首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The overlap of 94 single-nucleotide polymorphisms (SNP) among the 4,720 and 11,120 SNPs contained in the linkage panels of Illumina and Affymetrix, respectively, allows an assessment of the discrepancy rate produced by these two platforms. Although the no-call rate for the Affymetrix platform is approximately 8.6 times greater than for the Illumina platform, when both platforms make a genotypic call, the agreement is an impressive 99.85%. To determine if disputed genotypes can be resolved without sequencing, we studied recombination in the region of the discrepancy for the most discrepant SNP rs958883 (typed by Illumina) and tsc02060848 (typed by Affymetrix). We find that the number of inferred recombinants is substantially higher for the Affymetrix genotypes compared to the Illumina genotypes. We illustrate this with pedigree 10043, in which 3 of 7 versus 0 of 7 offspring must be double recombinants using the genotypes from the Affymetrix and the Illumina platforms, respectively. Of the 36 SNPs with one or more discrepancies, we identified a subset that appears to cluster in families. Some of this clustering may be due to the presence of a second segregating SNP that obliterates a XbaI site (the restriction enzyme used in the Affymetrix platform), resulting in a fragment too long (>1,000 bp) to be amplified.  相似文献   

3.
The subcellular location of activity and protein of ADP-glucose pyrophosphorylase (AGPase) in developing tomato (Lycopersicon esculentum) fruit was determined following a report that the enzyme might be present inside and outside the plastids in this organ. Plastids prepared from crude homogenates of columella and pericarp, the starch-accumulating tissues of developing fruit, contained 8% to 18% of the total activity of enzymes known to be confined to plastids, and 0.2% to 0.5% of the total activity of enzymes known to be confined to the cytosol. The proportion of the total activity of AGPase in the plastids was the same as that of the enzymes known to be confined to the plastid. When samples of plastid and total homogenate fractions were subjected to immunoblotting with an antiserum raised to AGPase, most or all of the protein detected was plastidial. Taken as a whole, these data provide strong evidence that AGPase is confined to the plastids in developing tomato fruit.  相似文献   

4.
A major challenge with single-nucleotide polymorphism (SNP) fingerprinting of bacteria and higher organisms is the combination of genome-wide screenings with the potential of multiplexing and accurate SNP detection. Single-nucleotide extension by the minisequencing principle represents a technology that both is highly accurate and enables multiplexing. A current bottleneck for direct genome analyses by minisequencing, however, is the sensitivity, since minisequencing relies on linear signal amplification. Here, we present SNPtrap, which is a novel approach that combines the specificity and possibility of multiplexing by minisequencing with the sensitivity obtained by logarithmic signal amplification by polymerase chain reaction (PCR). We show a SNPtrap proof of principle in a model system for two polymorphic SNP sites in the Salmonella tetrathionate reductase gene (ttrC).  相似文献   

5.
The nature of forces maintaining variation for quantitative traits can only be assessed at the level of individual genes affecting variation in the traits. Identification of single-nucleotide polymorphisms (SNPs) associated with variation in Drosophila sensory bristle number at the Delta (Dl) locus provides us with the opportunity to test a model for the maintenance of variation in bristle number by genotype by environment interaction (GEI). Under this model, genetic variation is maintained at a locus under stabilizing selection if phenotypic values of heterozygotes are more stable than homozygotes across a range of environments, and the mean allelic effect is much smaller than the standard deviation of allelic effects across environments. Homozygotes and heterozygotes for two SNPs at Dl, one affecting sternopleural and the other abdominal bristle number, were reared in five different environments. There was significant GEI for both bristle traits. Neither condition of the model was satisfied for Dl SNPs exhibiting GEI for sternopleural bristle number. Heterozygotes for the abdominal bristle number SNPs were indeed the most stable genotype for two of the three environment pairs exhibiting GEI, but the mean genotypic effect was greater than the standard deviation of effects across environments. Therefore, this mechanism of GEI seems unlikely to be responsible for maintaining the common bristle number polymorphisms at Dl.  相似文献   

