首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We investigated the effects of genotype, habitat, and seasonal variation on production of the iridoid glycosides, aucubin and catalpol, in leaves of the common weed Plantago lanceolata. Two genotypes, one each from a lawn and an adjacent abandoned hayfield population, were clonally replicated in the greenhouse, and then planted back into the two habitats. One quarter of the plants from each treatment were harvested on each of four dates, at approximately two-week intervals. Over the course of the growing season, and in both habitats, we found a significant increase in the concentration of both aucubin and catalpol in P. lanceolata leaves. The genotypes differed in their response to environmental variation, both in time and between sites, as indicated by significant genotype x date and genotype x site interactions. Early in the season, habitat (lawn or field) had a greater effect on iridoid glycoside concentration than did plant genotype, but later in the season, plant genotype was more influential in determining the iridoid glycoside concentration. Thus, the relative palatability of Plantago genotypes to specialist and generalist herbivores may vary in time and space.  相似文献   

2.
Abstract: Thirty‐eight plants were taken from a University of California alfalfa selection nursery for developing resistance to silverleaf whitefly, Bemisia argentifolii Bellows & Perring. Seventeen of the plants had low whitefly infestation and were categorized as ‘potentially resistant’; 21 of the plants had high whitefly infestation and were categorized as ‘presumed susceptible’. Plants were propagated vegetatively so that replicated measurements of whitefly performance could be made on each genotype. Two colonies of silverleaf whiteflies were used: one reared on alfalfa (alfalfa‐experienced whiteflies), and the other on cotton (alfalfa‐naive whiteflies). The effect of variation among alfalfa genotypes on whitefly performance was similar for both whitefly sources, although on all genotypes, the alfalfa‐experienced whiteflies generally performed better than their alfalfa‐naive counterparts. In greenhouse tests, fecundity of newly eclosed adults (over a 5‐day period) on the 17 potentially resistant genotypes was relatively consistent in being lower than fecundity on the presumed susceptible genotypes. However, in nymphal survival tests, the response on the 17 potentially resistant genotypes was not consistent. Nymphal survival (egg to adult) on some of these was very low, as expected, while nymphal survival on others was as high as on the presumed susceptible genotypes. Fecundity and nymphal survival data were not correlated for alfalfa‐naive whiteflies, and were only weakly correlated (r2 = 0.13, d.f. = 32, P = 0.04) for alfalfa‐experienced whiteflies. Thirteen genotypes then were examined in the greenhouse in stage‐specific survival tests, where four genotypes demonstrated high resistance (<10% nymphal survival) and three demonstrated moderate resistance (11–34% survival) compared with the three presumed susceptible genotypes that were tested (51–73% survival). Most of the mortality on the resistant genotypes occurred in the first instar, while mortality was more evenly distributed across the life stages on the susceptible genotypes. Interestingly, if nymphs survived to second instar on the resistant genotypes, then their subsequent survival to adult eclosion was similar to survival of second instar to adult on susceptible genotypes. Six of the genotypes used in the greenhouse stage‐specific survival test also were evaluated in the field for nymphal survival, and these results were consistent with the greenhouse tests.  相似文献   

3.
Five popular but iron-inefficient cultivars were crossed with three efficient genotypes and both parents and F1s were evaluated for iron-efficiency in potted calcareous and noncalcareous soil. The iron-efficient genotypes were dark green or green in both noncalcareous and calcareous soils whereas inefficient types were light green to yellow in calcareous soil. The chlorophyll and active iron (Fe2+) concentration of leaves was less in iron-efficient genotypes compared to efficient types in calcareous soil and reduction of both the parameters from noncalcareous to calcareous soil was considerably high in iron-inefficient lines. There was significant correlation between visual scores, chlorophyll and active iron content. There were no differences among F1s for iron chlorosis and they were all iron-inefficient. The frequency of iron-inefficient plants was higher than the efficient plants in all F2 populations. But most of the productive plants came from iron-efficient segregants indicating strong association between iron-efficiency and productivity. Based on the results selection for iron-efficiency in early generations and extensive evaluation for productivity in advanced generations is suggested for developing varieties for cultivation in calcareous soils.  相似文献   

