首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Accelerated proteolysis of tropoelastin and elastin occurs in the arteries of chicks rendered nutritionally copper-deficient. The process results in part from decreased elastin crosslinking. Repletion of copper-deficient chicks with copper causes a deposition of elastin that is proteinase resistant. Resistance to proteolysis is conferred within 48 h of dietary copper repletion. Deposition of aorta elastin to near normal values occurs after 3-4 days in copper-repleted chicks. Moreover, elastolysis was enhanced when the content of dehydrolysinonorleucine in elastin was abnormally low. The chemical modification of lysyl residue in elastin by citroconylation, however, did not influence the rate of elastolysis. We have shown previously that tropoelastin messenger RNA activity and synthesis are not influenced by dietary copper deprivation (1986, Biochem. J. 236, 17-23). Rather, as demonstrated herein, the decrease in elastin content in arteries of copper-deficient birds appears to be more the result of enhanced degradation. Restoration of normal crosslinking restores deposition and imparts resistance to elastolysis. Moreover, serum appears to be a good source of elastolytic proteinases when the elastin substrate is partially or abnormally crosslinked.  相似文献   

2.
Accelerated proteolysis of tropoelastin and elastin occurs in the major arteries of chicks fed copper-deficient diets. Signs of elastin degradation are not obvious in normal arteries of copper-supplemented chicks. It is proposed that the sources of proteases that effect elastin degradation are from plasma and serum. Both calcium-dependent proteases and kallikrein were effective in degrading tropoelastin and partially crosslinked insoluble elastin into peptides similar to those detected in aortic extracts from copper-deficient chicks. As dietary copper deficiency progresses it is also possible to detect elastin peptides in plasma.  相似文献   

3.
Evidence is presented that indicates tropoelastin is derived from a soluble elastin with a molecular weight of 95000. Tropoelastin and its proposed precursor were isolated from the aortas of copper-deficient chicks. Although it is doubtful that the proposed precursor is an initial product of elastin translation, i.e., a proelastin, it is proposed to be at least a truncated form of proelastin that is converted to tropoelastin. The key to its isolation was the presence of alpha 1-antitrypsin at each step in the purification procedure. The first 11 amino acid residues at the NH2 terminal of the proposed tropoelastin precursor (GGVPGVAVPGGV) are the same as those for tropoelastin. Its amino acid composition is similar to that of tropoelastin, except for higher amounts of acidic amino acid residues. Further, the proposed precursor contains a limited number of aldehydic functions, presumably in the form of peptidyl allysine. This was taken as an indication that the proposed precursor serves as a substract for lysyl oxidase. Under the conditions used for the isolation, the precursor appeared to be in higher concentrations than tropoelastin in aorta extracts from copper-deficient chicks.  相似文献   

4.
Tropoelastin was isolated from the aortas of chicks rendered lathyritic by treatment with beta-aminopropionitrile. The soluble elastin was judged homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis and possessed an estimated molecular weight of 70000. Automated sequential analysis revealed that the N-terminal region of the chick tropoelastin is very homologous to tropoelastin isolated from copper-deficient piglets. N-terminal analysis of a trypsin digest of chick tropoelastin showed that tyrosine frequently is found adjacent to lysine residues. This positioning of tyrosine residues may be significant in terms of a possible regulatory role in elastin cross-link formation.  相似文献   

5.
Radioimmunological identification of tropoelastin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Antiserum was prepared in sheep against insoluble elastin isolated from embryonic-chick aortae. In an indirect immunoprecipitation test, the antiserum reacted quantitatively with small amounts of radioactively labelled purified tropoelastin prepared from embryonic-chick aortae. The antiserum did not cross-react with chick procollagen, and the antiserum uas used to identify radioactively labelled tropoelastin secreted by chick aorta cells in suspension culture.  相似文献   

