首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The reactivity of the non-narcotic substances, cyproheptadine and N-desmethylcyproheptadine with morphine: UDP-glucuronyltransferase was studied in rabbit hepatic microsomal preparations. Cyproheptadine produced a potent competitive inhibition of morphine glucuronidation in vitro (Ki=0.08 mM) whereas its N-desmethyl derivative was significantly less effective (Ki=0.4 mM). No cyproheptadine glucuronide was formed in these reactions suggesting that cyproheptadine acts as a dead-end inhibitor. Results indicate that the mechanism of the inhibition of morphine: UDP-glucuronyltransferase by cyproheptadine is similar to that produced by opioids and is related to the presence of the N-alkyl group in it structure.  相似文献   

2.
1. Antiserum was raised against purified Wistar-rat liver UDP-glucuronyltransferase. 2. UDP-glucuronyltransferase activities towards 4-nitrophenol, bilirubin, 1-naphthol and morphine were co-immunoprecipitated from solubilized Wistar-rat liver preparations. 3. UDP-glucuronyltransferase activities towards 1-naphthol, 2-aminophenol and 4-nitrophenol were precipitated from solubilized Gunn-rat liver preparations by this antiserum. 4. UDP-glucuronyltransferase activities towards 1-naphthol, 4-nitrophenol and bilirubin, from Wistar-rat liver, were slightly inhibited by antiserum, whereas 1-naphthol UDP-glucuronyltransferase activity from Gunn-rat livers was greatly inhibited. 5. Measurable Wistar-rat liver glucuronyltransferase activities in washed immunoprecipitates indicate that the enzyme(s) were not merely inhibited by antiserum. 6. Immunoglobulin G purified from this antiserum immunoprecipitated transferase activities towards 4-nitrophenol, bilirubin and 1-naphthol. 7. The washed immunoprecipitates from both rat strains, containing UDP-glucuronyltransferase activity, appear to be similar when analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 8. Radial-immunodiffusion studies suggest that a smaller amount of UDP-glucuronyltransferase protein is present in Gunn-rat liver than in Wistar-rat liver. 9. The significance of these results in relation to the genetic deficiency in the Gunn rat is discussed.  相似文献   

3.
The specificity of glycosyltransferases is a major control factor in the biosynthesis of O-glycans. The enzyme that synthesizes O-glycan core 1, i.e., UDP-galactose:N-acetylgalactosamine-alpha-R beta 3-galactosyltransferase (beta 3-Gal-T; EC 2.4.1.122), was partially purified from rat liver. The enzyme preparation, free of pyrophosphatases, beta 4-galactosyltransferase, beta-galactosidase, and N-acetylglucosaminyltransferase I, was used to study the specificity and inhibition of the beta 3-Gal-T. beta 3-Gal-T activity is sensitive to changes in the R-group of the GalNAc alpha-R acceptor substrate and is stimulated when the R-group is a peptide or an aromatic group. Derivatives of GalNAc alpha-benzyl were synthesized and tested as potential substrates and inhibitors. Removal or substitution of the 3-hydroxyl or removal of the 4-hydroxyl of GalNAc abolished beta 3-Gal-T activity. Compounds with modifications of the 3- or 4-hydroxyl of GalNAc alpha-benzyl did not show significant inhibition. Removal or substitution of the 6-hydroxyl of GalNAc reduced activity slightly and these derivatives acted as competitive substrates. derivatives with epoxide groups attached to the 6-position of GalNAc acted as substrates and not as inhibitors, with the exception of the photosensitive 6-O-(4,4-azo)pentyl-GalNAc alpha-benzyl, which inhibited Gal incorporation into GalNAc alpha-benzyl. The results indicate that the enzyme does not require the 6-hydroxyl of GalNAc, but needs the 3- and the axial 4-hydroxyl as essential requirements for binding and activity. In the usual biochemical O-glycan pathway, core 2 (GlcNAc beta 6[Gal beta 3] GalNAc alpha-) is formed from core 1 (Gal beta 3GalNAc-R). We have now demonstrated an alternate pathway that may be of importance in human tissues.  相似文献   

