共查询到20条相似文献,搜索用时 15 毫秒
1.
Daubner SC Moran GR Fitzpatrick PF 《Biochemical and biophysical research communications》2002,292(3):639-641
The active site residue phenylalanine 313 is conserved in the sequences of all known tryptophan hydroxylases. The tryptophan hydroxylase F313W mutant protein no longer shows a preference for tryptophan over phenylalanine as a substrate, consistent with a role of this residue in substrate specificity. A tryptophan residue occupies the homologous position in tyrosine hydroxylase. The tyrosine hydroxylase W372F mutant enzyme does not show an increased preference for tryptophan over tyrosine or phenylalanine, so that this residue cannot be considered the dominant factor in substrate specificity in this family of enzymes. 相似文献
2.
Studies on the regulatory properties of the pterin cofactor and dopamine bound at the active site of human phenylalanine hydroxylase. 总被引:4,自引:0,他引:4
Therese Solstad Anne J Stokka Ole A Andersen Torgeir Flatmark 《European journal of biochemistry》2003,270(5):981-990
The catalytic activity of phenylalanine hydroxylase (PAH, phenylalanine 4-monooxygenase EC 1.14.16.1) is regulated by three main mechanisms, i.e. substrate (l-phenylalanine, L-Phe) activation, pterin cofactor inhibition and phosphorylation of a single serine (Ser16) residue. To address the molecular basis for the inhibition by the natural cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin, its effects on the recombinant tetrameric human enzyme (wt-hPAH) was studied using three different conformational probes, i.e. the limited proteolysis by trypsin, the reversible global conformational transition (hysteresis) triggered by L-Phe binding, as measured in real time by surface plasmon resonance analysis, and the rate of phosphorylation of Ser16 by cAMP-dependent protein kinase. Comparison of the inhibitory properties of the natural cofactor with the available three-dimensional crystal structure information on the ligand-free, the binary and the ternary complexes, have provided important clues concerning the molecular mechanism for the negative modulatory effects. In the binary complex, the binding of the cofactor at the active site results in the formation of stabilizing hydrogen bonds between the dihydroxypropyl side-chain and the carbonyl oxygen of Ser23 in the autoregulatory sequence. L-Phe binding triggers local as well as global conformational changes of the protomer resulting in a displacement of the cofactor bound at the active site by 2.6 A (mean distance) in the direction of the iron and Glu286 which causes a loss of the stabilizing hydrogen bonds present in the binary complex and thereby a complete reversal of the pterin cofactor as a negative effector. The negative modulatory properties of the inhibitor dopamine, bound by bidentate coordination to the active site iron, is explained by a similar molecular mechanism including its reversal by substrate binding. Although the pterin cofactor and the substrate bind at distinctly different sites, the local conformational changes imposed by their binding at the active site have a mutual effect on their respective binding affinities. 相似文献
3.
Tryptophan hydroxylase (TPH) is a mononuclear non-heme iron enzyme, which catalyzes the reaction between tryptophan, O 2, and tetrahydrobiopterin (BH 4) to produce 5-hydroxytryptophan and 4a-hydroxytetrahydrobiopterin. This is the first and rate-limiting step in the biosynthesis of the neurotransmitter and hormone serotonin (5-hydroxytryptamine). We have determined the 1.9 A resolution crystal structure of the catalytic domain (Delta1-100/Delta415-445) of chicken TPH isoform 1 (TPH1) in complex with the tryptophan substrate and an iron-bound imidazole. This is the first structure of any aromatic amino acid hydroxylase with bound natural amino acid substrate. The iron coordination can be described as distorted trigonal bipyramidal coordination with His273, His278, and Glu318 (partially bidentate) and one imidazole as ligands. The tryptophan stacks against Pro269 with a distance of 3.9 A between the iron and the tryptophan Czeta3 atom that is hydroxylated. The binding of tryptophan and maybe the imidazole has caused the structural changes in the catalytic domain compared to the structure of the human TPH1 without tryptophan. The structure of chicken TPH1 is more compact, and the loops of residues Leu124-Asp139 and Ile367-Thr369 close around the active site. Similar structural changes are seen in the catalytic domain of phenylalanine hydroxylase (PAH) upon binding of substrate analogues norleucine and thienylalanine to the PAH.BH 4 complex. In fact, the chicken TPH1.Trp.imidazole structure resembles the PAH.BH 4.thienylalanine structure more (root-mean-square deviation for Calpha atoms of 0.90 A) than the human TPH1 structure (root-mean-square deviation of 1.47 A). 相似文献
4.