4.
Summary Procedures are described for efficient selection of: (1) homozygous and heterozygous S-allele genotypes; (2) homozygous inbreds with the strong self- and sib-incompatibility required for effective seed production of single-cross F1 hybrids; (3) heterozygous genotypes with the high self- and sib-incompatibility required for effective seed production of 3- and 4-way hybrids.From reciprocal crosses between two first generation inbred (I1) plants there are three potential results: both crosses are incompatible; one is incompatible and the other compatible; and both are compatible. Incompatibility of both crosses is useful information only when combined with data from other reciprocal crosses. Each compatible cross, depending on whether its reciprocal is incompatible or compatible, dictates alternative reasoning and additional reciprocal crosses for efficiently and simultaneously identifying: (A) the S-allele genotype of all individual I1 plants, and (B) the expressions of dominance or codominance in pollen and stigma (sexual organs) of an S-allele heterozygous genotype. Reciprocal crosses provide the only efficient means of identifying S-allele genotypes and also the sexual-organ x S-allele-interaction types.Fluorescent microscope assay of pollen tube penetration into the style facilitates quantitation within 24–48 hours of incompatibility and compatibility of the reciprocal crosses. A procedure for quantitating the reciprocal difference is described that maximizes informational content of the data about interactions between S alleles in pollen and stigma of the S-allele-heterozygous genotype.Use of the non-inbred Io generation parent as a known heterozygous S-allele genotype in crosses with its first generation selfed (I1) progeny usually reduces at least 7 fold the effort required for achieving objectives 1, 2, and 3, compared to the method of making reciprocal crosses only among I1 plants.Identifying the heterozygous and both homozygous S-allele genotypes during the I1 generation facilitates, during subsequent inbred generations, strong selection for or against modifier genes that influence the intensity of self- and sib-incompatibility. Selection for strong self and sib incompatibility can be effective for both homozygous inbreds and also for the S-allele heterozygote, thus facilitating production of single-cross F1 hybrids and also of 3-and 4-way hybrids.Department of Plant Breeding and Biometry paper No. 690  相似文献   

5.
Four different growth environments (field, two phytotron greenhouses and one growth chamber) were compared, using two genotypes of spring wheat, one recalcitrant and one responsive. Field-grown plants gave inferior results. Large improvements could be made by improving the conditions, embryoid frequencies in the two genotypes reaching 77.1% and 183.9% per 100 anthers, respectively. High light intensity during the induction phase strongly suppressed induction in both genotypes, but stimulated regeneration of green plants in the recalcitrant genotype, which had the lowest regeneration ability. Weak, diffuse light did not inhibit induction while the positive effect on regeneration was maintained. Also, another recalcitrant genotype was grown in the field, together with two F1-hybrids (recalcitrant x recalcitrant and recalcitrant x responsive). Evidence for a three-factor system was obtained.  相似文献   

6.
Summary Plant resistance to insect herbivores may derive from traits influencing herbivore preference, traits influencing the suitability of the plant as a host, or both. However, the plant traits influencing host-plant selection by ovipositing insect herbivores may not completely overlap those traits that affect larval survival, and distinct traits may exhibit different levels of genetic vs. environmental control. Therefore, resource supply to the host plant could affect oviposition preference and larval performance differently in different plant genotypes. To test this hypothesis, the effects of resistance level, plant genotype, and resource supply to the host plant on oviposition preference and larval performance of a gallmaking herbivore, and on various plant traits that could influence these, were examined. Replicates of four genotypes of Solidago altissima, grown under low, medium, or high levels of nutrient supply in full sun or with medium levels of nutrients in shade, were exposed to mass-released Eurosta solidaginis. The number of plants ovipunctured was significantly affected by plant genotype and the interaction between genotype and nutrient supply to the host plant: one susceptible and one resistant genotype were more preferred, and preference tended to increase with nutrient supply in the more-preferred genotypes. The growth rate of ovipunctured plants during the oviposition period was significantly greater than that of unpunctured plants. Bud diameter (which was strongly correlated with plant growth rate), leaf area, and leaf water content were significant determinants of the percentage of plants ovipunctured, explaining 74% of the variance. The number of surviving larvae was significantly affected by plant genotype, but no effect of nutrient or light supply to the host plant was detected. The ratio of bud diameter to bud length was positively related to the percentage of ovipunctured plants that formed galls, suggesting that the accurate placement of eggs near the apical meristem by ovipositing females may be easier in short, thick buds. No significant correlation was observed between oviposition preference and larval survival at the population level. These results suggest that the plant traits affecting oviposition preference may exhibit different magnitudes of phenotypic plasticity than those affecting larval survival, and that the degree of phenotypic plasticity in plant traits affecting oviposition preference may differ among genotypes within a species.  相似文献   