4.
1. Microsomal preparations from rat liver, kidney and intestine were tested for UDP-glucuronyltransferase activity by using oestrone, oestradiol-17 beta, oestriol, testosterone, cortisol, cortisone, corticosterone, aldosterone, tetrahydrocortisol and tetrahydrocortisone as substrates. The microsomal preparation from the liver glucuronidated oestrone, oestradiol-17 beta and testosterone. 2. The specific activity of the enzyme was significantly higher in livers from female rats than in those from male rats. 3. Testosterone was actively glucuronidated by both sexes. Cortisol, cortisone, corticosterone, aldosterone, tetrahydrocortisol and tetrahydrocortisone were not glucuronidated by any of the three tissues. 4. The non-ionic detergent Lubrol WX activates liver microsomal UDP-glucuronyltransferase 2-3-fold with oestrone and testosterone as substrates. 5. Oestrone glucuronyltransferase was inhibited by oestradiol-17 beta, predominantly competitively and by testosterone non-competitively. Bilirubin was a non-competitive inhibitor of oestrone glucuronidation. p-Nitrophenol had no effect. 6. Oestrone glucuronyltransferase could not be stimulated by either acute or prolonged treatment of animals with phenobarbital, whereas a single dose of 3-methylcholanthrene led to a moderate stimulation. 7. Ovariectomy leads to a 56% decrease in oestrone glucuronyltransferase activity; administration of oestradiol-17 beta induces the enzyme to normal activity after 12 days, and after 15 days the activity is twice the control value. Actinomycin D and cycloheximide block the oestradiol-17 beta-induced increase in enzyme activity. 8. Castration has no effect on the activity of testosterone glucuronyltransferase, nor does administration of testosterone influence enzyme activity. The results provide strong evidence for the existence of multiple steroid glucuronyltransferases in the liver of the rat.  相似文献   

5.
TTUR 2-2, an alkalophilic Bacillus strain isolated from soil, grew well in media containing cholic acid (CA) at 5% or higher and efficiently converted 7α- and 12α-hydroxyl groups of CA to keto groups, with the conversion rate for both hydroxyl groups reaching 100% by 72 hours of cultivation. The strain also converted a 3α-hydroxyl group to a keto group, but the conversion rate was about 5% at 72 hours. The strain neither affected any other part of the CA molecule, nor oxidized 7β- or 12 β -hydroxyl groups.

By NTG mutagenesis, the following mutants were acquired; (1) converting only the 7α- and 12α-hydroxyl groups, (2) converting only the 12α-hydroxyl group, and (3) converting only the 7α-hydroxyl group. These mutants selectively produce 12-ketochenodeoxycholic acid (12KCDCA), 7-ketodeoxycholic acid (7KDOCA), and 7,12-diketolithocholic acid (7,12DKLCA), from CA; and 7-ketolithocholic acid (7KLCA) from cheno-deoxycholic acid (CDCA), respectively, at high yields, close to 100%.  相似文献   

6.
The effect of phenobarbital and 3-methylcholanthrene pretreatment on the biliary excretion of phenolsulphonphthalein (PSP) was investigated in male Wistar rats. The dye was injected at a single dose of 200 mumol/kg body wt. About 20% of the compound was excreted as a glucuronide in the controls, the liver UDP-glucuronyltransferase activity toward PSP being 0.064 +/- 0.005 nmol.min-1.mg protein-1. Treatment for two weeks with phenobarbital (354 mumol.kg body wt-1.day-1) caused a transient increase in conjugated and unconjugated PSP excretion, but glucuronyltransferase activity was not modified. 3-Methylcholanthrene pretreatment for 4 days (75 mumol.kg body wt-1.day-1) also enhanced biliary excretion of the dye, but the increase corresponded only to the glucuronide and glucuronyltransferase activity was significantly enhanced by 20%. Our data indicate that not only the rate of biotransformation but also other factors could be responsible for increased PSP biliary excretion following administration of microsomal enzyme inducers.  相似文献   

