首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Skibbens RV 《Genetics》2004,166(1):33-42
From the time of DNA replication until anaphase onset, sister chromatids remain tightly paired along their length. Ctf7p/Eco1p is essential to establish sister-chromatid pairing during S-phase and associates with DNA replication components. DNA helicases precede the DNA replication fork and thus will first encounter chromatin sites destined for cohesion. In this study, I provide the first evidence that a DNA helicase is required for proper sister-chromatid cohesion. Characterizations of chl1 mutant cells reveal that CHL1 interacts genetically with both CTF7/ECO1 and CTF18/CHL12, two genes that function in sister-chromatid cohesion. Consistent with genetic interactions, Chl1p physically associates with Ctf7p/Eco1p both in vivo and in vitro. Finally, a functional assay reveals that Chl1p is critical for sister-chromatid cohesion. Within the budding yeast genome, Chl1p exhibits the highest degree of sequence similarity to human CHL1 isoforms and BACH1. Previous studies revealed that human CHLR1 exhibits DNA helicase-like activities and that BACH1 is a helicase-like protein that associates with the tumor suppressor BRCA1 to maintain genome integrity. Our findings document a novel role for Chl1p in sister-chromatid cohesion and provide new insights into the possible mechanisms through which DNA helicases may contribute to cancer progression when mutated.  相似文献   

2.
Deletion mutants of CHL1 or CTF4, which are required for sister chromatid cohesion, showed higher sensitivity to the DNA damaging agents methyl methanesulfonate (MMS), hydroxyurea (HU), phleomycin, and camptothecin, similar to the phenotype of mutants of RAD52, which is essential for recombination repair. The levels of Chl1 and Ctf4 associated with chromatin increased considerably after exposure of the cells to MMS and phleomycin. Although the activation of DNA damage checkpoint did not affected in chl1 and ctf4 mutants, the repair of damaged chromosome was inefficient, suggesting that Chl1 and Ctf4 act in DNA repair. In addition, MMS-induced sister chromatid recombination in haploid cells, and, more importantly, MMS-induced recombination between homologous chromosomes in diploid cells were impaired in these mutants. Our results suggest that Chl1 and Ctf4 are directly involved in homologous recombination repair rather than acting indirectly via the establishment of sister chromatid cohesion.  相似文献   

3.
The Swi1 and Swi3 proteins are required for mat1 imprinting and mating-type switching in Schizosaccharomyces pombe, where they mediate a pause of leading-strand replication in response to a lagging-strand signal. In addition, Swi1 has been demonstrated to be involved in the checkpoint response to stalled replication forks, as was described for the Saccharomyces cerevisiae homologue Tof1. This study addresses the roles of Swi1 and Swi3 during a replication process perturbed by the presence of template bases alkylated by methyl methanesulfonate (MMS). Both the swi1 and swi3 mutations have additive effects on MMS sensitivity and on the MMS-induced damage checkpoint response when combined with chk1 and cds1, but they are nonadditive with hsk1. Cells with swi1, swi3, or hsk1 mutations are also defective in slowing progression through S phase in response to MMS damage. Moreover, swi1 and swi3 strains show increased levels of genomic instability even in the absence of exogenously induced DNA damage. Chromosome fragmentation, increased levels of single-stranded DNA, increased recombination, and instability of replication forks stalled in the presence of hydroxyurea are observed, consistent with the possibility that the replication process is affected in these mutants. In conclusion, Swi1, Swi3, and Hsk1 act in a novel S-phase checkpoint pathway that contributes to replication fork maintenance and to survival of alkylation damage.  相似文献   