6.
The centrosome duplicates once in S phase. To determine whether there is a block in centrosome reduplication, we used a cell fusion assay to compare the duplication potential of unduplicated G1 centrosomes and recently duplicated G2 centrosomes. By fusing cells in different cell cycle stages, we found that G2 centrosomes were unable to reduplicate in a cellular environment that supports centrosome duplication. Furthermore, G2 cytoplasm did not inhibit centrosome duplication in fused cells, indicating that the block to reduplication is intrinsic to the centrosomes rather than the cytoplasm. To test the underlying mechanism, we created mononucleate G1 cells with two centrosomes by fusing cells with enucleated cytoplasts. Both centrosomes duplicated, indicating that the block is not controlled by centrosome:nucleus ratio. We also found that human primary cells have tight control over centrosome number during prolonged S-phase arrest and that this control is partially abrogated in transformed cells. This suggests a link between the control of centrosome duplication and maintenance of genomic stability.  相似文献   

7.
Toll-like receptors (TLRs) play a fundamental role in pathogen recognition and activation of innate immunity. Genetic variations in TLR have been associated with reduced host immune response to TLR ligands. We developed a rapid, simple and cost-effective method for identification of two common single-nucleotide polymorphisms (SNPs) within TLR4 gene in a high-throughput format. The method consists of a single polymerase chain reaction of the region spanning the A896G and C1196T polymorphic sites, followed by two primer extension reactions at each site using primers that carry a (dA)24 segment at the 5′ end. A biotinylated nucleotide is incorporated in the extended primer. The products are captured in microtiter wells coated with streptavidin and detected using a (dT)30-conjugated photoprotein aequorin. A total of 209 individuals were genotyped for each SNP. The A896G and C1196T polymorphisms were found to be in linkage disequilibrium; 186 individuals (89%) were wild-type homozygous (A/A or C/C), 22 (10.5%) were heterozygotes (A/G or C/T), and 1 (0.5%) was homozygous for the mutation (G/G or T/T). The accuracy of this method was confirmed by sequencing. The newly developed method may be useful for association studies of these two SNPs with several diseases.  相似文献   

8.
Kostem E  Lozano JA  Eskin E 《Genetics》2011,188(2):449-460
Genome-wide association studies (GWASs) have been effectively identifying the genomic regions associated with a disease trait. In a typical GWAS, an informative subset of the single-nucleotide polymorphisms (SNPs), called tag SNPs, is genotyped in case/control individuals. Once the tag SNP statistics are computed, the genomic regions that are in linkage disequilibrium (LD) with the most significantly associated tag SNPs are believed to contain the causal polymorphisms. However, such LD regions are often large and contain many additional polymorphisms. Following up all the SNPs included in these regions is costly and infeasible for biological validation. In this article we address how to characterize these regions cost effectively with the goal of providing investigators a clear direction for biological validation. We introduce a follow-up study approach for identifying all untyped associated SNPs by selecting additional SNPs, called follow-up SNPs, from the associated regions and genotyping them in the original case/control individuals. We introduce a novel SNP selection method with the goal of maximizing the number of associated SNPs among the chosen follow-up SNPs. We show how the observed statistics of the original tag SNPs and human genetic variation reference data such as the HapMap Project can be utilized to identify the follow-up SNPs. We use simulated and real association studies based on the HapMap data and the Wellcome Trust Case Control Consortium to demonstrate that our method shows superior performance to the correlation- and distance-based traditional follow-up SNP selection approaches. Our method is publicly available at http://genetics.cs.ucla.edu/followupSNPs.  相似文献   

9.
Genotypes of Drosophila hydei having deficiencies of specific sections of X or Y chromosomal heterochromatin are characterized by heterogeneous rRNA gene numbers in their nonpolyploid organs. Depending on which sex heterochromatin portion is deleted, the rDNA amount in either brain or thoracic muscle cells or in both is increased threefold. This rDNA overreplication cannot be a compensation for a deficiency in ribosomal gene number, since the phenomenon also occurs in genotypes with a high initial rRNA gene numbers.  相似文献   