7.
Drug metabolism was studied in hepatic microsomal and post microsomal supernatant fractions from male and female athymic nude mice (nu/nu) and heterozygous (+/nu) and homozygous (+/+) wild-type controls. In males, the following enzyme activities were higher in athymic mice than in the wild-type: NADPH cytochrome c reductase, ethylmorphine and aminopyrine N-demethylases, native UDP glucuronyltransferase, and glutathione (GSH) S-aryltransferase. No differences were observed between groups in UDPNAG-activated UDP-glucuronyltransferase, N-acetyltransferase, or aniline hydroxylase activities or in amounts of cytochrome P-450. In female athymic mice, only ethylmorphine and aminopyrine N-demethylase activities were significantly higher than in female wild-type controls (+/+). The female athymic mice had mixed function oxidase activities that were less than the male athymic mice. There were no sex or strain differences in response to treatment with phenobarbital or 3-methylcholanthrene.  相似文献   

8.
G F Rush  J B Hook 《Life sciences》1984,35(2):145-153
Rat renal microsomes catalyzed the glucuronidation of l-naphthol, 4-methylumbelliferone and p-nitrophenol, whereas morphine and testosterone conjugation were not detected. In contrast, all five substrates were conjugated by hepatic microsomes; the activity was typically 5-10 times greater than with renal microsomes. Renal microsomal UDP-glucuronyltransferase toward l-naphthol was fully activated (six-fold) by 0.03% deoxycholate while the hepatic enzyme was fully activated (eight-fold) by 0.05% deoxycholate. Full activation of hepatic UDP-glucuronyltransferase occurred when microsomes had been preincubated at 0 C with deoxycholate for 20 min. This effect of preincubation was not observed with renal microsomes. The presence of 0.25M sucrose in the buffers during renal microsomal preparation resulted in a two-fold greater rate of l-naphthol conjugation in both unactivated and activated microsomes than renal microsomes prepared in phosphate buffers alone. Preparation of hepatic microsomes with or without 0.25M sucrose had no effect on UDP-glucuronyltransferase activity. Unactivated (-deoxycholate) renal enzyme was activated when incubations were done at a low pH (5.7), whereas fully activated (0.03% deoxycholate) renal microsomal UDP-glucuronyltransferase displayed a pH optimum at 6.5. Renal microsomal UDP-glucuronyltransferase activity toward l-naphthol, p-nitrophenol and 4-methylumbelliferone was induced by pretreatment of rats with beta-naphthoflavone and trans-stilbene oxide but not by phenobarbital or 3-methylcholanthrene. These data demonstrate that renal UDP-glucuronyltransferases are different from the hepatic enzymes with regard to biochemical properties, substrate specificity and in response to chemical inducers of xenobiotic metabolism.  相似文献   

9.
Hepatic UDP-glucuronyltransferase activity was resolved into two fractions, one exhibiting oestrone glucuronyltransferase activity and the other exhibiting p-nitrophenol glucuronyltransferase activity. Hydroxyapatite-column chromatography removed greater than 95% of the phospholipids from both preparations. The partially purified delipidated enzymes were essentially devoid of catalytic activity, but activities were restored by the addition of phospholipids or phosphatidylcholine mixtures containing various saturated and unsaturated fatty acids. Both oestrone and p-nitrophenol glucuronyl-transferase activities were reconstituted to similar degrees with the phosphatidylcholine mixtures. When purified phospholipids were tested, phosphatidylcholine and lysophosphatidylcholine were most effective in restoring activity, whereas phosphatidylethanolamine was the least effective. These results further suggest that oestrone and p-nitrophenol UDP-glucuronyltransferases are dependent on phospholipids for their activity.  相似文献   