4.
The Saccharomyces cerevisiae protein kinase Rad53 plays a key role in maintaining genomic integrity after DNA damage and is an essential component of the ‘intra-S-phase checkpoint’. In budding yeast, alkylating chemicals, such as methyl methanesulfonate (MMS), or depletion of nucleotides by hydroxyurea (HU) stall DNA replication forks and thus activate Rad53 during S-phase. This stabilizes stalled DNA replication forks and prevents the activation of later origins of DNA replication. Here, we report that a reduction in the level of Rad53 kinase causes cells to behave very differently in response to DNA alkylation or to nucleotide depletion. While cells lacking Rad53 are unable to activate the checkpoint response to HU or MMS, so that they rapidly lose viability, a reduction in Rad53 enhances cell survival only after DNA alkylation. This reduction in the level of Rad53 allows S-phase cells to maintain the stability of DNA replication forks upon MMS treatment, but does not prevent the collapse of forks in HU. Our results may have important implications for cancer therapies, as they suggest that partial impairment of the S-phase checkpoint Rad53/Chk2 kinase provides cells with a growth advantage in the presence of drugs that damage DNA.  相似文献   

5.
The role of Snm1, Rev3 and Rad51 in S-phase after cisplatin (CDDP) DNA treatment has been examined. When isogenic deletion mutants snm1 delta, rev3 delta and rad51 delta were arrested in G1 and treated with doses of CDDP causing significant lethality (<20% survival in the mutant strains), they progressed through S-phase with normal kinetics. The mutants arrested in G2 like wild-type cells, however they did not exit the arrest and reenter the cell cycle. This finding demonstrates that these genes are not required to allow DNA replication in the presence of damage. Therefore, Snm1, Rev3 and Rad51 may act after S to allow repair. At high levels of damage (<40% survival in wild-type cells) S-phase was slowed in a MEC1-dependent fashion. The cross-link incision kinetics of snm1 delta and rev3 delta mutants were also examined; both showed no deficiencies in incision of cross-linked DNA.  相似文献   

6.
The S-phase checkpoint activated at replication forks coordinates DNA replication when forks stall because of DNA damage or low deoxyribonucleotide triphosphate pools. We explore the involvement of replication forks in coordinating the S-phase checkpoint using dun1Delta cells that have a defect in the number of stalled forks formed from early origins and are dependent on the DNA damage Chk1p pathway for survival when replication is stalled. We show that providing additional origins activated in early S phase and establishing a paused fork at a replication fork pause site restores S-phase checkpoint signaling to chk1Delta dun1Delta cells and relieves the reliance on the DNA damage checkpoint pathway. Origin licensing and activation are controlled by the cyclin-Cdk complexes. Thus, oncogene-mediated deregulation of cyclins in the early stages of cancer development could contribute to genomic instability through a deficiency in the forks required to establish the S-phase checkpoint.  相似文献   

7.
Treatment of base excision repair-proficient mouse fibroblasts with the DNA alkylating agent methyl methanesulfonate (MMS) and a small molecule inhibitor of PARP-1 results in a striking cell killing phenotype, as previously reported. Earlier studies showed that the mechanism of cell death is apoptosis and requires DNA replication, expression of PARP-1, and an intact S-phase checkpoint cell signaling system. It is proposed that activity-inhibited PARP-1 becomes immobilized at DNA repair intermediates, and that this blocks DNA repair and interferes with DNA replication, eventually promoting an S-phase checkpoint and G(2)-M block. Here we report studies designed to evaluate the prediction that inhibited PARP-1 remains DNA associated in cells undergoing repair of alkylation-induced damage. Using chromatin immunoprecipitation with anti-PARP-1 antibody and qPCR for DNA quantification, a higher level of DNA was found associated with PARP-1 in cells treated with MMS plus PARP inhibitor than in cells without inhibitor treatment. These results have implications for explaining the extreme hypersensitivity phenotype after combination treatment with MMS and a PARP inhibitor.  相似文献   