7.
Summary Numbers of autotrophic nitrifiers in the rhizosphere, and thein vivo nitrate reductase activity (NRA) in the leaves of individual plants ofPlantago lanceolata were determined in plants at two contrasting sites. In a dune grassland, high numbers of nitrifiers were present in the rhizosphere, and significant NRA was detected in the leaves. During dry periods nitrate utilization sometimes was depressed. In a wet hayfield, on peat soil, very low numbers of nitrifiers were found in the rhizosphere. Also the NRA was low. In the wet habitat, the NRA in the leaves of some fen species, containing aerenchyma in the roots, was higher than that ofP. lanceolata, not containing aerenchyma.Grassland Species Research Group. Publication No. 105.  相似文献   

8.
Primary leaves of young plants of common bean (Phaseolus vulgaris cv. Carioca and Negro Huasteco) and cowpea (Vigna unguiculata Walp cv. Epace 10) were exposed to high irradiance (HI) of 2 000 μmol m−2 s−1 for 10, 20, and 30 min. The initial fluorescence (F0) was nearly constant in response to HI in each genotype except for Carioca. A distinct reduction of maximum fluorescence (Fm) was clearly observed in stressed genotypes of beans after 20 min followed by a slight recovery for the longer stress times. In common bean, the maximum quantum yield (Fv/Fm) was reduced slowly from 10 to 30 min of HI. In cowpea, only a slight reduction of Fv/Fm was observed at 20 min followed by recovery to normal values at 30 min. HI resulted in changes in the photochemical (qP) and non-photochemical (qN) quenching in both species, but to a different extent. In cowpea plants, more efficiency in the use of the absorbed energy under photoinhibitory conditions was related to increase in qP and decrease in qN. In addition, lipid peroxidation changed significantly in common bean genotypes with an evident increase after 20 min of HI. Hence the photosynthetic apparatus of cowpea was more tolerant to HI than that of common bean and the integrity of cowpea cell membranes was apparently maintained under HI.  相似文献   

9.
P. D. Cluster  R. W. Allard 《Genetics》1995,139(2):941-954
DNA samples from 980 plants of Avena barbata from 48 ecologically diverse sites in California and Oregon were assayed to determine their genotype for two duplicated loci governing rDNA variants. More than 40 different rDNA genotypes were observed among which 5 made up 96% of our sample in environmentally homogeneous sites; predominant genotypes were less frequent and recombinant genotypes were more frequent in environmentally heterogeneous sites. The spatial distribution of each predominant rDNA genotype was nearly an exact overlay on both macro- and microgeographical scales of a distinctive habitat and also of the distribution of an eight-locus morphological-allozyme variant genotype. In all, seven different habitat-genotype combinations (ecotypes) were distinguishable on the basis of their morphological-allozyme-rDNA genotypes. None of these seven genotypes has been found in ancestral Spanish populations; thus the above predominant multilocus genotypes (ecotypes) of the colonial populations evidently evolved subsequent to the recent introduction (within 150-200 generations) of A. barbata to California. The precise associations of specific alleles and genotypes of the morphological allozyme and rDNA loci with different specifiable habitats leads us to the conclusion that natural selection favoring particular multilocus combinations of alleles in different habitats was the main guiding force in shaping the internal genetic structure of local populations as well as the overall adaptive landscape of A. barbata over California and Oregon.  相似文献   