6.
An eight-week, 2 x 4 factorial rat experiment using two levels of dietary copper and four levels of dietary silicon was conducted to further delineate a previously observed silicon-copper interaction in which silicon appears to mimic copper in its effect on the composition of the aorta. Dietary copper concentrations were 1.4 (deficient) and 5.4 (adequate) mg/kg diet, and silicon concentrations were 5, 135, 270, and 540 mg/kg diet. Compared with the lowest level of silicon and copper, weight gains were 15.5% higher for rats fed 540 mg silicon/kg diet and 14.3% higher for those fed 5.4 mg copper/kg diet. The growth-promoting effects of silicon and copper were additive. Evidence that silicon elevated the copper status of copper-deficient rats includes an increase in packed-cell volume by 540 mg silicon/kg diet in the otherwise packed-cell volume-depressed, copper-deficient rats, accompanied by a trend toward higher hemoglobin values and lower relative heart weights. In the copper-adequate rats, evidence that 540 mg silicon/kg diet elevated their copper status includes a two-fold increase in the blood-plasma copper concentration, a three-fold increase in ceruloplasmin activity, and an increase in cardiac, renal, and hepatic copper concentrations. In addition, 540 mg silicon/kg diet resulted in higher aortic dry mass and aortic elastin content in both copper-deficient and copper-adequate rats. While dietary silicon concentrations of 135, 270, and 540 mg/kg diet were all effective in increasing aortic elastin in the copper-adequate rats, only 540 mg silicon/kg diet increased aortic elastin in the copper-deficient rats. These data indicate that some of the metabolic effects attributed to silicon may be manifested through a silicon-facilitated increase in copper utilization.  相似文献   

7.
A factorial rat experiment using two dietary concentrations each of copper, zinc, and silicon was conducted to identify areas in which interrelationships involving silicon may exist. The concentrations used were (mg/kg of diet): copper, 1 and 5; zinc, 2 and 12; and silicon, 5 and 270. An antagonism between silicon and zinc, whereby increases in dietary levels of either one resulted in a reduction in blood plasma concentrations of the other, was demonstrated. The depressing effect of silicon on plasma concentrations of zinc and on alkaline phosphatase occurred only in zinc-deficient rats. However, silicon had no effect on growth. Effects on aortic composition, interpreted as beneficial, accompanied increases in the silicon content of copper-deficient diets. Silicon-dependent increases in the chloroform-methanol extractable fraction of aorta closely approximated a similar response to copper. High dietary silicon increased aortic elastin in copper-deficient rats when dietary zinc was adequate. The aortic effects of silicon, while mimicking the gross effects of copper, occurred in the absence of any silicon-related changes in blood copper concentrations. Interrelationships of silicon with other elements, particularly copper and zinc, may warrant consideration in future nutritional and metabolic studies.  相似文献   

8.
Copper deficiency results in defective elastin and collagen maturation in most tissues. A close relationship also exists between these components and proteoglycans in connective tissue. In an effort to obtain information on the nature of proteoglycans in copper deficiency, the composition of glycosaminoglycans in lungs from copper-deficient (1 micrograms/g of diet) or -supplemented (25 micrograms/g diet) chicks was studied. The total glycosaminoglycan concentration in copper-deficient chick lungs did not differ from that in control chick lungs. However, variations in individual glycosaminoglycan concentrations between lungs from copper-deficient and -supplemented chicks were observed. Heparan sulfate and dermatan sulfate concentrations were lower in copper-deficient chick lungs than in controls. The glycosaminoglycans from lungs of copper-deficient chicks also had lower molecular weights than glycosaminoglycans from lungs of control birds.  相似文献   

9.
The ratios of tropoelastin b to a were measured in chick aorta and lung during embryogenesis. The rates of tropoelastin a and b synthesis were determined in short-term organ culture. The results demonstrated that in lung tissue the ratio of the two tropoelastins remained essentially constant. Each of the tropoelastins comprised 50% of the total elastin synthesis. In the aortic tissue, tropoelastin b represented 70% of the total elastin in the 11- to 13-day embryos and increased to 91% by Day 16. These observations seen in the organ culture system were paralleled in measurements of functional mRNAs coding for the two proteins. Measurements of functional tropoelastin mRNAs from both lung and aortic tissues were performed in a mRNA-dependent rabbit reticulocyte lysate system. Although the changes in the abundance of the tropoelastin mRNAs revealed the same trend as that seen in the organ culture data, the magnitude of the tropoelastin b to a ratio in the aortic organ culture was twice that determined in the cell-free translation of aortic mRNAs. The data obtained from both cell-free translations and organ culture experiments demonstrate that there is a differential expression of elastin genes during aorta development which is significantly different from that found in developing lung.  相似文献   