5.
The serotonin 5-hydroxytryptamine (5-HT) neurotransmitter system contributes to various physiological and pathological conditions.
5-HT is the first neurotransmitter for which a developmental role was suspected. Tryptophan hydroxylase (TPH) catalyzes the
rate-limiting reaction in the biosynthesis of 5-HT. Both TPH1 and TPH2 have tryptophan hydroxylating activity. TPH2 is abundant
in the brain, whereas TPH1 is mainly expressed in the pineal gland and the periphery. However, TPH1 was found to be expressed
predominantly during the late developmental stage in the brain. Recent advances have shed light on the kinetic properties
of each TPH isoform. TPH1 showed greater affinity for tryptophan and stronger enzymic activity than TPH2 under conditions
reflecting those in the developing brain stem. Transient alterations in 5-HT homeostasis during development modify the fine
wiring of brain connections and cause permanent changes to adult behavior. An increasing body of evidence suggests the involvement
of developmental brain disturbances in psychiatric disorders. These findings have revived a long-standing interest in the
developmental role of 5-HT-related molecules. This article summarizes our understanding of the kinetics and possible neuronal
functions of each TPH during development and in the adult. 相似文献
6.
7.
Systematic effects on the dynamics of rat raphé tryptophan hydroxylase were observed in the presence of thyrotropin-releasing hormone under the far-from-equilibrium conditions of a kinetic scattering paradigm. The peptide reduced the amplitude of velocity fluctuations across fine-grained increases in cofactor or time and induced rare, high-amplitude irregularities suggesting phase transitions at relatively long wavelengths. Respectively, these two effects of the neuropeptide resemble the statistical changes observed in the same enzyme system in the presence of the lithium ion and the tricyclic antidepressant chlorimipramine under comparable assay conditions. Neither the subtleties of control dynamics nor their responses to the peptide were demonstrable under the saturating conditions of Michaelis-Menten or allosteric kinetics. These findings have possible implications for neurotransmitter regulation in view of the most current information about dynamical interactions among proteins, peptides, and ion ligands in aqueous environment. 相似文献
8.
K H Chen C A Evans P M Gallop 《Biochemical and biophysical research communications》1977,74(4):1631-1636
The activation of prolyl hydroxylase and lysyl hydroxylase by ascorbate was studied in young and senescent WI-38 fibroblast cultures using a tritium-release assay. Prolyl hydroxylase activity could be increased 3–4 fold in young cultures but remained unchanged in senescent cultures when these cultures underwent a two-hour preincubation in medium containing 0.2mM sodium ascorbate. Lysyl hydroxylase levels were unaffected both in young and senescent cultures. In another series of experiments, ascorbate was replaced with several other compounds in the tritium-release assay demonstrating that this reducing agent is not a specific cofactor of the partially purified enzymes from WI-38 cultures. 相似文献
9.