8.
A critical DNA damage checkpoint in Saccharomyces cerevisiae is an arrest at the metaphase stage of mitosis. Here we show that the S-phase cyclins Clb5 and Clb6 are required for this arrest. Strains lacking Clb5 and Clb6 are hypersensitive to DNA damage. Furthermore, in the presence of the DNA alkylating agent methyl methanesulfonate (MMS) over 50% of clb5 clb6 mutants by-passed the metaphase checkpoint and arrested instead with separated sister chromatids. Levels of Pds1, an inhibitor of anaphase that accumulates following DNA damage, were similar in the wild-type and mutant strains following MMS treatment. Furthermore, unlike wild-type cells, clb5 clb6 mutants undergo nuclear division despite the presence of nuclear non-degradable Pds1. Our results suggest a novel role for the S-phase cyclins Clb5 and Clb6 in maintaining sister chromatid cohesion during a metaphase arrest, perhaps by regulating Pds1 activity.  相似文献   

9.
Vázquez MV  Rojas V  Tercero JA 《DNA Repair》2008,7(10):1693-1704
Eukaryotic genomes are especially vulnerable to DNA damage during the S phase of the cell cycle, when chromosomes must be duplicated. The stability of DNA replication forks is critical to achieve faithful chromosome replication and is severely compromised when forks encounter DNA lesions. To maintain genome integrity, replication forks need to be protected by the S-phase checkpoint and DNA insults must be repaired. Different pathways help to repair or tolerate the lesions in the DNA, but their contribution to the progression of replication forks through damaged DNA is not well known. Here we show in budding yeast that, when the DNA template is damaged with the alkylating agent methyl methanesulfonate (MMS), base excision repair, homologous recombination and DNA damage tolerance pathways, together with a functional S-phase checkpoint, are essential for the efficient progression of DNA replication forks and the maintenance of cell survival. In the absence of base excision repair, replication forks stall reversibly in cells exposed to MMS. This repair reaction is necessary to eliminate the lesions that impede fork progression and has to be coordinated with recombination and damage tolerance activities to avoid fork collapse and allow forks to resume and complete chromosome replication.  相似文献   

10.
S-phase and DNA damage checkpoint controls block the onset of mitosis when DNA is damaged or DNA replication is incomplete. It has been proposed that damaged or incompletely replicated DNA generates structures that are sensed by the checkpoint control pathway, although little is known about the structures and mechanisms involved. Here, we show that the DNA replication initiation proteins Orp1p and Cdc18p are required to induce and maintain the S-phase checkpoint in Schizosaccharomyces pombe. The presence of DNA replication structures correlates with activation of the Cds1p checkpoint protein kinase and the S-phase checkpoint pathway. By contrast, induction of the DNA damage pathway is not dependent on Orp1p or Cdc18p. We propose that the presence of unresolved replication forks, together with Orp1p and Cdc18p, are necessary to activate the Cds1p-dependent S-phase checkpoint.  相似文献   

11.
Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.  相似文献   

12.
Mouse fibroblasts, deficient in DNA polymerase beta, are hypersensitive to monofunctional DNA methylating agents such as methyl methanesulfonate (MMS). Both wild-type and, in particular, repair-deficient DNA polymerase beta null cells are highly sensitized to the cytotoxic effects of MMS by 4-amino-1,8-naphthalimide (4-AN), an inhibitor of poly(ADP-ribose) polymerase (PARP) activity. Experiments with synchronized cells suggest that exposure during S-phase of the cell cycle is required for the 4-AN effect. 4-AN elicits a similar extreme sensitization to the thymidine analog, 5-hydroxymethyl-2'-deoxyuridine, implicating the requirement for an intermediate of DNA repair. In PARP-1-expressing fibroblasts treated with a combination of MMS and 4-AN, a complete inhibition of DNA synthesis is apparent after 4 h, and by 24 h, all cells are arrested in S-phase of the cell cycle. Continuous incubation with 4-AN is required to maintain the cell cycle arrest. Caffeine, an inhibitor of the upstream checkpoint kinases ATM (ataxia telangiectasia-mutated) and ATR (ATM and Rad3-related), has no effect on the early inhibition of DNA synthesis, but cells are no longer able to maintain the block after 8 h. Instead, the addition of caffeine leads to arrest of cells in G(2)/M rather than S-phase after 24 h. Analysis of signaling pathways in cell extracts reveals an activation of Chk1 after treatment with MMS and 4-AN, which can be suppressed by caffeine. Our results suggest that inhibition of PARP activity results in sensitization to MMS through maintenance of an ATR and Chk1-dependent S-phase checkpoint.  相似文献   

