extended the map, linking other markers and defining regions for which other markers were not available.  相似文献   

4.
A molecular marker-based map of perennial ryegrass (Lolium perenne L.) has been constructed through the use of polymorphisms associated with expressed sequence tags (ESTs). A pair-cross between genotypes from a North African ecotype and the cultivar Aurora was used to generate a two-way pseudo-testcross population. A selection of 157 cDNAs assigned to eight different functional categories associated with agronomically important biological processes was used to detect polymorphic ESTRFLP loci in the F1(NA6 í AU6) population. A comprehensive set of ESTSSR markers was developed from the analysis of 14,767 unigenes, with 310 primer pairs showing efficient amplification and detecting 113 polymorphic loci. Two parental genetic maps were produced: the NA6 genetic map contains 88 ESTRFLP and 71 ESTSSR loci with a total map length of 963 cM, while the AU6 genetic map contains 67 ESTRFLP and 58 ESTSSR loci with a total map length of 757 cM. Bridging loci permitted the alignment of homologous chromosomes between the parental maps, and a sub-set of genomic DNA-derived SSRs was used to relate linkage groups to the perennial ryegrass reference map. Regions of segregation distortion were identified, in some instances in common with other perennial ryegrass maps. The EST-derived marker-based map provides the basis for in silico comparative genetic mapping, as well as the evaluation of co-location between QTLs and functionally associated genetic loci.An erratum to this article can be found at M.J. Faville and A.C. Vecchies contributed equally to this work.  相似文献   

5.
A high-density genetic map with a number of anchor markers has been created to be used as a tool to dissect genetic variation in rose. Linkage maps for the diploid 94/1 population consisting of 88 individuals were constructed using a total of 520 molecular markers including AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Seven linkage groups, putatively corresponding to the seven haploid rose chromosomes, were identified for each parent, spanning 487 cM and 490 cM, respectively. The average length of 70 cM may cover more than 90% of the rose genome. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in seven linkage groups with a total length of 545 cM. The present linkage map is currently the most advanced map in rose with regard to marker density, genome coverage and with robust markers, giving good perspectives for QTL mapping and marker-assisted breeding in rose. The SSR markers, together with RFLP markers, provide good anchor points for future map alignment studies in rose and related species. Codominantly scored AFLP markers were helpful in the integration of the parental maps.  相似文献   

6.
The genetic linkage map of European beech (Fagus sylvatica L.) that we report here is the first to our knowledge. Based on a total of 312 markers (28 RAPDs, 274 AFLPs, 10 SSRs) scored in 143 individuals from a F1 full-sib family. Two maps (one for each parent) were constructed according to a two-way pseudo-testcross mapping strategy. In the male map 119 markers could be clustered in 11 major groups (971 cM), while in the female map 132 markers were distributed in 12 major linkage groups (844 cM). In addition, four and one minor linkage groups (doublets and triplets) were obtained for the male and female map respectively. The two maps cover about 82% and 78% of the genome. Based on the position of 15 AFLP and 2 SSR loci segregating in both parents, seven homologous linkage groups could be identified. In the same pedigree we investigated the association with genetic markers of several quantitative traits: leaf area, leaf number and shape in 2 different years, specific leaf area, leaf carbon-isotope discrimination and tree height. A composite interval-mapping approach was used to estimate the number of QTLs, the amount of variation explained by each of them, and their position on the genetic linkage maps. Eight QTLs associated with leaf traits were found that explained between 15% and 35% of the trait variation, five on the female map and three on the male map.Communicated by D. B. Neale  相似文献   

7.
Pulsed-field gel electrophoresis (PFGE) was used to study a cluster of molecular markers in the soybean genome. There were 550 kb per centimorgan (cM) in the cluster, which is close to the calculated average for the whole genome. The analysis was complicated by the presence of duplicated sequences, and some ambiguities arising from this were resolved by using second-dimension conventional electrophoresis to relate physical maps to the RFLP map of soybean. The results show that there is a high degree of conservation of rare cutter sites between homoeologous regions. Finally, PFGE can confirm physical linkage of monomorphic copies of markers, which can aid in the study and comparison of homoeologous regions that are invisible to RFLP analysis.  相似文献   

8.
The nuclear and cytoplasmic composition of five different fusion combinations, consisting of up to 50 hybrid regenerants each, was characterized by RFLP analysis. Simultaneously, the hybrid clones of four fusion combinations were evaluated in field experiments for yield and starch content.Predominantly complete chloroplast segregation was found with a 11 ratio, in all but one fusion combination. Mitochondria, in contrast revealed up to 75% recombination, as proven by the partial addition of parental banding patterns and the altered assignment of the same genotypes with different probes. Newly occuring DNA bands were also indicative of rearrangements in the mitochondrial genome. Correlations between RFLP data and field parameters were calculated. Deviating RFLP patterns of the nuclear genome did not influence yield parameters. Also the assignment of hybrids to different chloroplast genotypes did not affect yield or starch content. However, mitochondrial types could be distinguished with respect to starch content and tuber yield. The more thorough analysis of mitochondrial composition, with different probes homologous to coding regions, revealed a relationship between the homogeneity of the mt genome and the yield level.  相似文献   

