首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-OH kinase (PI3K)/Akt pathways are involved in the regulatory mechanisms of several cellular processes including proliferation, differentiation and apoptosis. Here we show that during chick, mouse and zebrafish limb/fin development, a known MAPK/ERK regulator, Mkp3, is induced in the mesenchyme by fibroblast growth factor 8 (FGF8) signalling, through the PI3K/Akt pathway. This correlates with a high level of phosphorylated ERK in the apical ectodermal ridge (AER), where Mkp3 expression is excluded. Conversely, phosphorylated Akt is detected only in the mesenchyme. Constitutively active Mek1, as well as the downregulation of Mkp3 by small interfering RNA (siRNA), induced apoptosis in the mesenchyme. This suggests that MKP3 has a key role in mediating the proliferative, anti-apoptotic signalling of AER-derived FGF8.  相似文献   

2.
BACKGROUND: The importance of endogenous antagonists in intracellular signal transduction pathways is becoming increasingly recognized. There is evidence in cultured mammalian cells that Pyst1/MKP3, a dual specificity protein phosphatase, specifically binds to and inactivates ERK1/2 mitogen-activated protein kinases (MAPKs). High-level Pyst1/Mkp3 expression has recently been found at many sites of known FGF signaling in mouse embryos, but the significance of this association and its function are not known. RESULTS: We have cloned chicken Pyst1/Mkp3 and show that high-level expression in neural plate correlates with active MAPK. We show that FGF signaling regulates Pyst1 expression in developing neural plate and limb bud by ablating and/or transplanting tissue sources of FGFs and by applying FGF protein or a specific FGFR inhibitor (SU5402). We further show by applying a specific MAP kinase kinase inhibitor (PD184352) that Pyst1 expression is regulated via the MAPK cascade. Overexpression of Pyst1 in chick embryos reduces levels of activated MAPK in neural plate and alters its morphology and retards limb bud outgrowth. CONCLUSIONS: Pyst1 is an inducible antagonist of FGF signaling in embryos and acts in a negative feedback loop to regulate the activity of MAPK. Our results demonstrate both the importance of MAPK signaling in neural induction and limb bud outgrowth and the critical role played by dual specificity MAP kinase phosphatases in regulating developmental outcomes in vertebrates.  相似文献   

3.
4.
Mitogen-activated protein (MAP) kinases are typical examples of protein kinases whose enzymatic activity is mainly controlled by activation loop phosphorylation. The classical MAP kinases ERK1/ERK2, JNK, p38 and ERK5 all contain the conserved Thr-Xxx-Tyr motif in their activation loop that is dually phosphorylated by members of the MAP kinase kinases family. Much less is known about the regulation of the atypical MAP kinases ERK3 and ERK4. These kinases display structural features that distinguish them from other MAP kinases, notably the presence of a single phospho-acceptor site (Ser-Glu-Gly) in the activation loop. Here, we show that ERK3 and ERK4 are phosphorylated in their activation loop in vivo. This phosphorylation is exerted, at least in part, in trans by an upstream cellular kinase. Contrary to classical MAP kinases, activation loop phosphorylation of ERK3 and ERK4 is detected in resting cells and is not further stimulated by strong mitogenic or stress stimuli. However, phosphorylation can be modulated indirectly by interaction with the substrate MAP kinase-activated protein kinase 5 (MK5). Importantly, we found that activation loop phosphorylation of ERK3 and ERK4 stimulates their intrinsic catalytic activity and is required for the formation of stable active complexes with MK5 and, consequently, for efficient cytoplasmic redistribution of ERK3/ERK4-MK5 complexes. Our results demonstrate the importance of activation loop phosphorylation in the regulation of ERK3/ERK4 function and highlight differences in the regulation of atypical MAP kinases as compared to classical family members.  相似文献   

5.
6.
The mitogen activated protein (MAP) kinase module: (Raf -->MEK-->ERKs) is central to the control of cell growth, cell differentiation and cell survival. The fidelity of signalling and the spatio-temporal activation are key determinants in generating precise biological responses. The fidelity is ensured by scaffold proteins - protein kinase 'insulators' - and by specific docking sites. The duration and the intensity of the response are in part controlled by the compartmentalization of the signalling molecules. Growth factors promote rapid nuclear translocation and persistent activation of p42/p44 MAP kinases, respectively and ERK2/ERK1, during the entire G1 period with an extinction during the S-phase. These features are exquisitely controlled by the temporal induction of the MAP kinase phosphatases, MKP1-3. MKP1 and 2 induction is strictly controlled by the activation of the MAP kinase module providing evidence for an auto-regulatory mechanism. This negative regulatory loop is further enhanced by the capacity of p42/p44 MAPK to phosphorylate MKP1 and 2. This action reduces the degradation rate of MKPs through the ubiquitin-proteasomal system. Whereas the two upstream kinases of the module (Raf and MEK) remain cytoplasmic, ERKs (anchored to MEK in the cytoplasm of resting cells) rapidly translocate to the nucleus upon mitogenic stimulation. This latter process is rapid, reversible and controlled by the strict activation of the MAPK cascade. Following long-term MAPK stimulation, p42/p44 MAPKs progressively accumulate in the nucleus in an inactive form. Therefore we propose that the nucleus represents a site for ERK action, sequestration and signal termination. With the generation of knockdown mice for each of the ERK isoforms, we will illustrate that besides controlling cell proliferation the ERK cascade also controls cell differentiation and cell behaviour.  相似文献   