10.
Summary Twelve Plantago major plants, good representatives of their populations, appeared to be genetically different for several characters which are important for adaptation to the respective habitat conditions. These characters are: juvenile growth, leaf morphology, production of secondary rosettes, flowering time, seed production, seed size and adult leaf production. The adaptive value of some of these characters was investigated by transplantation experiments in the field and by intraspecific competition experiments. The roadside type of ssp. major was adapted to trampling by being erect and elastic. The lawn type of ssp. major was adapted to a short, frequently cut, vegetation by being prostrate and by producing leaves with short petioles throughout the growth season. In the natural situations in which ssp. pleiosperma occurs, growth rate and first-year seed production of this subspecies were considerably higher than that of ssp. major. In a number of experiments, F1s and F2s were included, derived from crosses between the original plants. The F1s were generally rather well adapted to both parental habitats, whereas the F2s appeared to be less fit. The various alternatives in spending resources relevant for fitness optimization in different habitats are discussed.Grassland Species Research Group Publication No. 93  相似文献   

11.
Negative frequency‐dependent selection among species is a key driver of community diversity in natural systems, but the degree to which negative frequency‐dependent selection shapes patterns of survival and genetic diversity within species is poorly understood. In a 5‐year field experiment, we show that seedlings of a tropical palm with rare genotypes had a pronounced survival advantage over seedlings with common genotypes, with effect sizes comparable to that of light availability. This ‘rare genotype advantage’ led to an increase in population‐wide genetic diversity among seedlings compared to null expectations, as predicted by negative frequency‐dependent selection, and increased reproductive success in adult trees with rare genotypes. These results suggest that within‐species negative frequency‐dependent selection of genotypes can shape genetic variation on ecologically relevant timescales in natural systems and may be a key, overlooked source of non‐random mortality for tropical plants.  相似文献   

12.
In a project aimed to incorporate downy mildew resistance into sorghum hybrid seed parents, we screened F4 and F5 families for resistance to the ICRISAT Centre isolate of the pathogen using a greenhouse seedling screening technique. The families originated from a cross of 296B (susceptible) and IS 18757 [(QL-3) resistant]. The F4s were obtained from agronomic selection in F2s and F3s, and the F5 families from advancing plants identified as resistant in segregating F4 families. The resistant plants were more than double the number of susceptible plants in the F4 and almost so in the F5 suggesting that resistance to downy mildew was dominant. Of the four genetic models examined (a single-locus model and three two-locus models with complementary, inhibitory, and a combination of complementary and inhibitory interactions), the two-locus model with independent segregation and a combination of complementary and inhibitory inter-allelic interaction appeared to be most appropriate in explaining the segregation patterns within and among F4 and F5 families. Accordingly, for resistance to P. sorghi, the suggested genotypes for IS 18757 is PlaPlaPlbPlb and for 296B is PlaPlaPlbPlb.  相似文献   

13.
Cultivated common bean (Phaseolus vulgaris L.) and tepary bean (Phaseolus acutifolius A. Gray) genotypes possessing desirable agronomic traits were hybridized. The F1 hybrids were backcrossed twice with the common bean (i.e., recurrent backcrossing). Also, alternate backcrosses with common and tepary beans (i.e., congruity backcrossing) were carried out. Embryo culture was necessary for all initial interspecific crosses, and its requirement was proportionally lower when the common bean was used as the recurrent parent and as the last parent of congruity backcrosses. Modification of the embryo culture technique was necessary to produce congruity hybrids. Effects of both tepary and common bean genotypes on the success rate of hybridization were observed. Tepary accession G 40001 and common bean cultivar ICA Pijao facilitated interspecies hybridization. Growth of hybrid embryos before rescue, recovery of mature hybrid plants, and the vigor and fertility of F1 hybrids all increased with increased recurrent and congruity backcrosses and intermatings between male-sterile F1 and selected fertile F2 plants of the third and fifth congruity backcrosses. Introgression of tepary genes was verified by means of seed protein electrophoretic analysis and morphological markers. The results suggest that congruity backcrossing can help to gradually reduce or overcome P. vulgaris x P. acutifolius hybridization barriers such as genotype incompatibility, early embryo abortion, hybrid sterility, and lower frequencies of hybridization.  相似文献   