9.
Summary Gene(s) conferring high soluble solids (SS) in tomato fruit had been backcrossed previously from a wild tomato species, Lycopersicon chmielewskii LA1028 ( 10% SS), into a L. esculentum cultivar, VF36 ( 5% SS), to derive a BC5S5 line, LA1563, similar to VF 36 but with 7–8% SS. DNAs from these lines and a tomato breeding line, H2038, were screened for restriction fragment length polymorphisms (RFLPs) using four restriction endonucleases and sixty clones chosen at random from a tomato cDNA library. Most of the cDNA clones (56) identified the same RFLP in VF 36 and LA1563 and a different RFLP in LA1028. However, two cDNA clones identified the same RFLP in LA1563 and LA1028 and a different RFLP in VF36. To determine whether RFLPs identified by these two cDNA clones were linked to SS genes, a H2038 x LA1563 F2 population was screened for segregation of the RFLPs and for SS content. The segregation ratios of these RFLPs were consistent with ratios expected for codominant alleles at unlinked loci. Analysis of variance of SS content for different RFLP genotypic classes indicated that RFLP alleles at one of the loci were linked to genes controlling SS content. The RFLP allele from the high SS tomato line, LA1563, was associated with significantly higher SS content and, therefore, could be useful in selecting for high SS gene(s) in a tomato breeding program.  相似文献   

10.
An extended map of the sugar beet genome containing RFLP and RAPD loci   总被引:6,自引:0,他引:6  
An updated map of sugar beet (Beta vulgaris L. ssp. vulgaris var altissima Doell) is presented. In this genetic map we have combined 248 RFLP and 50 RAPD loci. Including the loci for rhizomania resistance Rr1, hypocotyl colour R and the locus controlling the monogerm character M, 301 loci have now been mapped to the nine linkage groups covering 815 cM. In addition, the karyotype of some of the Beta vulgaris chromosomes has been correlated with existing RFLP and RAPD linkage maps.  相似文献   

11.
An integrated genetic linkage map of pepper (Capsicum spp.)   总被引:3,自引:1,他引:2  
An integrated genetic map of pepper including 6 distinct progenies and consisting of 2262 markers covering 1832 cM was constructed using pooled data from six individual maps by the Keygene proprietary software package INTMAP. The map included: 1528 AFLP, 440 RFLP, 288 RAPD and several known gene sequences, isozymes and morphological markers. In total, 320 anchor markers (common markers in at least two individual maps) were used for map integration. Most anchor markers (265) were common to two maps, while 27, 26 and 5 markers were common to three, four and five maps, respectively. Map integration improved the average marker density in the genome to 1 marker per 0.8 cM compared to 1 marker per 2.1 cM in the most dense individual map. In addition, the number of gaps of at least 10 cM between adjacent markers was reduced in the integrated map. Although marker density and genome coverage were improved in the integrated map, several small linkage groups remained, indicating that further marker saturation will be needed in order to obtain a full coverage of the pepper genome. The integrated map can be used as a reference for future mapping studies in Capsicum and to improve the utilization of molecular markers for pepper breeding.These authors contributed equally to the work described in this paper(e-mail:  相似文献   

12.
Application of genetic linkage maps in plant genetics and breeding can be greatly facilitated by integrating the available classical and molecular genetic linkage maps. In rice, Oryza sativa L., the classical linkage map includes about 300 genes which correspond to various important morphological, physiological, biochemical and agronomic characteristics. The molecular maps consist of more than 500 DNA markers which cover most of the genome within relatively short intervals. Little effort has been made to integrate these two genetic maps. In this paper we report preliminary results of an ongoing research project aimed at the complete integration and alignment of the two linkage maps of rice. Six different F2 populations segregating for various phenotypic and RFLP markers were used and a total of 12 morphological and physiological markers (Table 1) were mapped onto our recently constructed molecular map. Six linkage groups (i.e., chr. 1, 3, 7, 9, 11 and 12) on our RFLP map were aligned with the corresponding linkage groups on the classical map, and the previous alignment for chromosome 6 was further confirmed by RFLP mapping of an additional physiological marker on this chromosome. Results from this study, combined with our previous results, indicate that, for most chromosomes in rice, the RFLP map encompasses the classical map. The usefulness of an integrated genetic linkage map for rice genetics and breeding is discussed.Abbreviations RFLP restriction fragment length polymorphism - chr chromosome - cM centiMorgan  相似文献   