10.
1. Insoluble elastin has been prepared by several different methods from adult bovine and calf ligamentum nuchae. Highly purified tropoelastin has been prepared from copper-deficient porcine aorta. 2. Amino acid analyses indicated that all preparations, except that obtained from calf ligamentum nuchae by using an EDTA extraction followed by collagenase digestion (preparation E6), were typical of pure elastin having high concentrations of hydrophobic and low concentrations of hydrophilic amino acids. Preparation E6 was found to contain approx. 40% collagen. 3. The determination and composition of the carbohydrates associated with these preparations is reported. With the exception of preparation E6, the insoluble elastins contained only trace amounts of neutral sugars (0.13-0.35%, w/w) and amino sugars (0.01-0.06%, w/w). The porcine tropoelastin contained virtually no carbohydrate. 4. The results suggest that carbohydrate analyses can yield valuable information about the purity of elastin preparations.  相似文献   

11.
Dietary copper-deficient guinea pig dams (0.8 microgram Cu/g diet) were administered oxytocin to induce delivery of pups, whereas dietary copper-sufficient guinea pig dams (5.8 micrograms Cu/g diet) had uneventful deliveries with 79% surviving pups. The copper-deficient dams carried the fully-formed fetuses to term but did not go into labor unless 0.5 to 6.2 U oxytocin was administered (i.m.). Birth of live pups from copper-deficient dams increased from 28% overall, to 50% if oxytocin was administered in a timely manner. Many pups died of internal hemorrhages probably the result of defective connective tissue crosslinks requiring copper as a co-factor for lysyl oxidase activity. Dietary copper deficiency may be a factor in depressed parturition in the copper-deficient guinea pig dam that responds to administration of exogenous oxytocin for delivery of pups.  相似文献   

12.
Soluble fractions from chick liver and aorta were examined for copper-binding proteins. In liver a zinc-binding thionein appeared to be the major binding protein for copper. Aortic tissue contained only traces of this thionein protein. Unlike liver, moderate amounts of soluble copper in aorta showed no association with macromolecules. Chicks fed on copper-deficient diets for 8 days had one-third the liver copper concentrations of controls. Aortic copper concentration was decreased only slightly, but the activity of lysyl oxidase, a copper-dependent enzyme in aorta, was decreased significantly. Treating the deficient chicks with CuSO4 (1 mg/kg) restored liver copper rapidly. The increase correlated with the binding of copper to a 10 000-mol.wt. component in the soluble fraction. Aortic copper concentrations responded much less to the CuSO4 treatment, but lysyl oxidase activity was again measurable in the tissue. Radioactive isotopes of copper bound almost exclusively to the 10 000-mol.wt. component in liver and to components of mol.wt. 30 000 or above in aorta. Hardly any of the administered radioactivity appeared with the 10 000-mol.wt. components in aorta, and none was found with unbound copper. The 30 000-mol.wt. components in aorta showed superoxide dismutase activity that was sensitive to NaCN. They also showed the highest specific activity of copper of any other aorta component. A clear distinction was seen between the metabolism of copper in liver and aortic tissues. Whereas a copper thionein, metallothionein, was a major component in the liver pathway, it is doubtful that this protein plays a major role in the intracellular metabolism of copper in aortic tissue.  相似文献   

13.
Neonatal rat aortic smooth muscle cell cultures produce two major soluble elastin molecules termed protropoelastin (77 kDa) and tropoelastin (71 kDa). Cell layer extracts are protroproelastin-enriched, while protropoelastin, tropoelastin, and significant amounts of discrete elastin fragments (Mr of 66,000, 61,000, 56,000, and 45,000) are present in preparations from the medium of these cultures. To determine the role of the various elastin molecules in the metabolism of elastin in neonatal rat aortic smooth muscle cell cultures, the amino termini of these proteins were sequenced. All soluble elastin components present in the medium were purified as a single peak by high performance liquid chromatography; further separation of the components was achieved by polyacrylamide gel electrophoresis and electroblotting. The bands were excised and sequenced. The amino-terminal sequences of protropoelastin, tropoelastin, and the 66-kDa, 61-kDa, and 56-kDa fragments were identical: Gly-Gly-Val-Pro-Gly-Ala-Val-Pro-Gly-Gly. This sequence is identical with published amino-terminal sequences of tropoelastins from several other species. As expected, when the cell cultures were pulsed with [3H]valine, all the soluble elastin molecules were radioactive, while only protropoelastin appeared radioactive after [35S] cysteine pulsing. Since cysteine is present only in the carboxyl-terminal end of the molecule, all the data indicate that the cleavage of the elastin fragments identified in the culture are occurring at the carboxyl end of protropoelastin. These results are consistent with the original hypothesis that a precursor-product relationship exists between the 77-kDa and 71-kDa soluble elastin molecules. Based on known tropoelastin sequences and the molecular weights of the discrete fragments, additional fragmentation of protropoelastin and/or tropoelastin most likely occurs at the lysine/alanine-enriched domains presumably involved in cross-link formation.  相似文献   