7.
The mitogen-activated protein (MAP) kinase phosphatase-3 (MKP3) is a dual specificity phosphatase that specifically inactivates one subfamily of MAP kinases, the extracellular signal-regulated kinases (ERKs). Inactivation of MAP kinases occurs by dephosphorylation of Thr(P) and Tyr(P) in the TXY kinase activation motif. To gain insight into the mechanism of ERK2 inactivation by MKP3, we have carried out an analysis of the MKP3-catalyzed dephosphorylation of the phosphorylated ERK2. We find that ERK2/pTpY dephosphorylation by MKP3 involves an ordered, distributive mechanism in which MKP3 binds the bisphosphorylated ERK2/pTpY, dephosphorylates Tyr(P) first, dissociates and releases the monophosphorylated ERK2/pT, which is then subjected to dephosphorylation by a second MKP3, yielding the fully dephosphorylated ERK2. The bisphosphorylated ERK2 is a highly specific substrate for MKP3 with a k(cat)/K(m) of 3.8 x 10(6) m(-1) s(-1), which is more than 6 orders of magnitude higher than that for small molecule aryl phosphates and an ERK2-derived phosphopeptide encompassing the pTEpY motif. This strikingly high substrate specificity displayed by MKP3 may result from a combination of high affinity binding interactions between the N-terminal domain of MKP3 and ERK2 and specific ERK2-induced allosteric activation of the MKP3 C-terminal phosphatase domain.  相似文献   

8.
Mitogen-activated-protein kinase (MAP kinase) cascades are effector mechanisms for many growth factor signals implicated in developmental processes, including appendage outgrowth and organogenesis. The cascade culminates in extracellular-signal-regulated MAP kinase (ERK), which enters the nucleus. ERK activity reflects the competing actions of upstream activator kinases and inhibitory MAP kinase phosphatases. We have studied embryonic expression of the dual-specificity MAP kinase phosphatase PYST1/MKP3, which is a specific and potent regulator of the ERK class of MAP kinases. We found dynamic patterns of mPyst1 messenger RNA in important signalling centres associated with cell proliferation and patterning in developing mouse embryos, including presegmental paraxial mesoderm, limb bud and branchial arch mesenchyme, midbrain/hindbrain isthmus, and nasal, dental, hair, and mammary placodes. Most of these have been characterised as sites of FGF/FGFR signalling.  相似文献   

9.
10.
Mitogen-activated protein (MAP) kinases play a central role in controlling a wide range of cellular functions following their activation by a variety of extracellular stimuli. MAP kinase phosphatases (MKPs) represent a subfamily of dual specificity phosphatases, which negatively regulate MAP kinases. Although ERK2 activity is regulated by its phosphorylation state, MKP3 is regulated by physical interaction with ERK2, independent of its enzymatic activity (Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U., and Arkinstall, S., (1998) Science 280, 1262-1265; Farooq, A., Chaturvedi, G., Mujtaba, S., Plotnikova, O., Zeng, L., Dhalluin, C., Ashton, R., and Zhou, M. M. (2001), Mol. Cell 7, 387-399; Zhou, B., and Zhang, Z. Y. (1999) J. Biol. Chem. 274, 35526-35534). The interaction of ERK2 and MKP3 allows the reciprocal cross-regulation of their catalytic activity. Indeed, MKP3 acts as a negative regulator on ERK2-MAP kinase signal transduction activity, representing thus a negative feedback for this MAPK pathway. To identify novel proteins able to complex MKP3, we used the yeast two-hybrid system. Here we report that MKP3 and protein kinase CK2 form a protein complex, which can include ERK2. The phosphatase activity of MKP3 is then slightly increased in vitro, whereas in transfected cells, ERK2 dephosphorylation is reduced. In addition, we demonstrated that CK2 selectively phosphorylates MKP3, suggesting cross-regulation between CK2alpha and MKP3, as well as a modulation of ERK2-MAPK signaling by CK2alpha via MKP3.  相似文献   