10.
11.
The nucleotide sequence was determined of the region upstream of the mukB gene of Escherichia coli. Two new genes were found, designated kicA and kicB (killing of cell); the gene order is kicB-kicA-mukB. Promoter activities were detected in the regions immediately upstream of kicB and kicA, but not in front of mukB. Gene disruption experiments revealed that the kicA disruptant was nonviable, but the kicB-disrupted mutant and the mutant lacking both the kicB and kicA genes were able to grow. When kicA disruptant cells bearing a temperature-sensitive replication plasmid carrying the kicA + gene were grown at 30° C and then transferred to 42° C, the mutant cells gradually lost colony-forming ability, even in the presence of a mukB + plasmid. Rates of protein synthesis, but not of RNA or DNA synthesis, fell dramatically during incubation at 42° C. These results suggested that the kicB gene encodes a killing factor and the kicA gene codes for a protein that suppresses the killing function of the kicB gene product. It was also demonstrated that KicA and KicB can function as a post-segregational killing system, when the genes are transferred from the E. coli chromosome onto a plasmid.  相似文献   

12.
The level of the in vitro chemotactic responsiveness of murine inflammatory peritoneal macrophages is dependent upon the genetic background of the host. A survey of the responses of macrophages from various inbred strains showed three categories of response (high, intermediate, and low), indicating that genetic control is multigenic. Among the high responder strains were those derived from the C57BL (B) background, while mice of the A/J (A) strain exhibited the lowest response. In order to determine the number of genes controlling the level of macrophage chemotactic responses, segregation analysis of backcross mice derived from high responder B and low responder A parental mice was performed. The results of analysis of the data by the maximum likelihood modeling, a computerized method, showed that the difference in macrophage chemotactic responsiveness in the strain combination of B and A mice is due to the effects of two autosomal genetic loci.  相似文献   

13.
Hepatocellular carcinoma (HCC) is a worldwide neoplasm for which early diagnosis is difficult and the prognosis is usually poor. Overexpression of cyclooxygenase 2 (COX-2) has been suggested to be associated with hepatocarcinogenesis. Although several COX-2 inhibitors have been used in hepatoma therapy, the genetic background between COX-2 and HCC remains largely unknown. In this study, the association of genotypic polymorphisms in COX-2 with HCC was investigated. 25 healthy individuals served as control (group I), group II: 50 HCV infection patients without any complications, group III: 50 HCV infected patients complicated with cirrhosis and group IV: 75 HCV infected patients complicated with (45 localized and 30 metastatic) HCC from Zagazig University Hospital in Egypt were genotyped by a PCR–RFLP method. The results showed that, no differences in distribution between the HCC and other groups were found. We found ?1195A allele carriers had a higher risk of HCC with HCV infection. As regard the obtained results of serum AFU, a significant increase was detected in HCC as compared with cirrhosis, hepatitis and healthy control groups (p < 0.001). Concerning the obtained results of serum AFP, when HCC group was compared with cirrhosis, hepatitis and healthy controls, a significant increase was observed (p < 0.001). In conclusion: identification of SNP in COX-2 gene promoter and evaluation of serum AFU and AFP give a red light in early detection of HCC which may be reduce its fatal incidence.  相似文献   

14.
Ploidy levels in transgenic tomato plants determined by chloroplast number   总被引:4,自引:0,他引:4  
We determined germline ploidy of primary tomato transformants by counting meiotic chromosomes. We then determined the number of chloroplasts in stomatal cells by cytological staining. A correlation of these values indicated that diploid transformants had significantly fewer chloroplasts than tetraploid transformants. By maximum likelihood, we estimate that less than 1% of diploid transformants will have chloroplast values in the tetraploid range. Transformed plants generally had more chloroplasts than plants derived from seed. Also, there was more variability between transformed than seed derived plants. Less than 5% of transformed plants were chimeric when comparing leaf and pollen ploidy levels. Of 129 transgenic plants examined, 29 (22%) were polyploid.  相似文献   