14.
J. I. Hormaza  M. Herrero 《Protoplasma》1999,208(1-4):129-135
Summary Differences in pollen performance in higher plants can result in significant selective advantages for some particular genotypes leading to both gametophytic and sexual selection. However, the possibility of selection among male gametophytes has been questioned since natural selection could lead to the fixation of alleles for the best competing male genotypes. These two apparently conflicting hypotheses could be reconciled if pollen performance, rather than operating in absolute terms, could be modulated by the pistilar genotype. Thus, pollen performance in vivo and in vitro has been compared in four sweet cherry (Primus avium L.) cultivars. Differences among the cultivars studied have been recorded in the speed and final pollen germination percentages both in vivo and in vitro. The results obtained show that the female genotype also modulates the final result of pollen performance. These two factors are not merely additive but, on the contrary, the interaction between them affects pollen behavior in vivo. This fact has clear implications for gametophytic and sexual selection since the best male-female combinations can be favored and this could explain the variability observed for pollen performance in nature.  相似文献   

15.
Physiological basis of QTLs for boron efficiency in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Boron (B) is an essential micronutrient for higher plants, but the adaptability of plants to B deficiency varies widely both between and within species. On the basis of quantitative trait loci (QTL) analysis of the B efficiency coefficient (BEC) detected in an Arabidopsis thaliana Ler × Col recombinant inbred (RI) population, B efficiency was evaluated in the original parents (Ler and Col-4) and two F8 lines (1938 and 1961), both of which were selected on the basis of phenotype and genotype of the RI population. The parent Ler and F8 progeny 1938 had higher BEC and B utilization efficiency (BUE) values than those calculated for parent Col-4 and F8 progeny 1961, respectively, when grown in nutrient solutions containing three different concentrations of B. The magnitude of the BEC and BUE-values was correlated closely with the combined phenotypic effect of the corresponding QTLs among the four genotypes. The F8 line, 1938, inherited all four B-efficient QTLs, AtBE1-1, AtBE1-2, AtBE2 and AtBE5, from its two original parents. The four QTLs accounted for 65.2% of the total variation in BEC and 1938 showed the highest BEC (0.74) and BUE (10.5) values among the four genotypes when grown in nutrient solution that contained 0.324 μM B. Only one minor-effect QTL (AtBE1-1) was found in the parent, Col-4. This QTL accounted only for 8.8% of total BEC variation and resulted in the lowest BEC (0.39) and BUE (0.76) in Col-4 when it was grown in nutrient solution that contained 0.324 μM B. Phenotypic profile analysis showed that 1938 not only inherited the B utilization and distribution characteristics found in the silique of Ler, but also acquired the low-B requirement for root and shoot growth from Col-4. As a result, this genotype displayed the strongest tolerance to B deficiency. In addition, both B-efficient genotypes, 1938 and Ler, possessed the QTL (AtBE1-2) and both plants had high-seed yields and high-B distributions in their siliques. Therefore, we hypothesize that QTL AtBE1-2 plays a role in the utilization and/or the distribution of B to the silique when plants suffer from B deficiency. A close correlation between the B-efficient phenotype and the corresponding QTLs indicated that phenotypic differences depend on the genetic variation. Responsible Editor: Richard W. Bell.  相似文献   