Kageyama T 《Biochemistry》2006,45(48):14415-14426
Pepsin B is known to be distributed throughout mammalia, including carnivores. In this study, the proteolytic specificity of canine pepsin B was clarified with 2 protein substrates and 37 synthetic octapeptides and compared with that of human pepsin A. Pepsin B efficiently hydrolyzed gelatin but very poorly hydrolized hemoglobin. It was active against only a group of octapeptides with Gly at P2, such as KPAGF/LRL and KPEGF/LRL (arrows indicate cleavage sites). In contrast, pepsin A hydrolyzed hemoglobin but not gelatin and showed high activity against various types of octapeptides, such as KPAEF/FRL and KPAEF/LRL. The specificity of pepsin B is unique among pepsins, and thus, the enzyme provides a suitable model for analyzing the structure and function of pepsins and related aspartic proteinases. Because Tyr13 and Phe219 in/around the S2 subsites (Glu/Ala13 and Ser219 are common in most pepsins) appeared to be involved in the specificity of pepsin B, site-directed mutagenesis was undertaken to replace large aromatic residues with small residues and vice versa. The Tyr13Ala/Phe219Ser double mutant of pepsin B was found to demonstrate broad activity against hemoglobin and various octapeptides, whereas the reverse mutant of pepsin A had significantly decreased activity. According to molecular modeling of pepsin B, Tyr13 OH narrows the substrate-binding space and a peptide with Gly at P2 might be preferentially accommodated because of its high flexibility. The hydroxyl can also make a hydrogen bond with nitrogen of a P3 residue and fix the substrate main chain to the active site, thus restricting the flexibility of the main chain and strengthening preferential accommodation of Gly at P2. The phenyl moiety of Phe219 is bulky and narrows the S2 substrate space, which also leads to a preference for Gly at P2, while lowering the catalytic activity against other peptide types without making a hydrogen-bonding network in the active site. 相似文献
10.
P Gettins J Choay B C Crews G Zettlmeiss 《The Journal of biological chemistry》1992,267(30):21946-21953
To probe the functional role of tryptophan 49 in human antithrombin III, a mutant antithrombin, W49K, has been expressed in baby hamster kidney cells. The mutation reduces the affinity for heparin pentasaccharide by 1.8 kcal mol-1 but does not alter the heparin enhancement of the rate of factor Xa inhibition. 1H NMR spectra of W49K antithrombin show that the structure of the protein and the mode of heparin binding appear to be unaltered by the mutation, although tryptophan 49 is perturbed by heparin binding. 19F NMR spectra of 6-fluorotryptophan-substituted antithrombin show that tryptophan 49 is in a solvent-exposed environment. The heparin-induced fluorescence enhancement of W49K antithrombin is significantly different from that of wild-type antithrombin. Pentasaccharide induces only a 24% enhancement of antithrombin fluorescence, while high affinity heparin induces an enhancement of 40%. The results indicate that tryptophan 49 is probably a heparin contact residue but can be mutated without altering the remaining heparin-antithrombin interactions or the heparin-induced conformational change and resultant activation toward Factor Xa. Hydrophobic as well as charge interactions are thus probably involved in the specificity of the antithrombin-heparin pentasaccharide interaction. The lower fluorescence enhancements suggest that the heparin-induced 40% fluorescence enhancement used as the hallmark of activating heparin species is not the best indicator of the structural change in antithrombin that results in enhancement of the rate of proteinase inhibition. 相似文献
11.
Koike K Oleschuk CJ Haimeur A Olsen SL Deeley RG Cole SP 《The Journal of biological chemistry》2002,277(51):49495-49503
The multidrug resistance protein, MRP1, is a clinically important ATP-binding cassette transporter in which the three membrane-spanning domains (MSDs), which contain up to 17 transmembrane (TM) helices, and two nucleotide binding domains (NBDs) are configured MSD1-MSD2-NBD1-MSD3-NBD2. In tumor cells, MRP1 confers resistance to a broad spectrum of drugs, but in normal cells, it functions as a primary active transporter of organic anions such as leukotriene C(4) and 17beta-estradiol 17beta-(D-glucuronide). We have previously shown that mutation of TM17-Trp(1246) eliminates 17beta-estradiol 17beta-(D-glucuronide) transport and drug resistance conferred by MRP1 while leaving leukotriene C(4) transport intact. By mutating the 11 remaining Trp residues that are in predicted TM segments of MRP1, we have now determined that five of them are also major determinants of MRP1 function. Ala substitution of three of these residues, Trp(445) (TM8), Trp(553) (TM10), and Trp(1198) (TM16), eliminated or substantially reduced transport levels of five organic anion substrates of MRP1. In contrast, Ala substitutions of Trp(361) (TM7) and Trp(459) (TM9) caused a more moderate and substrate-selective reduction in MRP1 function. More conservative substitutions (Tyr and Phe) of the Trp(445), Trp(553), and Trp(1198) mutants resulted in substrate selective retention of transport in some cases (Trp(445) and Trp(1198)) but not others (Trp(553)). Our findings suggest that the bulky polar aromatic indole side chain of each of these five Trp residues contributes significantly to the transport activity and substrate specificity of MRP1. 相似文献
12.