10.
The interaction between influenza virus hemagglutinin and its cell-surface receptor, 5-N-acetylneuraminic acid (sialic acid), was probed by the synthesis of 12 sialic acid analogs, including derivatives at the 2-carboxylate, 5-acetamido, 4-, 7-, and 9-hydroxyl, and glycosidic positions. The equilibrium dissociation constants of these analogs were determined by nuclear magnetic resonance spectroscopy. Ligand modifications that reduced or abolished binding included the replacement of the 2-carboxylate with a carboxamide, the substitution of azido or N-benzyloxycarbonyl groups for the 5-acetamido group, and the replacement of the 9-hydroxyl with amino or O-acetyl moieties. Modifications having little effect on binding included the introduction of longer chains at the 4-hydroxyl position, the replacement of the acetamido methyl group with an ethyl group, and the removal of the 7-hydroxyl group. X-ray diffraction studies yielded 3 A resolution crystal structures of hemagglutinin in complex with four of the synthetic analogs [alpha-2-O-methyl-, 4-O-acetyl-alpha-2-O-methyl-, 9-amino-9-deoxy-alpha-2-O-methyl-, and alpha-2-O-(4'-benzylamidocarboxybutyl)-N-acetylneuraminic acid] and with the naturally occurring cell-surface saccharide (alpha 2-3)sialyllactose. The X-ray studies unambiguously establish the position and orientation of bound sialic acid, indicate the position of the lactose group of (alpha 2-3)sialyllactose, and suggest the location of an alpha-glycosidic chain (4'-benzylamidocarboxybutyl) that increases the binding affinity of sialic acid by a factor of about 3. Although the protein complexed with alpha-2-O-methylsialic acid contains the mutation Gly-135-->Arg near the ligand binding site, the mutation apparently does not affect the ligand's position. The X-ray studies allow us to interpret the binding affinities in terms of the crystallographic structure. The results suggest further experiments which could lead to the design of tight binding inhibitors of possible therapeutic value.  相似文献   

11.
To clarify the structural requirements of flavonoids for formation of advanced glycation end-products (AGEs), various flavonoids were examined. The results suggested the following structural requirements of flavonoids for the inhibition of AGEs formation: (1) as the hydroxyl groups at the 3′-, 4′-, 5-, and 7-positions increased in number, the inhibitory activities became stronger; (2) the activities of flavones were stronger than those of corresponding flavonols, flavanones, and isoflavones; (3) methylation or glucosylation of the 4′-hydroxyl group of flavones, flavonols, and flavanones reduced activity; (4) methylation or glycosylation of the 3-hydroxyl group of flavonols tended to increase activity; (5) glycosylation of the 7-hydroxyl group of flavones and isoflavones reduced activity. In addition, various flavonoids with strong AGEs formation inhibitory activity tended to exhibit strong scavenging activity for 1,1-diphenyl-2-picrylhydrazyl and superoxide anion radicals, with several exceptions.  相似文献   

12.
A beta-N-acetylhexosaminidase was purified 800-fold from extracts of Trichomonas foetus by affinity chromatography on a column of N-(epsilon-aminohexanoyl)-2-acetamido-2-deoxy-beta-D-glucopyranosylamine bound to CNBr-activated Sepharose. The enzyme has a dual specificity for the p-nitrophenyl beta-D-glycosides of N-acetylglucosamine and N-acetyl-galactosamine. The parent sugars are both competitive inhibitors. The enzyme has a mol. wt. approx. 150000 and a pH optimum of 6.2. It is suggested that the same active site catalyses both activities and that no part is played by the 4-hydroxyl group in substrate binding, but it is involved in determining the catalytic rate.  相似文献   

13.
1. The purification to homogeneity of stable highly active preparations of UDP-glucuronyltransferase from liver of phenobarbital-treated rats is briefly described. 2. A single polypeptide was visible after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, of mol.wt.57000. 3. Antiserum raised against the pure enzyme produces a single sharp precipitin line after Ouchterlony double-diffusion analysis. 4. The pure UDP-glucuronyltransferase isolated from livers of untreated and phenobarbital-pretreated rats appears to be the same enzyme. 5. The Km (UDP-glucuronic acid) of the pure enzyme is 5.4 mM. 6. The activity of the pure enzyme towards 2-aminophenol can still be activated 2-3-fold by diethylnitrosamine. 7. UDP-glucose and UDP-galacturonic acid are not substrates for the purified enzyme. 8. The final preparation catalysed the glucuronidation of 4-nitrophenol, 1-naphthol, 2-aminophenol, morphine and 2-aminobenzoate. 9. Activities towards 4-nitrophenol, 1-naphthol and 2-aminophenol were all copurified. The proposed heterogeneity of UDP-glucuronyltransferase is discussed.  相似文献   