13.
Liu JS  Kuo SR  Melendy T 《Mutation research》2003,532(1-2):215-226
To better understand the different cellular responses to replication fork pausing versus blockage, early DNA damage response markers were compared after treatment of cultured mammalian cells with agents that either inhibit DNA polymerase activity (hydroxyurea (HU) or aphidicolin) or selectively induce S-phase DNA damage responses (the DNA alkylating agents, methyl methanesulfonate (MMS) and adozelesin). These agents were compared for their relative abilities to induce phosphorylation of Chk1, H2AX, and replication protein A (RPA), and intra-nuclear focalization of gamma-H2AX and RPA. Treatment by aphidicolin and HU resulted in phosphorylation of Chk1, while HU, but not aphidicolin, induced focalization of gamma-H2AX and RPA. Surprisingly, pre-treatment with aphidicolin to stop replication fork progression, did not abrogate HU-induced gamma-H2AX and RPA focalization. This suggests that HU may act on the replication fork machinery directly, such that fork progression is not required to trigger these responses. The DNA-damaging fork-blocking agents, adozelesin and MMS, both induced phosphorylation and focalization of H2AX and RPA. Unlike adozelesin and HU, the pattern of MMS-induced RPA focalization did not match the BUdR incorporation pattern and was not blocked by aphidicolin, suggesting that MMS-induced damage is not replication fork-dependent. In support of this, MMS was the only reagent used that did not induce phosphorylation of Chk1. These results indicate that induction of DNA damage checkpoint responses due to adozelesin is both replication fork and fork progression dependent, induction by HU is replication fork dependent but progression independent, while induction by MMS is independent of both replication forks and fork progression.  相似文献   

14.
The fission yeast Dbf4 homologue Dfp1 has a well-characterized role in regulating the initiation of DNA replication. Sequence analysis of Dfp1 homologues reveals three highly conserved regions, referred to as motifs N, M, and C. To determine the roles of these conserved regions in Dfp1 function, we have generated dfp1 alleles with mutations in these regions. Mutations in motif N render cells sensitive to a broad range of DNA-damaging agents and replication inhibitors, yet these mutant proteins are efficient activators of Hsk1 kinase in vitro. In contrast, mutations in motif C confer sensitivity to the alkylating agent methyl methanesulfonate (MMS) but, surprisingly, not to UV, ionizing radiation, or hydroxyurea. Motif C mutants are poor activators of Hsk1 in vitro but can fulfill the essential function(s) of Dfp1 in vivo. Strains carrying dfp1 motif C mutants have an intact mitotic and intra-S-phase checkpoint, and epistasis analysis indicates that dfp1 motif C mutants function outside of the known MMS damage repair pathways, suggesting that the observed MMS sensitivity is due to defects in recovery from DNA damage. The motif C mutants are most sensitive to MMS during S phase and are partially suppressed by deletion of the S-phase checkpoint kinase cds1. Following treatment with MMS, dfp1 motif C mutants exhibit nuclear fragmentation, chromosome instability, precocious recombination, and persistent checkpoint activation. We propose that Dfp1 plays at least two genetically separable roles in the DNA damage response in addition to its well-characterized role in the initiation of DNA replication and that motif C plays a critical role in the response to alkylation damage, perhaps by restarting or stabilizing stalled replication forks.  相似文献   