Aromatic polyketides are a class of natural products that include many pharmaceutically important aromatic compounds. Understanding the structure and function of PKS will provide clues to the molecular basis of polyketide biosynthesis specificity. Polyketide chain reduction by ketoreductase (KR) provides regio- and stereochemical diversity. Two cocrystal structures of actinorhodin polyketide ketoreductase (act KR) were solved to 2.3 A with either the cofactor NADP(+) or NADPH bound. The monomer fold is a highly conserved Rossmann fold. Subtle differences between structures of act KR and fatty acid KRs fine-tune the tetramer interface and substrate binding pocket. Comparisons of the NADP(+)- and NADPH-bound structures indicate that the alpha6-alpha7 loop region is highly flexible. The intricate proton-relay network in the active site leads to the proposed catalytic mechanism involving four waters, NADPH, and the active site tetrad Asn114-Ser144-Tyr157-Lys161. Acyl carrier protein and substrate docking models shed light on the molecular basis of KR regio- and stereoselectivity, as well as the differences between aromatic polyketide and fatty acid biosyntheses. Sequence comparison indicates that the above features are highly conserved among aromatic polyketide KRs. The structures of act KR provide an important step toward understanding aromatic PKS and will enhance our ability to design novel aromatic polyketide natural products with different reduction patterns. 相似文献
13.
Residues Phe300 and Phe309 of tyrosine hydroxylase are located in the active site in the recently described three-dimensional structure of the enzyme, where they have been proposed to play roles in substrate binding. Also based on the structure, Phe300 has been reported to be hydroxylated due to a naturally occurring posttranslational modification [Goodwill, K. E., Sabatier, C., and Stevens, R. C. (1998) Biochemistry 37, 13437-13445]. Mutants of tyrosine hydroxylase with alanine substituted for Phe300 or Phe309 have now been purified and characterized. The F309A protein possesses 40% less activity than wild-type tyrosine hydroxylase in the production of DOPA, but full activity in the production of dihydropterin. The F300A protein shows a 2.5-fold decrease in activity in the production of both DOPA and dihydropterin. The K(6-MPH4) value for F300A tyrosine hydroxylase is twice the wild-type value. These results are consistent with Phe309 having a role in maintaining the integrity of the active site, while Phe300 contributes less than 1 kcal/mol to binding tetrahydropterin. Characterization of Phe300 by MALDI-TOF mass spectrometry and amino acid sequencing showed that hydroxylation only occurs in the isolated catalytic domain after incubation with a large excess of 7, 8-dihydropterin, DTT, and Fe(2+). The modification is not observed in the untreated catalytic domain or in the full-length protein, even in the presence of excess iron. These results establish that hydroxylation of Phe300 is an artifact of the crystallography conditions and is not relevant to catalysis. 相似文献
14.
NMR spectroscopy and X-ray crystallography have provided important insight into structural features of phenylalanine hydroxylase (PAH) and tyrosine hydroxylase (TH). Nevertheless, significant problems such as the substrate specificity of PAH and the different susceptibility of TH to feedback inhibition by l-3,4-dihydroxyphenylalanine (l-DOPA) compared with dopamine (DA) remain unresolved. Based on the crystal structures 5pah for PAH and 2toh for TH (Protein Data Bank), we have used molecular docking to model the binding of 6(R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4) and the substrates phenylalanine and tyrosine to the catalytic domains of PAH and TH. The amino acid substrates were placed in positions common to both enzymes. The productive position of tyrosine in TH.BH4 was stabilized by a hydrogen bond with BH4. Despite favorable energy scores, tyrosine in a position trans to PAH residue His290 or TH residue His336 interferes with the access of the essential cofactor dioxygen to the catalytic center, thereby blocking the enzymatic reaction. DA and l-DOPA were directly coordinated to the active site iron via the hydroxyl residues of their catechol groups. Two alternative conformations, rotated 180 degrees around an imaginary iron-catecholamine axis, were found for DA and l-DOPA in PAH and for DA in TH. Electrostatic forces play a key role in hindering the bidentate binding of the immediate reaction product l-DOPA to TH, thereby saving the enzyme from direct feedback inhibition. 相似文献
15.