14.
N-Acetylserotonin (compound 1) and N-acetyldopamine (compound 7) inhibit bovine adrenal medullary sepiapterin reductase in a manner competitive with the pterin substrate and have Ki values of 0.12 and 0.4 microM, respectively. Molecular modeling suggests that the phenyl rings of the two compounds bind in the pyrimidine pocket of the enzyme with the 3-hydroxyl of dopamine or the 5-hydroxyl of serotonin aligned at the pyrimidine 4-position. Further, the acetyl moieties of the two inhibitors appear to mimic the substrate side chain. Consistent with this analysis, N-acetyl-m-tyramine (compound 13) is also an excellent competitive inhibitor (Ki = 0.13 microM), whereas N-acetyltryptamine (compound 2), N-acetyl-p-tyramine (compound 14) and N-acetylphenylethylamine (compound 15) all bind poorly. Interestingly, restricted-rotation analogs of N-acetyldopamine and N-acetyl-m-tyramine are noncompetitive inhibitors of the enzyme. Modification of N-acetyldopamine to N-chloroacetyldopamine (compound 10) or of N-acetylserotonin to the N-chloroacetyl (5) or N-methoxyacetyl (compound 6) analogs results in greatly increased competitive affinity, with Ki = 0.014 microM for the dopamine analog and 0.006 and 0.008 microM, respectively, for the serotonin analogs. In MOLT-4 T-cell leukemia and MCF-7 breast adenocarcinoma in culture, 0.1 mM N-methoxyacetylserotonin depleted tetrahydrobiopterin by greater than or equal to 97 and greater than 50%, respectively, with no effect upon cell growth. In both cell lines, the GTP cyclohydrolase inhibitor, 2,4-diamino-6-hydroxypyrimidine at 1-5 mM also depleted tetrahydrobiopterin greater than or equal to 97%. In this case, however, modest growth inhibition did occur. Since the growth inhibition could not be reversed upon tetrahydrobiopterin repletion, inhibition was due to other effects of the inhibitor rather than to tetrahydrobiopterin depletion. The results show that there is no effect on cell growth when at least 97% of the tetrahydrobiopterin in these cell lines is depleted. Since the sepiapterin reductase inhibitor depleted tetrahydrobiopterin with fewer nonspecific effects than the cyclohydrolase inhibitor, it will be useful for determining metabolic effects of tetrahydrobiopterin depletion.  相似文献   

15.
The sugar binding site of monomeric yeast hexokinase B complexed with the competitive inhibitor o-toluoylglucosamine has been examined in the model resulting from a crystallographic refinement at 2·1 Å resolution. Difference Fourier maps calculated assuming various sugar configurations demonstrate that the o-toluoylglucosamine binds in the chair equatorial conformation with its 1-hydroxyl axial (α-anomer). The absence of a chemically derived amino acid sequence has complicated our interpretations of sugar-enzyme interactions. Nevertheless, we conclude that the carboxyl group of Asp189 is hydrogen-bonded to both the 6- and 4-hydroxyl groups. The 4-hydroxyl group is hydrogen-bonded also to Asx188 and Asx215, while the 3-hydroxyl is interacting with both Asx245 and Asx 188, consistent with the enzyme's observed sugar specificity. The carboxyl group of Asp 189 is excluded from solvent in the presence of glucose and may be acting as a general base to enhance the nucleophilicity of the 6-hydroxyl group and thereby promote its attack on the γ-phosphate of ATP.Glucose is shown to bind to the enzyme in the same orientation and conformation as the sugar moiety of o-toluoylglucosamine, so that the 6-hydroxyl group and the carboxyl of Asp 189 are in identical positions in complexes with these two sugars. The fact that o-toluoylglucosamine is not a substrate must be explained by two observations. First, the binding of glucose results in one lobe rotating by 12 ° relative to the other lobe, thereby closing off the slit into which the sugar has bound (Bennett &; Steitz, unpublished results). Second, o-toluoylglucosamine does not produce this conformational change, because the bulky toluoyl group prevents the closing of this slit between the two lobes. We conclude, therefore, that the large glucose-induced conformational change must be essential for subsequent catalytic steps.It appears unlikely from this study that thiols play any direct role in catalysis or in substrate binding. One thiol group, however, lies 5·5 Å from the 3-hydroxyl and is hydrogen-bonded to three of the Asx groups that are binding the sugar. Chemical modification of this buried thiol would disrupt the glucose binding site, which could account for the observation (Otieno et al., 1977) that cyanylation of one of the enzyme's thiols abolishes enzymatic activity.A sulfate molecule is bound to the enzyme by two serine side-chains and its sulfur atom is 5·5 Å from the 6-hydroxyl group of glucose. If the γ-phosphate of ATP binds to this sulfate binding site, it would still be a little too far from the 6-hydroxyl for direct phosphoryl transfer.  相似文献   