15.
16.
We present full-genome genotype imputations for 100 classical laboratory mouse strains, using a novel method. Using genotypes at 549,683 SNP loci obtained with the Mouse Diversity Array, we partitioned the genome of 100 mouse strains into 40,647 intervals that exhibit no evidence of historical recombination. For each of these intervals we inferred a local phylogenetic tree. We combined these data with 12 million loci with sequence variations recently discovered by whole-genome sequencing in a common subset of 12 classical laboratory strains. For each phylogenetic tree we identified strains sharing a leaf node with one or more of the sequenced strains. We then imputed high- and medium-confidence genotypes for each of 88 nonsequenced genomes. Among inbred strains, we imputed 92% of SNPs genome-wide, with 71% in high-confidence regions. Our method produced 977 million new genotypes with an estimated per-SNP error rate of 0.083% in high-confidence regions and 0.37% genome-wide. Our analysis identified which of the 88 nonsequenced strains would be the most informative for improving full-genome imputation, as well as which additional strain sequences will reveal more new genetic variants. Imputed sequences and quality scores can be downloaded and visualized online.  相似文献   

17.
Within the frame of an attempt to sequence the whole Bacillus subtilis genome, a region of 5.5 kbp of the B. subtilis chromosome near the sacS locus has been sequenced. It contains five complete coding sequences, including the sequence of sacY, three unknown CDS and a sequence coding for a tyrosine tRNA synthetase. That the corresponding CDS encodes a functional synthetase has been demonstrated by complementation of an Escherichia coli mutant possessing a thermosensitive tRNA synthetase. Insertion of a kanamycin resistance cassette in the B. subtilis chromosome at the corresponding locus resulted, however, in no apparent phenotype, demonstrating that this synthetase is dispensable. Finally phylogenetic relationships between known tyrosine and tryptophan tRNA synthetases are discussed.  相似文献   

18.
Summary Temporal course of regeneration of the hypostome and basal disc along the body length of the hydra is studied both in the presence and absence of the other determined centre. The regeneration times vary nonlinearly with distance from the original position indicating that the underlying processes are of non-linear nature. The presence of hypostome influences the regeneration of basal disc in an inhibitory manner throughout the body length, whereas, basal disc influences the regeneration of hypostome only in the lower portion of the body in a positive manner. A scheme in terms of the activators and inhibitors specific to hypostome and basal disc, is given. The implication of these results is that the two inhibitors are functionally distinct.  相似文献   

19.
In the development of tomato compound leaves, local auxin maxima points, separated by the expression of the Aux/IAA protein SlIAA9/ENTIRE (E), direct the formation of discrete leaflets along the leaf margin. The local auxin maxima promote leaflet initiation, while E acts between leaflets to inhibit auxin response and lamina growth, enabling leaflet separation. Here, we show that a group of auxin response factors (ARFs), which are targeted by miR160, antagonizes auxin response and lamina growth in conjunction with E. In wild‐type leaf primordia, the miR160‐targeted ARFs SlARF10A and SlARF17 are expressed in leaflets, and SlmiR160 is expressed in provascular tissues. Leaf overexpression of the miR160‐targeted ARFs SlARF10A, SlARF10B or SlARF17, led to reduced lamina and increased leaf complexity, and suppressed auxin response in young leaves. In agreement, leaf overexpression of miR160 resulted in simplified leaves due to ectopic lamina growth between leaflets, reminiscent of e leaves. Genetic interactions suggest that E and miR160‐targeted ARFs act partially redundantly but are both required for local inhibition of lamina growth between initiating leaflets. These results show that different types of auxin signal antagonists act cooperatively to ensure leaflet separation in tomato leaf margins.  相似文献   

20.
The nucleotide sequence was determined of the region upstream of the mukB gene of Escherichia coli. Two new genes were found, designated kicA and kicB (killing of cell); the gene order is kicB-kicA-mukB. Promoter activities were detected in the regions immediately upstream of kicB and kicA, but not in front of mukB. Gene disruption experiments revealed that the kicA disruptant was nonviable, but the kicB-disrupted mutant and the mutant lacking both the kicB and kicA genes were able to grow. When kicA disruptant cells bearing a temperature-sensitive replication plasmid carrying the kicA + gene were grown at 30° C and then transferred to 42° C, the mutant cells gradually lost colony-forming ability, even in the presence of a mukB + plasmid. Rates of protein synthesis, but not of RNA or DNA synthesis, fell dramatically during incubation at 42° C. These results suggested that the kicB gene encodes a killing factor and the kicA gene codes for a protein that suppresses the killing function of the kicB gene product. It was also demonstrated that KicA and KicB can function as a post-segregational killing system, when the genes are transferred from the E. coli chromosome onto a plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号