16.
To explore genetic variation in defence against the natural herbivores of Arabidopsis thaliana, we transplanted genotypes between a dune habitat and inland habitat in both of which A. thaliana occurred naturally. In previous years we had observed that the specialist weevils Ceutorhynchus atomus and C. contractus (Curculionidae) fed conspicuously on flowers and fruits of A. thaliana in the dunes, while these weevils were always rare in inland habitats. Taking all plants together, total fruit damage was indeed much higher in our experimental plots in the dune habitat (59.7%) relative to the inland garden habitat (18.9%). Within a habitat, additional differences existed between plants of different origins, pointing to genetic differences in ecologically relevant characters; plants of inland origin flowered a week earlier, grew better and produced more fruits than plants of dune origin. However, plants of inland origin experienced more total fruit damage by the specialist weevils (75.4%) than plants of dune origin (44.0%) when the two types grew side by side in the dune habitat. Escape from herbivory gives dune genotypes an advantage in their native habitat, whereas stronger growth and higher survival gives inland genotypes an edge under garden conditions.  相似文献   

17.
18.
We examined the effects of pollen selection for rapid pollen-tube growth on progeny vigor. First, we crossed a wild gourd (Cucurbita texana) to a cultivated zucchini (Cucurbita pepo cv Black Beauty) to produce an F1 and then an F2 generation. Half of the F1 seeds were produced by depositing small loads of C. texana pollen onto the stigmas of C. pepo. These small pollen loads were insufficient to produce a full complement of seeds and, consequently, both the fast- and the slow-growing pollen tubes were permitted to achieve fertilization. An F2 generation was then produced by depositing small loads of F1 pollen onto stigmas of F1 plants. The F2 seeds resulting from two generations of small pollen loads are termed the non-selected line because there was little or no selection for pollen-tube growth rate on these plants. The other half of the F1 and F2 seeds were produced by depositing large pollen loads (>10 000 pollen grains) onto stigmas and then allowing only the first 1% or so of the pollen tubes that entered the ovary to fertilize the ovules. We did this by excising the styles at the ovary at 12–15 h after pollination. The resulting F2 seeds are termed the selected line because they were produced by two generations of selection for only the fastest growing pollen tubes. Small pollen loads from the F2plants, both the selected and the non-selected lines, were then deposited onto stigmas of different C. pepo flowers, and the vigor of the resulting seeds was compared under greenhouse and field conditions. The results showed that the seeds fertilized by pollen from the selected line had greater vegetative vigor as seedlings and greater flower and fruit production as mature plants than the seeds fertilized by pollen from the non-selected line. This study demonstrates that selection for fast pollen-tube growth (selection on the microgametophyte) leads to a correlated increase in sporophyte (progeny) vigor.  相似文献   

19.
We have developed an efficient PCR-based system that uses RAPD markers for the certification of F1 hybrids of canola. These markers were selected by screening five parental lines used in three crosses X, Y and Z with 131, 131 and 322 primers respectively. Stable DNA fragments that were homozygous and specific to the male inbreds were used to certify F1 hybrid populations. The hybrid production system was based on self-incompatibility (SI) alleles that prevent self-pollination of the female parent. The efficiency of two S-alleles was compared under both field and greenhouse conditions. The percentage of hybridity was estimated in different F1 populations. We found a significant difference between the two alleles for their efficiency in controlling selfing; both alleles were stable under greenhouse conditions, one allele appeared less reliable under field conditions.  相似文献   

20.
In the context of future climate change new habitats will be threatened and unique species will be forced to develop different strategies to survive. Saxifraga longifolia Lapeyr. is an endemic species from the Pyrenees with a very particular habitat. We explored the capacity and strategies of S. longifolia plants to face different severities of drought stress under both natural conditions and controlled water stress followed by a re-watering period of 20 days. Our results showed a role for abscisic acid (ABA), salicylic acid (SA) and cytokinins (CKs) in plant survival from drought stress, and as the stress increased, ABA lost significance and SA appeared to be more associated with the response mechanisms. Moreover, photo-oxidative stress markers revealed that both xanthophyll cycles played a photoprotection role with a stronger participation of the lutein epoxide cycle as the stress was more intense. Severe drought decreased the maximum efficiency of photosystem II (Fv/Fm) below 0.45, being this the limit to survive upon rewatering. Overall, our results proved different strategies of S. longifolia plants to cope with drought stress and suggested a Fv/Fm threshold to predict plant survival in high-mountain environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号