11.
12.
MAP kinase phosphatase 3 (MKP3, also known as DUSP6 and PYST1) is involved in extracellular signal receptor kinase (ERK) regulation and functions as a specific phosphatase to the activated (phosphorylated) forms of ERK1 and ERK2. MKP3 displays allosteric activation, which aids in tightly regulating its function to ERK substrates, but not other related MAPKs. Due to MKP3's specificity for the ERK signaling pathway, the development of specific activators or inhibitors to the enzyme have been suggested in order to expressly influence the ERK1 and ERK2 pathways. To produce the high yields of MKP3 protein necessary for physico-chemical characterization of MKP3 and for high throughput screening of its small-molecule activators and inhibitors, we have cloned, purified and, and identified refolding conditions suitable for producing full-length, human MKP3 from Escherichia coli inclusion bodies. Furthermore, we demonstrate the use of a 96-well plate format refolding assay in which the ERK-induced activity of MKP3 is simulated by 33% DMSO. The assay allowed for rapid detection of MKP3's function following a refolding screen in the absence of ERK and thus provides quick and inexpensive testing of MKP3 activity. Following screening, the refolded product was confirmed to be correctly folded by steady-state kinetic analysis and by the CD spectroscopy-determined secondary structure content. CD data were consistent with 36% helix and 14% sheet, which compared to an expected 32.9% helix and 12.4% sheet. These data indicated that MKP3 was properly folded, making it a suitable protein for use in functional studies.  相似文献   

13.
Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal‐regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. By combining quantitative data from erythropoietin‐induced pathway activation in primary erythroid progenitor (colony‐forming unit erythroid stage, CFU‐E) cells with mathematical modelling, we predicted and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU‐E cells. Model analysis showed bow‐tie‐shaped signal processing and inherently transient signalling for cytokine‐induced ERK signalling. Sensitivity analysis predicted that, through a feedback‐mediated process, increasing one ERK isoform reduces activation of the other isoform, which was verified by protein over‐expression. We calculated ERK activation for biochemically not addressable but physiologically relevant ligand concentrations showing that double‐phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. Thus, we provide a quantitative link between earlier unobservable signalling dynamics and cell fate decisions.  相似文献   

14.
15.
Classical mitogen-activated protein (MAP) kinases are activated by dual phosphorylation of the Thr-Xxx-Tyr motif in their activation loop, which is catalyzed by members of the MAP kinase kinase family. The atypical MAP kinases extracellular signal-regulated kinase 3 (ERK3) and ERK4 contain a single phospho-acceptor site in this segment and are not substrates of MAP kinase kinases. Previous studies have shown that ERK3 and ERK4 are phosphorylated on activation loop residue Ser-189/Ser-186, resulting in their catalytic activation. However, the identity of the protein kinase mediating this regulatory event has remained elusive. We have used an unbiased biochemical purification approach to isolate the kinase activity responsible for ERK3 Ser-189 phosphorylation. Here, we report the identification of group I p21-activated kinases (PAKs) as ERK3/ERK4 activation loop kinases. We show that group I PAKs phosphorylate ERK3 and ERK4 on Ser-189 and Ser-186, respectively, both in vitro and in vivo, and that expression of activated Rac1 augments this response. Reciprocally, silencing of PAK1/2/3 expression by RNA interference (RNAi) completely abolishes Rac1-induced Ser-189 phosphorylation of ERK3. Importantly, we demonstrate that PAK-mediated phosphorylation of ERK3/ERK4 results in their enzymatic activation and in downstream activation of MAP kinase-activated protein kinase 5 (MK5) in vivo. Our results reveal that group I PAKs act as upstream activators of ERK3 and ERK4 and unravel a novel PAK-ERK3/ERK4-MK5 signaling pathway.  相似文献   

16.
The pivotal mechanisms that govern the correct patterning and regionalization of the distinct areas of the mammalian CNS are driven by key molecules that emanate from the so-called secondary organizers at neural plate and tube stages. FGF8 is the candidate morphogenetic molecule to pattern the mesencephalon and rhombencephalon in the isthmic organizer (IsO). Recognizable relevance has been given to the intracellular pathways by which Fgf8 is regulated and modulated. In chick limb bud development, a dual mitogen-activated protein kinase phosphatase-3 (Mkp3) plays a role as a negative feedback modulator of Fgf8 signaling. We have investigated the role of Mkp3 and its functional relationship with the Fgf8 signaling pathway in the mouse IsO using gene transfer microelectroporation assays and protein-soaked bead experiments. Here, we demonstrate that MKP3 has a negative feedback action on the MAPK/ERK-mediated FGF8 pathway in the mouse neuroepithelium.  相似文献   