15.
Mammalian CST (CTC1-STN1-TEN1) is a telomere-associated complex that functions in telomere duplex replication and fill-in synthesis of the telomeric C-strand following telomerase action. CST also facilitates genome-wide replication recovery after HU-induced fork stalling by increasing origin firing. CTC1 and STN1 were originally isolated as a DNA polymerase α stimulatory factor. Here we explore how CST abundance affects recovery from drugs that cause different types of DNA damage and replication stress. We show that recovery from HU and aphidicolin induced replication stress is increased by CST over-expression. Elevated CST increases dNTP incorporation and origin firing after HU release and decreases the incidence of anaphase bridges and micronuclei after aphidicolin removal. While the frequency of origin firing after HU release is proportional to CST abundance, the number of cells entering S-phase to initiate replication is unchanged by CST overexpression or STN1 depletion. Instead the CST-related changes in origin firing take place in cells that were already in S-phase at the time of HU addition, indicating that CST modulates firing of late or dormant origins. CST abundance also influences cell viability after treatment with HU, aphidicolin, MMS and camptothecin. Viability is increased by elevated CST and decreased by STN1 depletion, indicating that endogenous CST levels are limiting. However, CST abundance does not affect viability after MMC treatment. Thus, CST facilitates recovery from many, but not all, forms of exogenous DNA damage. Overall our results suggest that CST is needed in stoichiometric amounts to facilitate re-initiation of DNA replication at repaired forks and/or dormant origins.  相似文献   

16.
The S-phase kinase, DDK controls DNA replication through phosphorylation of the replicative helicase, Mcm2-7. We show that phosphorylation of Mcm2 at S164 and S170 is not essential for viability. However, the relevance of Mcm2 phosphorylation is demonstrated by the sensitivity of a strain containing alanine at these positions (mcm2(AA)) to methyl methanesulfonate (MMS) and caffeine. Consistent with a role for Mcm2 phosphorylation in response to DNA damage, the mcm2(AA) strain accumulates more RPA foci than wild type. An allele with the phosphomimetic mutations S164E and S170E (mcm2(EE)) suppresses the MMS and caffeine sensitivity caused by deficiencies in DDK function. In vitro, phosphorylation of Mcm2 or Mcm2(EE) reduces the helicase activity of Mcm2-7 while increasing DNA binding. The reduced helicase activity likely results from the increased DNA binding since relaxing DNA binding with salt restores helicase activity. The finding that the ATP site mutant mcm2(K549R) has higher DNA binding and less ATPase than mcm2(EE), but like mcm2(AA) results in drug sensitivity, supports a model whereby a specific range of Mcm2-7 activity is required in response to MMS and caffeine. We propose that phosphorylation of Mcm2 fine-tunes the activity of Mcm2-7, which in turn modulates DNA replication in response to DNA damage.  相似文献   

17.
Upon DNA damage, replication is inhibited by the S-phase checkpoint. ATR (ataxia telangiectasia mutated- and Rad3-related) is specifically involved in the inhibition of replicon initiation when cells are treated with DNA damage-inducing agents that stall replication forks, but the mechanism by which it acts to prevent replication is not yet fully understood. We observed that RPA2 is phosphorylated on chromatin in an ATR-dependent manner when replication forks are stalled. Mutation of the ATR-dependent phosphorylation sites in RPA2 leads to a defect in the down-regulation of DNA synthesis following treatment with UV radiation, although ATR activation is not affected. Threonine 21 and serine 33, two residues among several phosphorylation sites in the amino terminus of RPA2, are specifically required for the UV-induced, ATR-mediated inhibition of DNA replication. RPA2 mutant alleles containing phospho-mimetic mutations at ATR-dependent phosphorylation sites have an impaired ability to associate with replication centers, indicating that ATR phosphorylation of RPA2 directly affects the replication function of RPA. Our studies suggest that in response to UV-induced DNA damage, ATR rapidly phosphorylates RPA2, disrupting its association with replication centers in the S-phase and contributing to the inhibition of DNA replication.  相似文献   