14.
Abdominal aortic aneurysms (AAA) are progressive dilatations of infra-renal aorta causing structural weakening rendering the aorta prone to rupture. AAA can be potentially stabilized by inhibiting inflammatory enzymes such as matrix metalloproteinases (MMP); however, active regression of AAA is not possible without new elastic fiber regeneration. Here we report the elastogenic benefit of direct delivery of polyphenols such as pentagalloyl glucose (PGG), epigallocatechin gallate (EGCG), and catechin, to smooth muscle cells obtained either from healthy or from aneurysmal rat aorta. Addition of 10 μg/ml PGG and ECGC induce elastin synthesis, organization, and crosslinking while catechin does not. Our results indicate that polyphenols bind to monomeric tropoelastin and enhance coacervation, aid in crosslinking of elastin by increasing lysyl oxidase (LOX) synthesis, and by blocking MMP-2 activity. Thus, polyphenol treatments leads to increased mature elastin fibers synthesis without increasing the production of intracellular tropoelastin.  相似文献   

15.
Synthesis and accumulation of elastin in many elastic tissues begins in the last third of fetal development, reaches a maximum shortly after birth, and then declines rapidly. For the aorta of the chick and the pig and the ligamentum nuchae and lung of the sheep, it has been shown that increased levels of elastin production with fetal development are correlated with increased levels of elastin mRNA in the tissue, measured both by cell-free translation and by hybridization to cDNA probes. In this study we examine the relationship between insoluble elastin accumulation and message levels for tropoelastin in aortic tissue of chickens during posthatching development and growth. Whether evaluated by cell-free translation or by dot blot hybridization, steady state levels of tropoelastin message increase to a maximum at 2 weeks after hatching, and then fall rapidly with further development and growth. This pattern correlates well with production of insoluble elastin by the aorta, determined either by direct measurements of synthesis or by rate of accumulation of insoluble elastin. The data indicate that the major site of regulation of elastin production is pretranslational throughout the entire period of development and growth of the chicken aorta.  相似文献   

16.
Elastin synthesis during perinatal lung development in the rat   总被引:2,自引:0,他引:2  
The rate of soluble elastin synthesis was estimated in lung explants from rats of differing ages to better define periods in lung development important to the deposition of lung elastin. Lungs from rat pups at days 1, 3, 7, 9, 12, 15, and 21 post-parturition and from adult rats were incubated in a defined medium containing L-[3H]valine. Following incubation, labelled soluble elastin (tropoelastin) was separated from other soluble proteins by coacervation and electrophoresis on polyacrylamide gels containing sodium dodecyl sulfate. The tropoelastin synthetic rate was then estimated after correcting for differences in recovery of radioactivity as tropoelastin and lung tissue L-[3H]valine specific activity. Maximal rates of elastin synthesis were observed in lung explants from 7-12-day-old rats. The rate of elastin synthesis during this period was 5-8-times the rate observed in adult rat lung (expressed per g of fresh lung) and represented approx. 2% of the total protein synthesis. Moreover, the values derived from lung explant culture for elastin synthesis were consistent with values for lung elastin deposition in the perinatal rat (5-10 micrograms elastin/h per g lung).  相似文献   