17.
Kim Y  Rice AE  Denu JM 《Biochemistry》2003,42(51):15197-15207
The dual specificity mitogen-activated protein kinase phosphatase MKP3 downregulates mitogenic signaling through dephosphorylation of extracellular signal-regulated kinase (ERK). Like other MKPs, MKP3 consists of a noncatalytic N-terminal domain and a catalytic C-terminal domain. ERK binding to the N-terminal noncatalytic domain of MKP3 has been shown to increase (up to 100-fold) the catalytic activity of MKP3 toward small artificial substrates. Here, we address the function of the N-terminal domain of MKP3 in either inter- or intramolecular dephosphorylation of pERK (phosphorylated ERK) and the stoichiometry of the MKP3/pERK Michaelis complex. These are important mechanistic distinctions given the observation that ERK exists in a monomer/dimer equilibrium that is shifted toward the dimer when phosphorylated and given that MKP3 undergoes catalytic activation toward other substrates when bound to ERK. Wild-type and engineered mutants of ERK and MKP3, binding analyses, reaction kinetics, and chemical cross-linking studies were used to demonstrate that the monomer of MKP3 binds to the monomeric form of pERK and that MKP3 within the resulting heterodimer performs intramolecular dephosphorylation of pERK. This study provides the first direct evidence that MKP3 utilizes intramolecular dephosphorylation between a complex consisting of one molecule each of MKP3 and ERK. Catalytic activation and substrate tethering by MKP3 lead to a >or=4000-fold rate enhancement (k(cat)/K(m)) for dephosphorylation of pERK.  相似文献   

18.
Mitogen-activated protein (MAP) kinase phosphatases (MKPs) constitute a growing family of dual specificity phosphatases, which dephosphorylate both serine/threonine and tyrosine residues of MAP kinases. MAP kinase signaling cascades are involved in the control of cell proliferation, differentiation and apoptosis. In mammals, ten members of the dual-specificity MKP family have so far been identified. In this report, we describe the cloning and expression analysis of the mouse Mkp3 gene. During early development, expression of Mkp3 is most prominent in the primitive streak, presomitic mesoderm and somites, frontonasal prominence, midbrain/hindbrain boundary, branchial arches and limb buds. At later stages, expression is also detected in the tooth primordia, vibrissae, hair follicles, pinna, submandibular gland, mammary gland primordia, lung and kidney. Strong expression was detected in the adult brain.  相似文献   

19.
MAPK phosphatase 3 (MKP3) is highly specific for ERK1/2 inactivation via dephosphorylation of both phosphotyrosine and phosphothreonine critical for enzymatic activation. Here, we show that MKP3 is able to effectively dephosphorylate the phosphotyrosine, but not phosphothreonine, in the activation loop of p38α in vitro and in intact cells. The catalytic constant of the MKP3 reaction for p38α is comparable with that for ERK2. Remarkably, MKP3, ERK2, and phosphorylated p38α can form a stable ternary complex in solution, and the phosphatase activity of MKP3 toward p38α substrate is allosterically regulated by ERK2-MKP3 interaction. This suggests that MKP3 not only controls the activities of ERK2 and p38α but also mediates cross-talk between these two MAPK pathways. The crystal structure of bisphosphorylated p38α has been determined at 2.1 Å resolution. Comparisons between the phosphorylated MAPK structures reveal the molecular basis of MKP3 substrate specificity.  相似文献   

20.
MAP kinase phosphatase (MKP)-3 is a cytoplasmic dual specificity protein phosphatase that specifically binds to and inactivates the ERK1/2 MAP kinases in mammalian cells. However, the molecular basis of the cytoplasmic localization of MKP-3 or its physiological significance is unknown. We have used MKP-3-green fluorescent protein fusions in conjunction with leptomycin B to show that the cytoplasmic localization of MKP-3 is mediated by a chromosome region maintenance-1 (CRM1)-dependent nuclear export pathway. Furthermore, the nuclear translocation of MKP-3 seen in the presence of leptomycin B is mediated by an active process, indicating that MKP-3 shuttles between the nucleus and cytoplasm. The amino-terminal noncatalytic domain of MKP-3 is both necessary and sufficient for nuclear export of the phosphatase and contains a single functional leucine-rich nuclear export signal (NES). Even though this domain of the protein also mediates the binding of MKP-3 to MAP kinase, we show that mutations of the kinase interaction motif which abrogate ERK2 binding do not affect MKP-3 localization. Conversely, mutation of the NES does not affect either the binding or phosphatase activity of MKP-3 toward ERK2, indicating that the kinase interaction motif and NES function independently. Finally, we demonstrate that the ability of MKP-3 to cause the cytoplasmic retention of ERK2 requires both a functional kinase interaction motif and NES. We conclude that in addition to its established function in the regulated dephosphorylation and inactivation of MAP kinase, MKP-3 may also play a role in determining the subcellular localization of its substrate. Our results reinforce the idea that regulatory proteins such as MKP-3 may play a key role in the spatio-temporal regulation of MAP kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号