T. Yamaguchi Y. Hirata T. Nagatsu S. Oda T. Sugimoto S. Matsuura M. Konagaya T. Takayanagi I. Sobue 《Neurochemistry international》1982,4(6):491-494
Biopterin, the cofactor for tyrosine hydroxylase and tryptophan hydroxylase, was decreased in caudate nucleus, hypothalamus and cerebellum of the rolling mouse. Though there were not significant differences of tyrosine hydroxylase and tryptophan hydroxylase activities between the rolling and normal control mouse in the hypothalamus, the rolling showed significant increase of biopterin concentration and tyrosine hydroxylase activity after administration of thyrotropin releasing hormone (TRH). These results suggest that ataxic gait of the rolling mouse may be partly due to some abnormalities of catecholaminergic neurons, especially noradrenergic neurons, and that TRH may improve the abnormalities of catecholaminergic neurons. The changes of biopterin concentration by TRH administration indicate that biopterin may be a regulatory factor in catecholamine biosynthesis. 相似文献
16.
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the synthesis of the neurotransmitter serotonin (5-HT). Once thought to be a single gene product, TPH is now known to exist in two isoforms. Isoform 1 (TPH1) is found in the pineal gland and gut, and isoform 2 (TPH2) is selectively expressed in brain. A single-nucleotide polymorphism in TPH2 results in a proline-to-arginine mutation at residue 447 and substantially lowers catalytic activity. In view of the importance of TPH in determining brain 5-HT function, we cloned TPH2 and produced the P447R mutant to assess the importance of this proline in enzyme function. Catalytically active TPH2 and the P447R mutant were expressed at the predicted subunit molecular mass of 56 kDa. The P447R mutant expressed less than 50% of the activity of TPH2. Mutation of this conserved proline in TPH1 (P403R) also resulted in an enzyme with significantly lower activity than the wild-type enzyme. The P447R mutant had a V(max) 50% lower than that of TPH2. The P447R mutation did not alter the oligomeric assembly of the protein, nor change its responsiveness to cysteine modification. The P447R mutation did not alter enzyme substrate specificity or stability, but conferred slightly enhanced sensitivity to inhibition by dopamine and diminished sensitivity to iron in catalysis. The conserved proline in TPH (residue 447 in TPH2 and 403 in TPH1) plays an important role in enzyme function by regulating V(max) of the catalytic reaction. 相似文献
17.
《Journal of Molecular Catalysis .B, Enzymatic》2010,62(3-4):162-167
Steric hindrance leads to limitation in the access of substrate into the enzyme active site. In order to decrease steric hindrance, two conserved residues, Phe181 and Phe182, in the lid domain of Bacillus thermocatenulatus lipase were substituted with alanine by using site-directed mutagenesis. As a result, three mutant lipases were produced. Circular dichroism (CD) spectroscopy showed that the secondary structure of all lipases is similar to one another. F181A mutation increased the distance between phe181 and catalytic ser114, which is buried in the active site by 3.24 Å. It can be suggested that such an increase in distance may lead to a decrease in steric hindrance. F181A mutation increased overall lipase activity by up to 2.6-fold (4670 U mg−1) toward C8 substrate. It also resulted in optimal lipase activity at 65 °C rather than 55 °C. F182A mutation increased the distance between phe182 and catalytic ser114 by 1.54 Å but failed to induce any significant effect on lipase activity. However, F181A–F182A mutation significantly decreased the activity due to decreased van der Waals interactions between the phenyl group of phenylalanines and the acyl chain of triacylglycerol. These results indicate that presence of one of the two residues, Phe181 or Phe182, is important for stabilizing triacylglycerols in active site. 相似文献
18.
19.
20.