16.
31P n.m.r. spectroscopy was used to study the nucleotide kinetics of UDP-glucuronyltransferase and associated reactions in the liver microsomal fraction. The effects of Mg2+ and EDTA on these reactions were investigated qualitatively. It was found that the rabbit microsomal fraction has no nucleoside pyrophosphatase activity, that UDP was immediately hydrolysed and that it was released from the microsomal surface. Reverse glucuronyltransferase could be demonstrated. The results are discussed with reference to functional coupling of UDP-glucuronyltransferase to other enzymes and the effects of Mg2+ and EDTA on the system.  相似文献   

17.
1. Rabbit liver microsomes were subfractionated into rough- and smooth-surfaced types, and glucuronyltransferase activity in each microsomal subfraction was determined with p-nitrophenol, o-aminophenol and phenolphthalein as substrates. The glucuronyltransferase activity measured with p-nitrophenol and o-aminophenol as substrates was localized predominantly in rough-surfaced microsomes. Glucuronyltransferase measured with phenolphthalein as substrate was equally present in rough- and smooth-surfaced microsomes. 2. Phenobarbital pretreatment of rabbits did not stimulate any of the glucuronyltransferase activities measured in either rough- or smooth-surfaced microsomes. 3. Preincubation of rabbit liver microsomes for 30-60min. at 37 degrees under oxygen did not cause any loss of glucuronyltransferase activity. Such preincubation caused either no change or increased enzyme activity in both submicrosomal fractions. The relative distribution of transferase activity in rough- and smooth-surfaced microsomes was not affected by preincubation.  相似文献   

18.
19.
Two groups of morbidly obese patients undergoing a gastric stapling procedure were compared. Patients in group I received 5 mg of morphine through a lumbar epidural catheter immediately after the surgical procedure while group II patients were treated conventionally with parenterally administered morphine. In group I less narcotics were needed and patients were able to walk earlier than in group II. Length of hospital stay, time to removal of the nasogastric tube and postoperative pulmonary function were not significantly different between groups. Two patients in group I and one patient in group II had generalized pruritus, and in one study patient bradypnea developed in association with the epidural administration of morphine. It is concluded that morbidly obese patients can benefit from epidurally administered morphine and that this form of therapy has a role in the management of these patients.  相似文献   

20.
M Cacan  S Moreau  R Tailliez 《Biochimie》1978,60(6-7):685-689
Rat liver microsome UDP-glucuronyltransferase and labelled UDP-glucuronic acid were incubated either with P.R.T. or the compounds obtained by the in vitro metabolism of the toxin. Under the same conditions, labelled P.R.T. or its labelled metabolites were incubated with UDP glucuronyltransferase. Radioactive metabolites were produced with Eremofortin C and Eremofortin C alcohol and in each case, were identified as the corresponding beta-glucuronide conjugate. No measurable glucuronidation of P.R.T. or P.R.T. alcohol was observed. The results outlined in this paper show a good correlation between the biological effects and the ability of forming a glucuronide conjugate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号