18.
When replication forks stall during DNA synthesis, cells respond by assembling multi-protein complexes to control the various pathways that stabilize the replication machinery, repair the replication fork, and facilitate the reinitiation of processive DNA synthesis. Increasing evidence suggests that cells have evolved scaffolding proteins to orchestrate and control the assembly of these repair complexes, typified in mammalian cells by several BRCT-motif containing proteins, such as Brca1, Xrcc1, and 53BP1. In Saccharomyces cerevisiae, Esc4 contains six such BRCT domains and is required for the most efficient response to a variety of agents that damage DNA. We show that Esc4 interacts with several proteins involved in the repair and processing of stalled or collapsed replication forks, including the recombination protein Rad55. However, the function of Esc4 does not appear to be restricted to a Rad55-dependent process, as we observed an increase in sensitivity to the DNA alkylating agent methane methylsulfonate (MMS) in a esc4Deltarad55Delta mutant, as well as in double mutants of esc4Delta and other recombination genes, compared to the corresponding single mutants. In addition, we show that Esc4 forms multiple nuclear foci in response to treatment with MMS. Similar behavior is also observed in the absence of damage when either of the S-phase checkpoint proteins, Tof1 or Mrc1, is deleted. Thus, we propose that Esc4 associates with ssDNA of stalled forks and acts as a scaffolding protein to recruit and/or modulate the function of other proteins required to reinitiate DNA synthesis.  相似文献   

19.
Sister chromatid cohesion is established during S phase near the replication fork. However, how DNA replication is coordinated with chromosomal cohesion pathway is largely unknown. Here, we report studies of fission yeast Ctf18, a subunit of the RFC(Ctf18) replication factor C complex, and Chl1, a putative DNA helicase. We show that RFC(Ctf18) is essential in the absence of the Swi1-Swi3 replication fork protection complex required for the S phase stress response. Loss of Ctf18 leads to an increased sensitivity to S phase stressing agents, a decreased level of Cds1 kinase activity, and accumulation of DNA damage during S phase. Ctf18 associates with chromatin during S phase, and it is required for the proper resumption of replication after fork arrest. We also show that chl1Delta is synthetically lethal with ctf18Delta and that a dosage increase of chl1(+) rescues sensitivities of swi1Delta to S phase stressing agents, indicating that Chl1 is involved in the S phase stress response. Finally, we demonstrate that inactivation of Ctf18, Chl1, or Swi1-Swi3 leads to defective centromere cohesion, suggesting the role of these proteins in chromosome segregation. We propose that RFC(Ctf18) and the Swi1-Swi3 complex function in separate and redundant pathways essential for replication fork stabilization to facilitate sister chromatid cohesion in fission yeast.  相似文献   

20.
XRCC1 is required for DNA single-strand break repair in human cells   总被引:7,自引:2,他引:5  
Brem R  Hall J 《Nucleic acids research》2005,33(8):2512-2520
The X-ray repair cross complementing 1 (XRCC1) protein is required for viability and efficient repair of DNA single-strand breaks (SSBs) in rodents. XRCC1-deficient mouse or hamster cells are hypersensitive to DNA damaging agents generating SSBs and display genetic instability after such DNA damage. The presence of certain polymorphisms in the human XRCC1 gene has been associated with altered cancer risk, but the role of XRCC1 in SSB repair (SSBR) in human cells is poorly defined. To elucidate this role, we used RNA interference to modulate XRCC1 protein levels in human cell lines. A reduction in XRCC1 protein levels resulted in decreased SSBR capacity as measured by the comet assay and intracellular NAD(P)H levels, hypersensitivity to the cell killing effects of the DNA damaging agents methyl methanesulfonate (MMS), hydrogen peroxide and ionizing radiation and enhanced formation of micronuclei following exposure to MMS. Lowered XRCC1 protein levels were also associated with a significant delay in S-phase progression after exposure to MMS. These data clearly demonstrate that XRCC1 is required for efficient SSBR and genomic stability in human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号