13.
Quantitative trait locus (QTL) mapping was employed to investigate the genetic determinants of cholesterol gallstone formation in a large intercross between mouse strains SM/J (resistant) and NZB/B1NJ (susceptible). Animals consumed a gallstonepromoting diet for 18 weeks. QTL analyses were performed using gallstone weight and gallstone absence/presence as phenotypes; various models were explored for genome scans. We detected seven single QTLs: three new, significant QTLs were named Lith17 [chromosome (Chr) 5, peak=60 cM, LOD=5.4], Lith18 (Chr 5, 76 cM, LOD=4.3), and Lith19 (Chr 8, 0 cM, LOD=5.3); two confirmed QTLs identified previously and were named Lith20 (Chr 9, 44 cM, LOD=2.7) and Lith21 (Chr 10, 24 cM, LOD=2.9); one new, suggestive QTL (Chr 17) remains unnamed. Upon searching for epistatic interactions that contributed to gallstone susceptibility, the final suggestive QTL on Chr 7 was determined to interact significantly with Lith18 and, therefore, was named Lith22 (65 cM). A second interaction was identified between Lith19 and a locus on Chr 11; this QTL was named Lith23 (13 cM). mRNA expression analyses and amino acid haplotype analyses likely eliminated Slc10a2 as a candidate gene for Lith19. The QTLs identified herein largely contributed to gallstone formation rather than gallstone severity. Cloning the genes underlying these murine QTLs should facilitate prediction and cloning of the orthologous human genes.Abbreviations: CI, confidence interval; F1,first filial generation; F2, second filial (intercross) generation; LOD, logarithm of the odds ratio; NZB, NZB/B1NJ; QTL, quantitative trait locus; SM, SM/J. The nucleotide sequence data for Slc10a2 were submitted to GenBank and were assigned the accession numbers AY529655 (strain SM) and AY529656 (strain NZB).  相似文献   

14.
Imputing missing yield trial data   总被引:1,自引:0,他引:1  
Summary Intraspecific mitochondrial DNA (mtDNA) diversity was determined in 23 Phaseolus vulgaris genotypes, and compared to previously observed variability of morphoagronomic characters and isozyme loci. Twenty of the lines were collected from Malawian landraces; the other three were pure-bred cultivars. The mtDNAs were digested with eight restriction endonucleases, revealing complex banding patterns. Southern hybridization using cosmid clones covering about 200-kb of the genome showed a considerable amount of uniformity of the mtDNA banding patterns. However, five restriction fragment length polymorphisms (RFLPs) were detected, dividing the bean lines into two groups corresponding to the previously known Mesoamerican and Andean gene pools of P. vulgaris. The cultivar Mecosta was separated from the rest of the lines by an additional RFLP. At least two out of the six RFLPs are believed to be due to base-pair mutation events. Our results provide the first evidence that the cytoplasms of the two major germ plasm pools of beans are distinct.  相似文献   

15.
Summary Mitochondrial DNA (mtDNA) variation in natural Beta maritima populations has been characterized by way of Southern blot hybridizations of total DNA using non-radioactive probes and chemiluminescent detection. It was found that the previously described N (normal) mitochondrial type could be subdivided into three subtypes. A new mitochondrial genotype (type R) was distinguished in addition to the previously described type S. Both are male-sterile cytoplasms and can produce a. segregation of sexual phenotypes in their progenies depending on the nuclear background. The populations contained at least two to four different mitochondrial genotypes.  相似文献   

16.
We have constructed a high-resolution rice genetic map containing 1383 DNA markers covering 1575 cM on the 12 linkage groups of rice using 186 F2 progeny from a cross between a japonica variety, Nipponbare, and an indica variety, Kasalath. Using this high-resolution molecular linkage map, we detected segregation distortion in a single wide cross of rice. The frequencies of genotypes for 1181 markers with more than 176 genotype data were plotted along this map to detect segregation distortion. Several types of distorted segregation were observed on 6 of the chromosomes. We could detect 11 major segregation distortions at ten positions on chromosomes 1, 3, 6, 8, 9, and 10. The strongest segregation distortion was at 107.2 cM on chromosome 3 and may be the gametophyte gene 2 (ga-2). The Kasalath genotype at this position was transmitted to the progeny with about a 95% probability through the pollen gamete. At least 8 out of the 11 segregation distortions detected here are new. The use of the high-resolution molecular linkage map for improving our understanding of the genetic nature and cause of these segregation distortions is discussed.  相似文献   