17.
Cu2Zn2-superoxide dismutase (CuZn-SOD) was purified from chicken liver. The liver enzyme had a subunit Mr of 16900 and contained equimolar amounts of copper and zinc [0.26% (w/w) for each]. Aortic CuZn-SOD had the same Mr as estimated by gel filtration and cross-reacted with antibodies to the liver enzyme. Both enzymes were inhibited by 1.0 mM-NaCN. Within 24-72 h after hatching, total SOD activity in aorta rose 3-fold over the day-1 level and stayed elevated for 10 days. With low dietary copper, the total SOD activity rose as before, but then decayed progressively to non-detectable levels in 10 days. Both the cyanide-sensitive (CuZn-SOD) and insensitive (mangano-SOD) activities fell, but not at the same rate. When the 10-day-old deficient chicks were injected with 0.5 mumol of CuSO4 intraperitoneally, SOD activity in aorta was restored to control levels in about 8 h. Despite non-measurable SOD activity in aorta, extracts from the 15-day-old-deficient-chick tissue contained as much, or slightly more, immunoreactive CuZn-SOD protein as age-matched control tissue. The data show clearly that dietary copper regulates SOD activity in the aortas of young developing animals. They further suggest that a copper deficiency suppresses CuZn-SOD activity without inhibiting synthesis or accumulation of the CuZn protein in this tissue.  相似文献   

18.
This study aimed to characterize the structures of two elastin-like constructs, one composed of a cross-linked elastin-like polypeptide and the other one of cross-linked tropoelastin, and native aortic elastin. The structures of the insoluble materials and human aortic elastin were investigated using scanning electron microscopy. Additionally, all samples were digested with enzymes of different specificities, and the resultant peptide mixtures were characterized by ESI mass spectrometry and MALDI mass spectrometry. The MS2 data was used to sequence linear peptides, and cross-linked species were analyzed with the recently developed software PolyLinX. This enabled the identification of two intramolecularly cross-linked peptides containing allysine aldols in the two constructs. The presence of the tetrafunctional cross-link desmosine was shown for all analyzed materials and its quantification revealed that the cross-linking degree of the two in vitro cross-linked materials was significantly lower than that of native elastin. Molecular dynamics simulations were performed, based on molecular species identified in the samples, to follow the formation of elastin cross-links. The results provide evidence for the significance of the GVGTP hinge region of domain 23 for the formation of elastin cross-links. Overall, this work provides important insight into structural similarities and differences between elastin-like constructs and native elastin. Furthermore, it represents a step toward the elucidation of the complex cross-linking pattern of mature elastin.  相似文献   

19.
Summary Biochemical pathogenesis of the aortic connective tissue diseases (such as, Marfan's syndrome, dissecting aneurysm or aortic aneurysm) was examined by estimating glycoprotein, collagen and elastin contents in the aorta and the intramolecular cross-linking component (isodesmosine) and the intermolecular cross-linking components (cystine, histidinoalanine) in comparison with the control samples obtained from subjects with aortic regurgitation. The elastin content in the aorta and isodesmosine content obtained from the extract of the aortic sample found to be decreased. Ratio of cysteine residues (Cys/Cys-Cys) in the elastin fraction in disease increased. Content of histidinoalanine was found to be decreased. It may be suggested that elastin is maintained in its native nature and shape by intra- and inter-molecular cross-linking bridges, and they are readily denatured by various disease conditions. After elastin was solubilized by elastase, immunoreactive elastin content in those aortic diseases was found to be increased in the human connective tissue. Serum elastase and elastase-like activities tend to increase more than those in the control. These findings may suggest that the change in the structure of elastin would make more susceptible to elastase and other proteolytic enzymes. The reasonable hypothesis may be that molecular defect of fibillin or other constitutional structural glycoproteins produce deficient and functionally incompetent elastin associated microfibrils, and the defect of microfibrils cause to insufficient intra- and inter-molecular cross-links in elastin.  相似文献   

20.
An increased proportion (about twofold) of polar amino acids (aspartic acid, glutamic acid, arginine and tyrosine) was found both in insoluble elastin and tropoelastin preparations from aortae of rats fed high fat diet. Concomitantly the number of val-pro sequences drops from 48.7 to 26.8 in elastin from control and atheromatous aortae. The observed changes can be explained either by assuming a tight attachment of a non-elastin protein rich in polar amino acids or by assuming the existence two elastin types the proportion of which is changed in aortae by high fat diet feeding. The data obtained are in favor of two different genetic types of elastin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号