17.
RFLP analysis was conducted on a population derived from a three-way cross to determine the location of the hybrid sterility locus, S-5, in relation to mapped molecular markers and to identify markers that would be useful for selection in breeding. S-5 is of interest to rice breeders because it is associated with spikelet sterility of F1 hybrids in Indica/Japonica crosses. Identification of an S-5 allele which confers fertility in Indica/Japonica hybrids when introgressed into either the Indica or the Japonica parent has been reported. Varieties carrying this S-5 n allele are known as wide compatibility varieties (WCV). Our data suggests that RFLP marker RG213 on chromosome 6 is closely linked to the S-5 locus and can be efficiently used to identify wide compatibility (WC) lines. RG213 is a single-copy genomic clone that detects three bands of different molecular weights in DNA from Japonica (Akihikari) and Indica (IR36) varieties and WC line (Nekken 2). We demonstrate that the three alleles detected by this marker could be used to trace the inheritance of the wide compatible phenotype in breeders' material.  相似文献   

18.
Summary Structural gene loci encoding the monomeric isozymes nicotin adenin dinucleotide dehydrogenase (NADH dehydrogenase or NDH) have been located on the 4AL, 4B, and 4DS chromosome arms of Triticum aestivum cv Chinese Spring, on the 4RS chromosome arm of Secale cereale cultivars Imperial, King II, Dakold, and Ailes, on the 4S1 S/7S1 chromosome of Aegilops longissima, the 4E of Elytrigia elongata, and the CSU-A of Aegilops umbellulata. All the results support the homoeologous relationships among these chromosomes in the five species studied. In addition, a map of the 4RS chromosome arm in cv Ailes has been realized, linking loci Pgm-1 (located on the 4RS chromosome arm) and Ndh-1 (17.91 cM), with an estimated distance between both loci and the centromere of 20.00 cM and 32.12 cM, respectively.  相似文献   

19.

Background

Oil palm is an important perennial oil crop with an extremely long selection cycle of 10 to 12 years. As such, any tool that speeds up its genetic improvement process, such as marker-assisted breeding is invaluable. Previously, genetic linkage maps based on AFLP, RFLP and SSR markers were developed and QTLs for fatty acid composition and yield components identified. High density genetic maps of crosses of different genetic backgrounds are indispensable tools for investigating oil palm genetics. They are also useful for comparative mapping analyses to identify markers closely linked to traits of interest.

Results

A 4.5 K customized oil palm SNP array was developed using the Illumina Infinium platform. The SNPs and 252 SSRs were genotyped on two mapping populations, an intraspecific cross with 87 palms and an interspecific cross with 108 palms. Parental maps with 16 linkage groups (LGs), were constructed for the three fruit forms of E. guineensis (dura, pisifera and tenera). Map resolution was further increased by integrating the dura and pisifera maps into an intraspecific integrated map with 1,331 markers spanning 1,867 cM. We also report the first map of a Colombian E. oleifera, comprising 10 LGs with 65 markers spanning 471 cM. Although not very dense due to the high level of homozygosity in E. oleifera, the LGs were successfully integrated with the LGs of the tenera map. Direct comparison between the parental maps identified 603 transferable markers polymorphic in at least two of the parents. Further analysis revealed a high degree of marker transferability covering 1,075 cM, between the intra- and interspecific integrated maps. The interspecific cross displayed higher segregation distortion than the intraspecific cross. However, inclusion of distorted markers in the genetic maps did not disrupt the marker order and no map expansion was observed.

Conclusions

The high density SNP and SSR-based genetic maps reported in this paper have greatly improved marker density and genome coverage in comparison with the first reference map based on AFLP and SSR markers. Therefore, it is foreseen that they will be more useful for fine mapping of QTLs and whole genome association mapping studies in oil palm.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-309) contains supplementary material, which is available to authorized users.  相似文献   

20.
Gm2 is dominant gene conferring resistance to biotype 1 of gall midge (Orseolia oryzae Wood-Mason), the major dipteran pest of rice. The gene was mapped by restriction fragment length polymorphism (RFLP) analysis of a set of 40 recombinant inbred lines derived from a cross between the resistant variety Phalguna and the susceptible landrace ARC 6650. The gene is located on chromosome 4 at a position 1.3 cM from marker RG329 and 3.4 cM from RG476. Since the low (28%) polymorphism of this indica x indica cross hindered full coverage of the genome with RFLP markers, the mapping was checked by random amplified polymorphic DNA (RAPD)/bulked segregant analysis. Through the use of 160 RAPD primers, the number of polymorphic markers was increased from 43 to 231. Two RAPD primers amplified loci that co-segregated with resistance/susceptibility. RFLP mapping of these loci showed that they are located 0.7 cM and 2.0 cM from RG476, confirming the location of Gm2 in this region of chromosome 4. Use of these DNA markers will accelerate breeding for gall midge resistance by permitting selection of the Gm2 gene independently of the availability of the insect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号